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Abstract We propose a new class of models for image restoration and decomposi-
tion by functional minimization. Following ideas of Y. Meyer in a total variation min-
imization framework of L. Rudin, S. Osher, and E. Fatemi, our model decomposes a
given (degraded or textured) image u0 into a sum u + v. Here u ∈ BV is a function of
bounded variation (a cartoon component), while the noisy (or textured) component v

is modeled by tempered distributions belonging to the negative Hilbert-Sobolev space
H−s . The proposed models can be seen as generalizations of a model proposed by
S. Osher, A. Solé, L. Vese and have been also motivated by D. Mumford and B. Gi-
das. We present existence, uniqueness and two characterizations of minimizers using
duality and the notion of convex functions of measures with linear growth, following
I. Ekeland and R. Temam, F. Demengel and R. Temam. We also give a numerical
algorithm for solving the minimization problem, and we present numerical results of
denoising, deblurring, and decompositions of both synthetic and real images.

Keywords Functional minimization · Functions of bounded variation · Negative
Hilbert-Sobolev spaces · Duality · Image restoration · Image decomposition · Image
deblurring · Image analysis · Fourier transform

1 Introduction and Motivations

Image restoration and decomposition are of important interest in image processing.
In the restoration case, one seeks to recover a “true” image u from an observed, often
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noisy and/or blurry, image u0. Many well-known models for image restoration work
by decomposing the observed image u0 into a sum of two components, u0 = (u+v) ∈
L2, in a variational approach, where u is a piecewise smooth geometric component
representing the objects in the image and v is the oscillatory component representing
the noise. Examples include S. Geman–D. Geman [19], D. Mumford, J. Shah [26],
among others. One such model is proposed by Rudin, Osher, and Fatemi [30, 31]:

inf
u∈BV(�)

{
λ

∫
�

|Du| +
∫

�

|u0 − u|2dx

}
. (1)

Here � is an open, bounded and connected set in the plane, with Lipschitz boundary
∂�. The first term in (1) is called the Total Variation (TV) or regularization term, and
the second the fidelity (fitting) term. λ is a positive (tuning) parameter. The infimum
is taken over all functions in BV(�) (functions of bounded variations). The solution
to (1) is the geometric component u in the decomposition u0 = u + v. Here, the v

component is written as u0 −u. Existence and uniqueness results of this minimization
problem can be found in [1, 3, 10], or in [35] for a more general case.

The model (1) performs well for removing noise while preserving edges. How-
ever, it fails to separate well oscillatory components from high-frequencies compo-
nents. For example, edges of an object are high-frequency components and noise is
an oscillatory component. Both the u and v components in the ROF model contain
high-frequencies component. That is, the v component not only contains oscillatory
components, it also contains high-frequency components. One can see shadows of
edges in the noise/textured component v, even when the parameter λ is not so small.
Alternatively, to remedy this situation, Y. Meyer suggested to replace the L2-norm in
the fidelity term of (1) with a weaker norm more appropriate for modeling textured
or oscillatory patterns. He proposed the following minimization problem [24]:

inf
u∈BV(�)

{
λ

∫
�

|Du| + ‖u0 − u‖∗
}
, (2)

where the ‖ · ‖∗-norm is defined as follows:

Definition 1.1 Let G denote the Banach space consisting of all generalized functions
f which can be written as f = div(�g), �g = (g1, g2), g1, g2 ∈ L∞(�), induced by the

norm ‖f ‖∗ = inff =div(�g)‖
√

g2
1 + g2

2‖L∞(�).

The space G can be identified with Ẇ−1,∞(�), the dual of the homogeneous space
Ẇ 1,1(�) := {f ∈ L1(�) : ∇f ∈ L1(�)2}. In [24], Y. Meyer also proposes two other
spaces for modeling oscillations, denoted by F and E. The space F is defined as G,
but instead of L∞(�), g1, g2 belong to the John and Nirenberg space BMO(�).
The space E is the generalized Besov space Ḃ−1∞,∞(�) = �Ḃ1∞,∞(�). Oscillatory
patterns have smaller norms in G, F and E than in L2 (see [24] for details). Thus,
in a minimization problem such as (1) and (2), these spaces of generalized functions
are more appropriate for decomposing an image into a piecewise smooth (or cartoon)
part and an oscillatory (or textured) part than the space L2.
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Mumford and Gidas, taking a statistical approach, have proposed in [25] several
stochastic models for analysis of generic images. In this paper, the authors showed
that white noise lives in

⋂
ε>0 H−1−ε

loc , where H−s
loc (for any s ≥ 0) is the Hilbert-

Sobolev space of negative degree of differentiability. They also show that if we model
images as samples from a scale and translation invariant probability measure on S ∗,
then such measure is not supported on the subspace of locally integrable functions.
The measure is rather supported on spaces of generalized functions, such as the H−s

spaces, with s > 0. The work of Alvarez, Gousseau, Morel [2, 21] also supports that
natural images are not well represented by the component u, a function of bounded
variation. Thus, there is a need to represent images with textures by weaker, larger
spaces of generalized functions or by distributions. However, this leads to more com-
plicated models like (2), instead of the simpler model (1).

The difficulty with the minimization problem (2) is that it cannot be solved directly
due to the form of the ∗-norm. That is to say, the subdifferential of the functional and
the associated Euler-Lagrange equation cannot be expressed directly with respect
to u. For a practical alternative, the authors in [36] have introduced the following
minimization problem as an approximation to (2):

inf
u∈BV(�),g1,g2∈Lp(�)2

Gp(u, �g) = λ

∫
�

|Du| + μ

∫
�

|u0 − (u + div �g)|2dx

+
[∫

�

(√
g2

1 + g2
2

)p

dx

] 1
p

, (3)

where λ,μ > 0 are tuning parameters, and p ≥ 1. The first term in (3) ensures that
u ∈ BV(�), the second term ensures that v = u0 − u ≈ div(�g), and the last term
ensures that gi ∈ Lp(�). The minimization (3) is an approximation to (2), by taking
μ,p → ∞ (in the limit, u0 − u = div(�g) a.e., for all those �g with smallest L∞(�)

norm, the middle term disappears and the last term becomes ‖u0 − u‖∗). In the case
p = 2, v = div �g in (3) also corresponds to v ∈ Ḣ−1(�), the dual of the space Ḣ 1(�).
Indeed, for v ∈ Ḣ−1(�), there is a P ∈ Ḣ 1(�) such that

‖v‖2
Ḣ−1(�)

= inf
g1,g2∈L2(�),v=div �g

∫
�

(g2
1 + g2

2)dx =
∫

�

|∇P |2dx,

that is to say, v = div(∇P) = �P , or equivalently, P = �−1v (compare with the
space F proposed by Y. Meyer to model textures).

Limiting to the case p = 2 and using the inverse Laplacian, the authors in [27]
have simplified the minimization problem (3) in a new problem corresponding to the
case μ = ∞ in (3). They proposed the following:

inf
u∈BV(�)

{
λ

∫
�

|Du| + |u0 − u|2
Ḣ−1(�)

}
, (4)

where |v|2
Ḣ−1(�)

= ∫
�

|∇�−1v|2dx, which is a semi-norm dual to the semi-norm

|u|H 1(�) := ∫
�

|∇u|2dx of H 1(�). This model yields an exact decomposition u0 =
u + v, with u ∈ BV(�) and v ∈ Ḣ−1(�). Solving (4) leads to solving an equivalent
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non-linear fourth order Euler-Lagrange PDE with a severe CFL condition (for details
see [27]). Numerical experiments show that the models (3) and (4) separate texture
from objects better than the ROF model.

Motivated by [24, 27, 36], J.-F. Aujol and collaborators have proposed related ap-
proximations to Meyer’s (BV,G) model in the interesting and inspiring work [5, 7–
9]. In particular in [9], Aujol and Chambolle consider Sobolev spaces of negative ex-
ponent, as in [36]. They make a statistical analysis of the Gaussian white noise regard-
ing the choice of the norm, and they propose a decomposition model u0 = u+ v +w,
with u ∈ BV the cartoon component, v ∈ W−1,p the texture component (p ∈ [1,∞]),
and w ∈ E the noise component. They favor the choice of the E space to model white
Gaussian noise, rather then the H−1 norm, and the G space to model texture. A re-
lated elegant work has been proposed by I. Daubechies and G. Teschke [11, 12] in a
wavelets approach. In [11, 12], the authors have modified the Vese-Osher and Osher-
Solé-Vese energies in (3) and (4) by replacing BV(�) with the space B1

1 (L1(�)) in
the regularizing term, and limiting themselves to the case p = 2, whereby they have
arrived to a new minimization problem which gives a decomposition u0 ≈ u+v, with
u ∈ B1

1 (L1(�)) and v ∈ H−1(�).
Other interesting related work for image decomposition and cartoon and tex-

ture separation using generalized functions and dual spaces are by Starck, Elad and
Donoho [34] using wavelets dictionaries, Tadmor, Nezzar and Vese [33] for a hi-
erarchical (BV,L2) decomposition, Esedoglu and Osher [16], Levine [23] for dual
functionals, Le-Vese [22] for (BV,F ) decompositions, Garnett, Le, Meyer, Vese [18]
for (BV, Ḃ−α

p,q) decompositions, among others.
Motivated by the works of Meyer [24], Osher-Solé-Vese [27], Mumford-

Gidas [25], we propose in this paper a new convex minimization problem (or rather,
a class of convex minimization problems), in which we decompose a given image
into u0 = u + v where u is of bounded variation and v belongs to one of the Hilbert-
Sobolev spaces of negative degree of differentiability.

The precise formulation of our proposed model is given in Sect. 2. As we shall
show below, solving the proposed convex minimization problem with respect to the
unknown u leads to solving a second-order Euler-Lagrange PDE, instead of a fourth-
order PDE [27]. Moreover, the new model is more general than (1) and (4). In fact,
it recovers (1) when we set s = 0, and it becomes an equivalent form of (4) when we
make simple modification in the form of the norm H−s . A related preliminary work
inspired from model [27] and also using the Fourier Transform for computations and
variants is by S. Roudenko [29].

The plan of this paper is as follows: in Sect. 2, we give a detailed description of
the proposed model. Existence and uniqueness of solutions and two characterizations
of minimizers are given in Sects. 3 and 4, respectively. In Sect. 5 we give detailed
explanation to our numerical algorithm and implementation of our model. Then in
Sect. 6, we give numerical results and comparisons of these with other models.
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2 Description of the New Model

2.1 The Space Hs(Rn) [13]

Let S(Rn) := {u ∈ C∞(Rn) : ∀α ∈ N, β ∈ N
n, |x|α|Dβu| → 0 as |x| → +∞}, the

Schwartz space. The dual S(Rn)∗ to S(Rn) is the space of tempered distributions.
Recall that the Fourier Transform of a function f ∈ S(Rn), or of f ∈ L1(Rn), de-
noted f̂ , is given by

Ff (ξ) := f̂ (ξ)
def=

∫
Rn

f (x)e−2πix·ξ dx, ξ ∈ R
n.

Let the bracket 〈,〉 denote the duality pairing between S(Rn)∗ and S(Rn). The
Fourier Transform of a tempered distribution g is the tempered distribution ĝ defined
by:

〈ĝ, ϕ〉 = 〈g, ϕ̂〉 for all ϕ ∈ S(Rn).

Definition 2.1 For any s ∈ R, the space Hs(Rn) consists of tempered distributions g

such that (1 + |ξ |2)s/2 · ĝ ∈ L2(Rn), where ĝ is the Fourier transform of g.

The space Hs(Rn) is a Hilbert space equipped with the inner product

〈f,g〉s =
∫

Rn

(1 + |ξ |2)s f̂ (ξ)ĝ(ξ)dξ,

and the associated norm ‖f ‖s = √〈f,f 〉s = (
∫

Rn(1 + |ξ |2)s |f̂ (ξ)|2dξ)1/2. When
s = m is an integer, then Hs(Rn) is the same as the Sobolev Space Hm(Rn) with
equivalent norms. The dual to H−s(Rn) is the space Hs(Rn). Observe that if s1 >

s2 ≥ 0, then ‖f ‖s1 > ‖f ‖s2 . Thus we have the following continuous embeddings
(injections) of spaces

S(Rn) ⊂ Hs1(Rn) ⊂ Hs2(Rn) ⊂ · · · ⊂ H 0(Rn)

= L2(Rn) ⊂ · · · ⊂ H−s2(Rn) ⊂ H−s1(Rn) ⊂ S(Rn)∗.

2.2 Extending from a Bounded Domain � to R
2

When working with images, we are dealing with functions defined only on a bounded
domain. On the other hand, the Hs norm is given via the Fourier Transform which
is defined for functions whose values on the whole space are known. To resolve this,
we will consider extending a function given on a bounded domain � ⊂ R

2 by zeros
to the whole R

2 space. It is clear that extension by zeros is a continuous embedding
of L2(�) into L2(R2). Moreover, it is an embedding of BV(�) into BV(R2) [17].
In addition, since ∂� is Lipschitz, Poincaré-Wirtinger Inequality [17] implies that
BV(�) is continuously embedded into L2(�). We thus have the following continuous
embeddings: BV(�) ⊂ L2(�) ⊂ L2(R2) ⊂ H−s(R2), s ≥ 0.

Henceforth in this paper in the continuous case, when the functions are defined
only on � ⊂ R

2, ∂� is Lipschitz, we shall use extension by zeros to compute the
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H−s norm. We will consider a function f : � → R to be in H−s(R2), s > 0, if
after extending by zeros to R

2, the extended function, which we will also refer to
as f , belongs to H−s(R2). In the discrete case (see Sect. 5), we use the Discrete
Fourier Transform (DFT) and the Inverse Discrete Fourier Transform (IDFT), where
the explicit extension by zeros of discrete functions outside � is no longer needed.

2.3 The New Model

Hereafter, s will always be positive, and we shall use the notation L2 and H−s for
L2(R2) and H−s(R2), respectively. We propose the following new variational model
for image restoration and decomposition:

inf
u∈BV(�)

F (u) := λ|u|BV(�) + ‖u0 − Ku‖2−s , (5)

where s ≥ 0 is a parameter for the fidelity norm, � is an open, bounded and con-
nected subset of R

2 with Lipschitz boundary, λ > 0 is a regularization parame-
ter, |u|BV(�) := ∫

�
|Du| is the regularization (total variation) term, ‖u0 − Ku‖2−s =∫

R2(1 + |ξ |2)−s |û0 − K̂u|2dξ is the fidelity term. We assume that the operator K is
an injective continuous linear operator from L2 into L2 such that K1� �= 0.

Remark 2.1

(i) If K to is the identity operator and s = 0, by Parceval Identity
∫ |g|2dx =∫ |ĝ|2dξ , (5) becomes exactly (1), i.e. our proposed model recovers the ROF

model.
(ii) We can obtain an equivalent form of (4) from (5) by setting s = 1 and writing

‖u0 − u‖H−s
0

:= ∫ |ξ |−2s |û0 − û|2dξ , that is, we change the H−s norm into a
semi-norm by removing 1 from the first term in the integrand. Thus, we obtain
an equivalent formulation of the OSV model [27].

3 Existence and Uniqueness of Solutions

We now prove existence and uniqueness of minimizers for the proposed model, adapt-
ing the techniques from [1, 10, 35] to the (BV,H−s) case.

Theorem 3.1 Given � ⊂ R
2, open, bounded and connected, with Lipschitz bound-

ary, u0 ∈ H−s , u0 = 0 outside of �, λ > 0, and K : L2 → L2 an injective continuous
linear operator such that K1� �= 0, then the minimization problem

inf
u∈BV(�)

F (u) = λ|u|BV(�) + ‖u0 − Ku‖2−s , s > 0,

has a unique solution in BV(�).

Proof Note the infimum of F(u) is finite. Let un ∈ BV(�) be a minimizing se-
quence of F . Then there exists a constant M > 0 for which |un|BV(�) ≤ M and
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‖u0 − Kun‖2−s ≤ M for all n ≥ 0. By the Poincaré-Wirtinger inequality, we have
a constant C > 0 which depends only on � such that

∥∥∥∥un − 1

|�|
∫

�

un

∥∥∥∥
L2(�)

≤ C|un|BV(�) ≤ CM, for all n. (6)

First we show that there is C′ > 0 such that 1
|�| |

∫
�

un| ≤ C′, for all n ≥ 0. Following

[1, 35], denote by wn = ( 1
|�| |

∫
�

un|)χ� and vn = un − wn. Then clearly wn,vn ∈
BV(�). Moreover, we have from (6)

‖vn‖−s ≤ ‖vn‖L2 =
∥∥∥∥un − 1

|�|
∫

�

un

∥∥∥∥
L2(�)

≤ C,

for some constant C > 0 independent of n, for all n. Thus, since

M ≥ ‖u0 − Kun‖2−s = ‖u0 − Kvn − Kwn‖2−s ,

u0 and Kvn are uniformly bounded in norm, K is a bounded operator, we deduce
‖Kwn‖−s ≤ M ′ uniformly.

This implies 1
|�| |

∫
�

un|‖Kχ�‖−s = ‖Kwn‖−s ≤ M ′′ for all n, or 1
|�| |

∫
�

un| ≤
C′.

Thus, for all n ≥ 0, ‖un‖L2(�) ≤ M ′, implying ‖un‖L1(�) ≤ M ′. Hence uniformly

‖un‖BV(�) := ‖un‖L1(�) + |un|BV(�) ≤ M ′′.

Therefore there exists a subsequence, still denoted un, and a u ∈ BV(�) such that
un → u in L1(�) and

|u|BV(�) ≤ lim inf
n→∞ |un|BV(�). (7)

Moreover, by passing to a subsequence if necessary, un ⇀ u weakly in L2(�).
After extending un,u by zeros to R

2, we still have un ⇀ u weakly in L2.
Since K is a continuous linear operator from L2 to L2,

∫
R2 Kun(x)ϕ(x)dx =∫

R2 un(x)K∗ϕ(x)dx, ∀ϕ ∈ L2. Therefore, Kun ⇀ Ku weakly in L2.

To show Kun ⇀ Ku weakly in H−s , we recall that for any ϕ ∈ H−s , ϕ̂(ξ)

(1+|ξ |2)s/2 ∈
L2(R2;C), therefore ϕ̂(ξ)

(1+|ξ |2)s ∈ L2(R2;C). So F(
ϕ̂(ξ)

(1+|ξ |2)s
) ∈ L2(R2;C). Hence (by

subsequently taking the real part and then the imaginary part and combining them
afterwards)

∫
R2

F

(
ϕ̂(ξ)

(1 + |ξ |2)s
)

(x)Kun(x)dx →
∫

R2
F

(
ϕ̂(ξ)

(1 + |ξ |2)s
)

(x)Ku(x)dx as n → ∞.

Applying
∫

v ¯̂w = ∫ ¯̄̂
vw, we thus have for any ϕ ∈ H−s ,

∫
R2

ϕ̂K̂un

(1 + |ξ |2)s dξ →
∫

R2

ϕ̂K̂u

(1 + |ξ |2)s dξ as n → ∞.
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Therefore, u0 −Kun ⇀ u0 −Ku weakly in H−s and by the lower semi-continuity
of the H−s -norm, we obtain

‖u0 − Ku‖2−s ≤ lim inf
n→∞ ‖u0 − Kun‖2−s .

Hence,

F(u) := λ|u|BV(�) + ‖u0 − Ku‖2−s ≤ lim inf
n→∞

(
λ|un|BV(�) + ‖u0 − Kun‖2−s

)
,

and u is a minimizer.
The uniqueness of a minimizer u ∈ BV(�) is an immediate consequence of the

strict convexity of F(u) and the assumptions K injective and K1� �= 0. �

Remark 3.1 The above existence and uniqueness result also holds for other regu-
larizing functionals on BV(�) instead of the total variation. For example, |u|BV(�)

can be substituted by
∫
�

ψ(Du) defined in the sense of convex functions of mea-
sures (see [14, 35]), where ψ : R

2 → [0,∞) is continuous, even, convex, and
satisfying ψ(0) = 0, a|x| − b ≤ ψ(x) ≤ a|x| + b for some constants a > 0 and
b ≥ 0, and any x ∈ R

2. Examples are ψ(x) = |x1| + |x2|, ψ(x) = √
ε2 + |x|2 − |ε|,

ψ(x) = log cosh(ε2 + |x|2), with ε > 0.

4 Characterizations of Minimizers

In this section we present two approaches for characterization of the solution of our
proposed model. The first approach is to characterize the subdifferential ∂F of the
functional F by computing the dual problem to (5) (a simplified version of the sub-
differential will be used in our numerical approximation). The second approach is to
utilize the H−s inner product to define a new “texture” norm, and thus we illustrate
how our proposed model discriminates cartoon versus texture.

4.1 Dual Problem Formulation and Characterization of Minimizers

We will show in this section, via characterizations of the subdifferential of F, the
optimality conditions satisfied by the solution of (5), including a formulation of the
boundary conditions. We follow closely the steps in [35], based on the techniques of
Demengel-Temam for the problem of minimal surfaces [14] and duality results from
Ekeland-Temam [15] and Temam-Strang [32].

For numerical purposes, we consider another well-defined approximate functional
Fε of F , ε ≥ 0, defined for u ∈ L2(�) by [1, 14]

Fε(u) =
{∫

�
ψ(|Du|) + ‖u0 − Ku‖2−s , if u ∈ BV(�),

+∞, if u ∈ L2(�) \ BV(�),
(8)

where ψ(z) = λ(
√

ε2 + |z|2 − |ε|), z ∈ R, and F0(u) = F(u). It can be shown as
before that Fε also has a unique minimizer u ∈ BV(�) (see also [1, 35]) and we will
compute ∂Fε(u), because F(u) = infv∈L2(�) F (v) if and only if 0 ∈ ∂F (u).
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For u ∈ L2(�), we say that φ ∈ L2(�)∗ = L2(�) satisfies φ ∈ ∂Fε(u) if and only
if [15]

Fε(u) ∈ R and Fε(u) − 〈φ,u〉L2(�)×L2(�) ≤ Fε(v) − 〈φ,v〉L2(�)×L2(�),

∀v ∈ L2(�).

The Fourier Transform can be written as a sum of two continuous linear operators
as

(Ff )(ξ) = (FCf )(ξ) + i(FSf )(ξ)

=
∫

R2
f (x) cos(2πx · ξ)dx + i

∫
R2

f (x) sin(2πx · ξ)dx.

The definitions of FC and FS can be extended in a natural way to tempered distri-
butions f ∈ H−s by 〈FCf,ϕ〉 = 〈f, FCϕ〉, 〈FSf,ϕ〉 = 〈f, FSϕ〉, for all ϕ ∈ S(R2).

Let F1, F2 : L2(�) → L2(R2) be continuous linear operators defined by

(F1v)(y) = (1 + |y|2)−s/2(FCKvext)(y),

(F2v)(y) = (1 + |y|2)−s/2(FSKvext)(y),

where v ∈ L2(�), vext denotes the extension by zeros of v from � to R
2. For the

data image u0 ∈ H−s , we denote by f̃1(y) := (1 + |y|2)−s/2(FCu0)(y) and f̃2(y) :=
(1 + |y|2)−s/2(FSu0)(y).

With these notations, the functional Fε becomes

Fε(u) =
∫

R2
(f̃1 − F1u)2dx +

∫
R2

(f̃2 − F2u)2dx +
∫

�

ψ(|Du|), u ∈ L2(�).

Fix u ∈ BV(�). Assume φ ∈ L2(�) belongs to ∂Fε(u), i.e. u is the minimum on
BV(�) of

inf
v∈BV(�)

Fε(v) −
∫

�

φvdx. (9)

The infimum on BV(�) of (9) is the same as the infimum on W 1,1(�) (see [35]),
so we may replace BV(�) with W 1,1(�), and our primal problem (P ) is

(P ) inf
v∈W 1,1(�)

Fε(v) −
∫

�

φvdx.

We now formulate the problem (P ∗) dual to (P ) (see [15] for details on duality
results applied here). The Legendre transform of a linear functional � : X → R̄ is
�∗ : X∗ → R̄ given by

�∗(v∗) = sup
v∈X

{〈v, v∗〉 − �(v)}.

Let � : W 1,1(�) → L2(R2)2 × L1(�)2 be the continuous linear operator �v =
(F1v, F2v,D1v,D2v), F : W 1,1(�) → R , G1, G2 : L2(R2) → R, G3 : L1(�)2 → R,
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and G : L2(R2)2 × L1(�)2 → R, such that

F (v) = −
∫

φvdx,

G1(w1) =
∫

R2
(f̃1 − w1)

2dx, G2(w2) =
∫

R2
(f̃2 − w2)

2dx,

G3(w̄) =
∫

�

ψ(|w̄|)dx,

G(w) = G1(w1) + G2(w2) + G3(w̄), w = (w1,w2, w̄) ∈ L2(R2)2 × L1(�)2.

Then the problem (P ) can be written as:

(P ) inf
v∈W 1,1(�)

{F (v) + G(�v)}.

Since F and G are proper (i.e. not identically +∞) convex lower semi-continuous
functions, the dual problem (P ∗) [15] is

(P ∗) sup
p∗∈L2(R2)2×L∞(�)2

{−F ∗(�∗p∗) − G∗(−p∗)},

where

F ∗(�∗p∗) := sup
v∈W 1,1(�)

〈�∗p∗, v〉W 1,1(�)×(W 1,1(�))∗ +
∫

�

φvdx

= sup
v∈W 1,1(�)

〈�∗p∗ + φ,v〉W 1,1(�)×(W 1,1(�))∗

=
{

0, if �∗p∗ + φ = 0 on W 1,1(�),

+∞, otherwise.

It is easy to see G∗(p∗) = G∗
1 (p∗

1)+ G∗
2 (p∗

2)+ G∗
3 (p̄∗), where p∗ = (p∗

1,p∗
2, p̄∗) ∈

L2(R2)2 × L∞(�)2. Similarly (i = 1,2)

G∗
i (p∗

i ) =
∫

R2

(
(p∗

i )
2

4
+ f̃ip

∗
i

)
dx, G∗

3 (p̄∗) =
{∫

�
ψ∗(|p̄∗|)dx, if |p̄∗| ≤ λ,

+∞, otherwise.

Let K = {p∗ ∈ L2(R2)2 × L∞(�)2 : |p̄∗| ≤ λ,�∗p∗ + φ = 0 on W 1,1(�)}, then
(P ∗) becomes

(P ∗) sup
p∗∈K

{
E(p∗) := −

∫
R2

(
(p∗

1)2

4
− f̃1p

∗
1

)
dx −

∫
R2

(
(p∗

2)2

4
− f̃2p

∗
2

)
dx

−
∫

�

ψ∗(|p̄∗|)dx

}
.

The condition �∗p∗ + φ = 0 on W 1,1(�) implies for any w ∈ W 1,1(�)
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0 = 〈�∗p∗,w〉 + 〈φ,w〉 = 〈p∗,�w〉 + 〈φ,w〉
= 〈p∗

1, F1w〉 + 〈p∗
2, F2w〉 + 〈p̄∗,Dw〉 + 〈φ,w〉

= 〈F ∗
1 p∗

1 + F ∗
2 p∗

2 − div(p̄∗) + φ,w〉.
Therefore F ∗

1 p∗
1 + F ∗

2 p∗
2 − div(p̄∗) + φ = 0 as a distribution in D′(�). Since

F ∗
1 p∗

1, F ∗
2 p∗

2, and φ are in L2(�), for p̄∗ to satisfy this relation, we must have
div(p̄∗) ∈ L2(�). Therefore, following [4], we can define the trace p̄∗ · �n on � = ∂�,

where �n is the outward unit normal to �. Moreover, applying integration by parts we
obtain for all v ∈ W 1,1(�),

∫
�

(p̄∗ · �n)vd� =
∫

�

2∑
j=1

(Dj p̄
∗
j v)dx +

∫
�

2∑
j=1

(p̄∗
j Djv)dx

= 〈F ∗
1 p∗

1, v〉 + 〈F ∗
2 p∗

2, v〉 + 〈φ,v〉
− 〈p∗

1, F1v〉 − 〈p∗
2, F2v〉 − 〈v,φ〉 = 0.

We deduce that if p∗ = (p∗
1,p∗

2, p̄∗) ∈ K then p̄∗ · �n = 0d� − a.e. on �. Thus

K = {
p∗ = (p∗

1,p∗
2, p̄∗) ∈ L2(R2)2 × L∞(�)2 :

|p̄∗| ≤ λ, F ∗
1 p∗

1 + F ∗
2 p∗

2 − div(p̄∗) + φ = 0 in D(�)∗, p̄∗ · �n = 0 on �
}
.

We have inf(P ) < ∞, the functional in (P ) is convex and continuous with respect
to �v in L2(R2)2 × L1(�)2. Thus, by duality theorem [15, 28], (P ∗) has a solution
M = (M1,M2, M̄) ∈ K and inf(P ) = sup(P ∗) (minimax relation), and we have

Fε(u) −
∫

�

φudx = E(M), (10)

or, since M ∈ K, F ∗
1 M1 + F ∗

2 M2 − div M̄ + φ = 0 in D′(�), (10) becomes

∫
R2

(
M2

1

4
− f̃1M1

)
dx +

∫
R2

(
M2

2

4
− f̃2M2

)
dx +

∫
R2

(f̃1 − F1u)2dx

+
∫

R2
(f̃2 − F2u)2dx +

∫
�

ψ(|Du|) +
∫

R2
M1(F1u)dx

+
∫

R2
M2(F2u)dx −

∫
�

udiv M̄dx +
∫

�

ψ∗(|M̄|)dx = 0. (11)

Following [14, 35], we can associate to u and M̄ a bounded unsigned measure, de-
noted Du · M̄, defined as a distribution on � by 〈Du · M̄,ϕ〉 = − ∫

�
u(div M̄)ϕdx −∫

�
M̄ · (∇ϕ)udx, for all ϕ ∈ D(�). By the generalized Green’s formula (see also [4,

32])
∫
�

Du · M̄ = − ∫
�

u · div M̄ + ∫
�

u(M̄ · �n)d�, and since M̄ · �n = 0 d�-a.e., (11)
becomes

∫
R2

(
M2

1

4
− f̃1M1

)
dx +

∫
R2

(
M2

2

4
− f̃2M2

)
dx +

∫
R2

(f̃1 − F1u)2dx
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+
∫

R2
(f̃2 − F2u)2dx +

∫
�

ψ(|Du|) +
∫

R2
M1(F1u)dx +

∫
R2

M2(F2u)dx

+
∫

�

Du · M̄ +
∫

�

ψ∗(|M̄|)dx = 0.

Applying the decomposition Du = ∇udx + Cu + (u+ − u−)�ndH1|Su (see [15,
17, 35]), where Cu(Su) = 0, ∇udx is the Lebesgue part, Su is the jump part, and Cu

is the Cantor part, we have

∫
R2

(
M2

1

4
− f̃1M1

)
dx +

∫
R2

(
M2

2

4
− f̃2M2

)
dx +

∫
R2

(f̃1 − F1u)2dx

+
∫

R2
(f̃2 − F2u)2dx +

∫
�

[
ψ(|∇u|) + ∇u · M̄ + ψ∗(|M̄|)]dx + λ

∫
�\Su

|Cu|

+ λ

∫
Su

(u+ − u−)dH1 +
∫

R2
M1(F1u)dx +

∫
R2

M2(F2u)dx +
∫

�\Su

M̄ · Cu

+
∫

Su

(u+ − u−)M̄ · �ndH1 = 0. (12)

From the definitions of G∗
1 (−M1), G∗

2 (−M2), and G∗
3 (−M̄), we have

1. (
M2

1
4 − f̃1M1) + (f̃1 − F1u)2 + M1(F1u) ≥ 0 for dx a.e.

2. (
M2

2
4 − f̃2M2) + (f̃2 − F2u)2 + M2(F2u) ≥ 0 for dx a.e.

3. ψ(|∇u|) + ∇u · M̄ + ψ∗(|M̄|) ≥ ψ(|∇u|) − |∇u||M̄| + ψ∗(|M̄|) ≥ 0, dx a.e.

in �.

By the Radon-Nikodym derivative theorem, we have Cu � |Cu| and ∃h ∈
L1(|Cu|)2 such that |h| = 1 and Cu = h · |Cu|. Thus, M̄ · Cu = M̄ · h|Cu|, hence

4. (M̄Cu + λ|Cu|) = (λ + M̄ · h)|Cu| ≥ 0, since |M̄| ≤ λ.

Finally, when u+ and u− are defined on Su, we have u+ − u− ≥ 0 and λ + M̄ ·
�n ≥ 0 (since |M̄| ≤ λ), hence

5. (u+ − u−)(λ + M̄ · �n) ≥ 0 for dH1 a.e. in Su.

In order for (12) to hold, we must have each of 1, 2, 3, 4, 5 to be exactly 0. Recall
that u is a minimizer of Fε if and only if 0 ∈ ∂Fε(u). By setting the above φ to zero,
we obtain a full characterization of the minimizer u which can be stated as follows:

Theorem 4.1 Let F1, F2, f̃1, f̃2 be defined as above. Let u ∈ BV(�), with Du =
∇udx + Cu + Ju the decomposition of Du. Then u is the minimizer of Fε if and
only if there exists M(x) = (M1(x),M2(x), M̄(x)) ∈ L2(R2) × L2(R2) × L∞(�)2,

|M̄(·)| ≤ λ, such that

ψ(|∇u|) + ∇u · M̄ + ψ∗(|M̄|) = 0, dx a.e. x ∈ �, (13)

M̄ · �n = 0 d� a.e. on � = ∂�, (14)
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F ∗
1 M1 + F ∗

2 M2 − div M̄ = 0 in D′(�), (15)

−M1 = 2(F1u − f̃1), −M2 = 2(F2u − f̃2) dx a.e. x ∈ �, (16)

λ + M̄ · �n = 0, |M̄| = λ dH1 a.e. x ∈ Su, (17)

supp(|Cu|) ⊂ N = {x ∈ �\Su,λ + M̄(x) · h(x) = 0,

h ∈ L1(|Cu|)2, |h| = 1,Cu = h|Cu|}. (18)

If ε > 0 (ψ differentiable), we can compute M̄ at Lebesgue points x of |Du|,
dx a.e. in �, by

M̄(x) = −λ
∇u(x)√

ε2 + |∇u(x)|2 . (19)

Assertions (13)–(18) follow directly from above, while assertion (19) can be
shown as in [35].

4.1.1 The Simplified Euler-Lagrange Equation

In practice, we work with the regularized functional Fε , ε > 0 small, and we neglect
the singular part Dsu of Du, so we set Du ≈ ∇udx. Thus the optimality conditions
for u and ∇u, dx −a.e. in �, that we use in practice, are given by (14)–(16), together
with (19) (remember we impose u = 0 outside � when û appears).

Recall the two identities
∫

vŵdx = ∫
v̂wdx and

∫
v ¯̂wdx = ∫ ¯̄̂

vwdx, for any
w(x) ∈ R. Together with (14)–(16), (19), after some manipulations, we obtain the
simplified Euler-Lagrange equation

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λdiv( ∇u√
ε2+|∇u|2 ) + K∗(2Re{F(

¯̂u0−K̂u

(1+|ξ |2)s
)}) = 0, in �,

∇u√
ε2+|∇u|2 · �n = 0, on ∂�,

u = 0, outside �.

(20)

Remark 4.1

(i) When s = 0 and K is the identity operator, the Euler-Lagrange equation in
(20) above is the same as that of the regularized TV model (because u0 − u =
F( ¯̂u0 − ¯̂u) when u0 and u are real-valued). This proves that the obtained PDE
is consistent with the regularized version of the energy (5), (see also Remark
2.1(i)).

(ii) When the operator K is defined in the Fourier domain by a multiplier k̂ with
tempered distributions, i.e. K̂ϕ = k̂ϕ̂, (20) becomes

λdiv

( ∇u√
ε2 + |∇u|2

)
+ 2Re

{
F

( ¯̂u0 − ¯̂
k ¯̂u

(1 + |ξ |2)s k̂

)}
= 0.
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In fact, F(
¯̂u0−¯̂

k ¯̂u
(1+|ξ |2)s

k̂) is real-valued, hence we get

λdiv

( ∇u√
ε2 + |∇u|2

)
+ 2F

( ¯̂u0 − ¯̂
k ¯̂u

(1 + |ξ |2)s k̂

)
= 0. (21)

(iii) If we integrate both sides of (21) over R
2, using the above boundary conditions

and that u = 0 outside of �, then the first term vanishes, and we get

∫
R2

F

( ¯̂u0 − ¯̂
k ¯̂u

(1 + |ξ |2)s k̂

)
= 0, or F

(
F

( ¯̂u0 − ¯̂
k ¯̂u

(1 + |ξ |2)s k̂

))
(0) = 0.

If we write w(ξ) = û0(ξ)−k̂(ξ)û(ξ)

(1+|ξ |2)s
¯̂
k(ξ), then w̄(ξ) = w(−ξ) and

ˆ̄w(x) =
∫

R2
w(−ξ)e−2πiξ ·xdξ =

∫
R2

w(ξ)e2πiξ ·xdξ = w̌(x).

Therefore, ˆ̌w(0) = w(0) = (û0(0) − k̂(0)û(0))
¯̂
k(0) = 0. We impose that k̂(0) �= 0,

that is, k has nonzero mean, then û0(0) − û(0) = 0, which means that the component
v = u0 − u has zero mean, as in the (BV(�),L2(�)) model.

4.2 Characterization of Minimizers via “Texture” Norm

In this section we present additional results that characterize the solution to our pro-
posed minimization problem (5), introducing a dual “texture” norm. Related charac-
terizations of minimizers of (1) can be found in [24] and [4]. We begin by defining a
semi-norm ‖ · ‖∗ on H−s dual to the | · |BV norm as follows:

‖f ‖∗ = sup
u∈BV(�), |u|BV(�) �=0

|Re〈f,u〉−s |
|u|BV(�)

, f ∈ H−s . (22)

‖ · ‖∗ is a semi-norm since for any f,g ∈ H−s and u ∈ BV(�),Re〈f + g,u〉−s =
Re〈f,u〉−s + Re〈g,u〉−s , so |Re〈f + g,u〉−s | ≤ |Re〈f,u〉−s | + |Re〈g,u〉−s |. This
implies the triangle inequality. Moreover, it is clear that for any λ ∈ R,‖λf ‖∗ =
|λ|‖f ‖∗.

Lemma 4.1 If f ∈ H−s is such that ‖f ‖∗ < ∞, then Re〈f,1�〉−s = 0.

Proof Let u ∈ BV(�) be such that |u|BV(�) �= 0. Then for any constant c ∈ R

|Re〈f,u + c〉−s |
|u + c|BV(�)

= |Re〈f,u + c〉−s |
|u|BV(�)

= |Re(〈f,u〉−s + 〈f, c〉−s)|
|u|BV(�)

≤ ‖f ‖∗ < ∞.

This implies that there is a constant C such that |Re〈f, c〉−s | ≤ C < ∞ for any c ∈ R.
Then |c||Re〈f,1�〉−s | ≤ C < ∞ for any c ∈ R, therefore |Re〈f,1�〉−s | must be
zero. �
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Remark 4.2 Lemma 4.1 says that if ‖f ‖∗ defined by (22) is finite, then |Re〈f,u〉−s | ≤
|u|BV(�)‖f ‖∗ for any u ∈ BV(�).

Theorem 4.2 For λ > 0, let u be the unique minimizer of (5) and v = u0 − Ku.
Then

(I) ‖K∗u0‖∗ ≤ λ
2 if and only if u = 0, v = u0.

(II) Suppose ‖K∗u0‖∗ > λ
2 . Then u ∈ BV(�), v = u0 − Ku is minimizer if and only

if ‖K∗v‖∗ ≤ λ
2 and Re〈K∗v,u〉−s = λ

2 |u|BV . If, in addition |u|BV(�) �= 0, then
‖K∗v‖∗ = λ

2 .

Proof (I) The minimizer is u = 0, v = u0 if and only if for any h ∈ BV(�), any ε ∈ R,
ε �= 0,

λ|εh|BV(�) + ‖u0 − εKh‖2−s ≥ ‖u0‖2−s .

Expanding the term ‖u0 − εKh‖2−s , changing ε into −ε, dividing both sides by
|ε| and letting |ε| → 0, we obtain

λ|h|BV(�) ≥ |Re〈u0,Kh〉−s | = |Re〈K∗u0, h〉−s |, for all h ∈ BV(�). (23)

Hence, ‖K∗u0‖∗ ≤ λ
2 .

Conversely, if ‖K∗u0‖∗ ≤ λ
2 , then by Remark 4.2, the last inequality (23) holds

for any h ∈ BV(�). Adding ‖u0‖2−s to both sides of (23) and ‖Kh‖2−s to the left hand
side, we obtain

λ|h|BV(�) + ‖u0‖2−s − 2Re〈u0,Kh〉−s + ‖Kh‖2−s ≥ ‖u0‖2−s .

Thus u = 0 is a minimizer because for any h ∈ BV(�), λ|h|BV(�) + ‖u0 − Kh‖2−s ≥
‖u0‖2−s .

(II) We have u ∈ BV(�), v = u0 − Ku is minimizer if and only if for any h ∈
BV(�), any ε ∈ R:

λ|u + εh|BV(�) + ‖v − εKh‖2−s ≥ λ|u|BV(�) + ‖v‖2−s . (24)

Similarly, by triangle inequality for |u+εh|BV(�), expending the quadratic term on
the left-hand side, changing ε into −ε, dividing both sides by |ε| and letting ε → 0,
we obtain for any h ∈ BV(�)

λ

2
|h|BV(�) ≥ |Re〈K∗v,h〉−s |.

Thus, ‖K∗v‖∗ ≤ λ
2 .

Letting h = u and −1 < ε < 0 in (24), we get

−λ|ε||u|BV(�) + 2|ε|Re〈K∗v,u〉−s + ε2‖Ku‖2−s ≥ 0.

Dividing both sides by |ε| and letting ε ↗ 0, we obtain 2Re〈K∗v,u〉−s ≥ λ|u|BV(�).
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Since |Re〈K∗v,u〉−s | ≤ λ
2 |u|BV(�), we get |Re〈K∗v,u〉−s | = λ

2 |u|BV(�). If
|u|BV(�) �= 0, then ‖K∗v‖∗ = λ

2 .
Conversely, suppose u ∈ BV(�) and v = u0 − Ku satisfy ‖K∗v‖∗ ≤ λ

2 (with
equality if |u|BV(�) �= 0) and Re〈K∗v,u〉−s = λ

2 |u|BV(�). Then for any h ∈ BV(�)

and ε ∈ R, we have

λ|u + εh|BV(�) + ‖v − εKh‖2−s ≥ 2Re〈K∗v,u + εh〉−s + ‖v‖2−s

− 2εRe〈v,Kh〉−s + ε2‖Kh‖2−s

= ‖v‖2−s + 2Re〈K∗v,u〉−s + ε2‖Kh‖2−s

≥ ‖v‖2−s + λ|u|BV(�).

Therefore, u is a minimizer. �

Remark 4.3

(i) Note that if Re〈u0,K1�〉−s = 0 (can be simply obtained by subtracting a con-
stant from u0), then in part (II) above we always have |u|BV(�) �= 0 (because if u

is a constant minimizer, then u must be zero in this case, but this cannot hold in
part (II)).

(ii) The above characterization of minimizers holds if the total variation |u|BV(�)

is substituted by another functional � on BV(�) that is convex, lower semi-
continuous and positive homogeneous of degree 1.

5 Numerical Approximation of the Model

We consider the case of blurring operator K , defined by K̂u = k̂û. Applying gradient
descent to our functional amounts to consider the time-dependent version of (21),
t ≥ 0, giving u(0, x) in �,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u
∂t

= λdiv( ∇u√
ε2+|∇u|2 ) + 2F(

¯̂u0−¯̂
k ¯̂u

(1+|ξ |2)s
k̂), in �,

∇u√
ε2+|∇u|2 · �n = 0, on ∂�,

u = 0, outside �.

(25)

To proceed with the discretization of (25), let us assume that the initial discrete
image u0 is of M × M pixels, and that it has been sampled from its continuous
version at uniformly spaced points starting at (0,0), i.e. u0,j,l = u0(j�x, l�x) for
j, l = 0,1, . . . ,M − 1, where �x is to be determined.
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5.1 The “Force” Term

Computing the force term F(
¯̂u0−¯̂

k ¯̂u
(1+|ξ |2)s

k̂) in (25) requires the Discrete Fourier Trans-
form (DFT), which is defined for any M × M signal u as

ûm,n = 1

M2

M−1∑
j,l=0

uj,le
−2πi(jm+ln)/M, for m,n = 0,1, . . . ,M − 1.

The Inverse Discrete Fourier Transform (IDFT) for u is defined as

ǔj,l =
M−1∑

m,n=0

um,ne
2πi(jm+ln)/M, for j, l = 0,1, . . . ,M − 1.

The DFT array (û)m,n is, indeed, as taken from its continuous counterpart at fre-
quencies (m�ξ, n�ξ) (m,n = 0,1, . . . ,M − 1). The inverse relation between the
DFT and IDFT implies that �x and �ξ are inversely related by

�ξ = 1

M�x
.

Therefore, to give our numerical computations a balance weight between the spatial
terms and the Fourier frequency terms, we shall choose

�x = 1√
M

and �ξ = 1√
M

.

A final note on computing the force term: before taking the DFT, we multiply
(−1)j+l to the signal. This shifts the origin of the frequency domain to the center
of the image. Thus, for 0 ≤ m,n < M, the (m,n) entry corresponds to the Fourier
coefficient at frequency ((m− M

2 )�ξ, (n− M
2 )�ξ). Therefore, we evaluate the weight

function 1
(1+|ξ |2)s at points ξ1, ξ2 = −M

2 �ξ,− (M−1)
2 �ξ, . . . ,

(M−1)
2 �ξ .

5.2 The Curvature Term

For the discrete gradient, we shall use the following usual notations:

∇+,+u = (∇+
x u,∇+

y u), ∇+,−u = (∇+
x u,∇−

y u),

∇−,+u = (∇−
x u,∇+

y u), ∇−,−u = (∇−
x u,∇−

y u),

where

∇+
x u = uj+1,l − uj,l, ∇−

x = uj,l − uj−1,l ,

∇+
y u = uj,l+1 − uj,l, ∇−

y = uj,l − uj,l−1.
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Since the dual operators to ∇+,+,∇+,−,∇−,+,∇−,− are, respectively, the opera-
tors div−,−, div−,+, div+,−, div+,+, we can write the regularized curvature term in
one of four ways:

div

( ∇u√
ε2 + |∇u|2

)
≈ divα∗,β∗

( ∇α,βu√
ε2 + |∇α,βu|2

)
(26)

where divα∗,β∗ denotes the dual operator of ∇α,β , with α,β = +,−.
To make our numerical scheme rotationally invariant, we use all four approxima-

tions to the gradient operator by alternating them with each iteration [4]. For example,
if un was computed using ∇+,+, then we use ∇+,− to compute un+1, ∇−,+ to com-
pute un+2, and ∇−,− to compute un+3, and then repeat.

5.3 Numerical Algorithm

We solve (25) with the following iterative semi-implicit scheme [6, 35]:

1. u0 is arbitrarily given (we can take u0 = u0)

2. Once un is calculated, compute the forcing term Fn = F(
¯̂u0−¯̂

k ¯̂un

(1+|ξ |2)s k̂)

3. Compute un+1
j,l , for j, l = 1,2, . . . ,M − 2 as the solution of the linear discrete

equation: un+1
j,l = un

j,l +�t ( λ
�x

divα∗,β∗( ∇α,βun+1√
ε2+|∇α,βun|2 )j,l +2Fn

j,l) with ε = ε′�x,

some ε′ > 0 small, and the discrete boundary conditions un+1
0,l = un+1

1,l , un+1
M−1,l =

un+1
M−2,l , un+1

j,0 = un+1
j,1 , un+1

j,M−1 = un+1
j,M−2 (since the denominator

√
ε2 + |∇u|2j,l

in the discrete boundary condition is always strictly positive).

To clarify the notations in step 3 of our algorithm, assume that we are solving at
pixel (j, l) the equation

un+1
j,l = un

j,l + �t

(
λ

(�x)
div−,−

( ∇+,+un+1√
ε2 + |∇+,+un|2

)
j,l

+ 2Fn
j,l

)
.

Let dj,l = (
√

ε2 + |∇+,+un|2)j,l , which is known since un is already computed. Then
let

div−,−
( ∇+,+un+1√

ε2 + |∇+,+un|2
)

j,l

= un
j+1,l − un+1

j,l

dj,l

− un+1
j,l − un

j−1,l

dj−1,l

+ un
j,l+1 − un+1

j,l

dj,l

− un+1
j,l − un

j,l−1

dj,l−1
.

Basically, we set all terms at the current pixel (j, l) in the curvature term to be un-
known. Setting cj,l = λ�t

dj,l (�x)
, we then have

(1 + cj−1,l + 2cj,l + cj,l−1)u
n+1
j,l = un

j,l + cj−1,lu
n
j−1,l + cj,lu

n
j+1,l

+ cj,lu
n
j,l+1 + cj,l−1u

n
j,l−1 + 2�tF n

j,l .
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Hence, un+1
j,l is obtained by dividing the coefficient (1 + cj−1,l + 2cj,l + cj,l−1) to

both sides of the equation. We remark here that the semi-implicit scheme above ap-
proaches the steady state equation much faster than an explicit scheme, and thus, an
advantage.

5.4 The Blurring Operator K

In our implementation, we perform blurring directly in the frequency domain. To
blur an image, we multiply pixel-wise a Gaussian kernel k̂ to the DFT of the im-
age, then we take the inverse transform. For a Gaussian kernel we used the form

k̂(ξ1, ξ2) = exp(− ξ2
1 +ξ2

2
2/α2 ). Thus, in our numerical computation, we never compute a

discrete convolution, which is computationally more expensive.

6 Numerical Results for Image Restoration

In this section we present numerical results obtained by applying our proposed new
model to image denoising, deblurring and decomposition. For comparison, we also
present results from application of the ROF model [31] to the same images. In our
implementation of both models (our proposed model and the ROF model), we dis-
cretize the curvature term in the manner given in Sect. 5.2. In our proposed model,
s is a parameter. We will show numerical results obtained with various values of s.
For image restoration (denoising or deblurring), the parameter λ was chosen so that
the best residual-mean-squared-error (RMSE) is obtained for each method. For the
RMSE and SNR, we use

RMSE =
√∑

(uj,l − uc,j,l)2

MN
, SNR =

∑
(uj,l −

∑
uj,l

MN
)2

∑
(uj,l − uc,j,l −

∑
(uj,l−uc,j,l )

MN
)2

,

where uc is the clean image (which is known in all of our experiments), and (M,N)

is the size of the image.
We mention that alternative approaches for selecting λ is the method proposed

by Gilboa-Sochen-Zeevi [20], where the authors choose λ in an optimal way, by
maximizing an estimate of the SNR or by minimizing the correlation between u and
f − u.

In Fig. 2, we show the denoising results obtained from our proposed new model
with H−1 and H−0 norms in the fidelity and the ROF model performed on a synthetic
piecewise constant image with additive Gaussian white noise of σ = 30 (shown in
Fig. 1). In Fig. 3, we show more results on the same image from our proposed model
using s = 0.5 and s = 2, respectively, for the H−s norm in the fidelity term. We also
show the results from our model using H−1

0 semi-norm for the fidelity term (as dis-
cussed in Remark 2.1, equivalent case with the model from [27]). The RMSE and
SNR, together with the value of the parameter λ, for all results in this experiment are
shown in Table 1. Comparing the results, our model with H−0.5 norm gives results
with the best RMSE, while the H−1

0 semi-norm gives results with the best SNR. Vi-
sually, the results from our model with H−1 norm preserve best the edges in the u
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Fig. 1 A synthetic image and
its noisy version with additive
Gaussian white noise with
standard deviation 30 and zero
mean

Fig. 2 Comparison of results from the ROF model with our proposed model (s = 0 and s = −1). Top: de-
noising results u obtained from the ROF model, H−1 and H 0. Bottom: corresponding residuals v = u0 −u.
The case with H 0 is an equivalent calculation with ROF

Table 1 RMSE and SNR for the
denoising results on the
synthetic piecewise constant
image shown in Figs. 2 and 3

Restoration Model λ RMSE SNR

Noisy image 0.224578 4.03064

ROF 55 0.0526239 51.99021

H 0 9.3 0.05204916 53.11084

H−0.5 3 0.04953237 58.99322

H−1 1.75 0.04959289 59.41552

H−2 0.9 0.05290355 52.67199

H−1
0 3.8 0.04977601 59.905
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Fig. 3 More results from our proposed model, using for the norm in the fidelity term H−0.5 (left), H−2

(middle), and H−1
0 semi-norm (right)

Fig. 4 Lena image and its noisy version with additive white noise

component. Overall, our proposed model performs much better than the ROF model,
as expected.

In Fig. 5 we show results from another denoising application. We applied our
model using H−0.5 and H−1 and the ROF model to a noisy image of a woman. The
noise is additive white noise with standard deviation σ = 20 (see Fig. 4). The RMSE
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Fig. 5 Denoising results on Lena image. Result of ROF model (top), result of our model with H−0.5

(middle), result of our model with H−1 (bottom)
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Fig. 6 Decomposition of a
synthetic textured image.
Results from ROF model
(λ = 42) and our model with
H−1 (λ = 0.5)

and SNR of the original noisy image is 0.0762599 and 8.01743, respectively. Af-
ter denoising, the best results with ROF, H−0.5, and H−1 have the SNR of 30.64769,
32.97592, 32.82501, and the RMSE of 0.03548729, 0.03461537, 0.03472017, respec-
tively. The values for λ that yield these results are 14, 0.4, 0.25 for the ROF, H−0.5,
H−1 model, respectively. Again, our model yields better results than the ROF model.

We try next texture removal with our H−1-model and compare with ROF model.
The results are shown in Figs. 6, 7. In Fig. 6, the texture image is synthetically created,
and in Fig. 7, the image is natural. We can see that the H−1-norm models better the
texture than the L2-norm.

In Figs. 8, 9, we show deblurring results on a synthetic image and a natural image
of an office. The artificial blur is defined as described in Sect. 5.4 with α = 0.8. For
the result in Fig. 8, the blurred image has RMSE = 0.1016. The improved image has
RMSE = 0.03618513 using the parameter λ = 0.0011. For the result in Fig. 9, the
blurred image has RMSE = 0.181955, and the improved image has RMSE = 0.10373
using λ = 0.0004. Visually, we see a significant improvement in the recovered image
as compared to the degraded one.
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Fig. 7 Decomposition of a
natural textured image. Results
from ROF model (λ = 58,
middle) and our model with
H−1 (λ = 2.5, bottom)

Fig. 8 Deblurring on a synthetic image. Result is obtained from our model with H−1 (λ = 0.0011)
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Fig. 9 Deblurring on image of an office. Result is obtained from our model with H−1 (λ = 0.0004)

Fig. 10 Denoising-deblurring result using our model with H−1 (λ = 0.0675)

Our last experiment is recovering from a blurred and noisy image. In Fig. 10, we
add white noise of standard deviation σ = 10 to the blurry image in Fig. 8. The degra-
dation has RMSE = 0.121289. The improved image is obtained with λ = 0.0675, and
the RMSE = 0.0607262.

7 Conclusion

We have proposed a new variational model for image restoration and decomposition,
using the Hilbert-Sobolev spaces of negative degree of differentiability to capture
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oscillatory patterns. We have presented an algorithm to solve the proposed variational
problem. We have also presented results of numerical experiments for our proposed
model and for the classical ROF model. In each experiment, we have chosen the
parameter λ so that the RMSE measurement is minimized. The results obtained from
our proposed model are improved, visually and quantitatively (in terms of RMSE and
SNR), over the ROF model, for values of s ∈ [0.5,1]. Outside this interval, we have
obtained results similar with those produced by the ROF model.

In each of our numerical experiments, we choose manually the value for s. The
results from our numerical experiments with synthetic and real images suggest that
Gaussian white noise is captured best by the H−s norm when 0.5 ≤ s ≤ 1. This agrees
with Mumford and Gidas [25] whose work has motivated us to investigate the spaces
H−s for modeling oscillatory patterns.

We also conclude that the value s = 1 corresponding to H−1 can be used both for
image denoising as well as for cartoon and texture separation. However, we do not
focus in this paper on u + v + w decompositions, with u a cartoon component, v a
texture component and w a noise component, and we leave the study of separating
noise from texture in a future work; we refer the reader to Aujol-Chambolle [9] for a
solution in this direction.
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