
 

      
Abstract--This paper presents a new method for quantifying the 

differences between images. The proposed model is based on 
matching the gradient fields of two images. We first define new 
image spaces in which images are considered equivalent under a 
similarity group actions and the difference between two image 
classes is then defined by employing the Cauchy-Schwarz 
inequality to the gradient fields. The advantage of our approach is 
that images are identified by their relative contrasts and thus is 
scale free. Using this approach, we are able to achieve image 
blending in a novel way. By modifying the group actions, we 
extend our basic model to more general equivalence classes. The 
variational problems and the corresponding Euler-Lagrange 
equations associated to these models are proposed and the 
gradient descent time dependent partial differential equations are 
derived. Fast and efficient solvers employing the Additive 
Operator Splitting scheme are also presented. We tested our 
models on simulation images as well as real brain MRI and PET 
images from normal control subjects.  

I. INTRODUCTION 
HE mathematical formulation and theories of objects 
and shapes have been studied extensively in computer 

vision, statistics, geology, biomedical science and image 
processing literature. A lot of efforts have been made to 
mathematically quantify the difference and to define a distance 
between shapes or objects. In this paper, we turn to the 
problem of defining differences between images. By doing so, 
we could achieve image blending in a novel way by minimizing 
the distance between two images.  
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  Image blending [1] and image morphing have wide 
applications in computer vision, image processing and 
biomedical imaging. For a more complete treatment of this 
subject we refer the reader to [2, 3]. Image morphing usually 
consists mainly of two steps. The first one is warping, which 
involves a coordinate transformation to align user-defined 
landmarks. The next step is to apply image blending, which is 
usually done by linear interpolation (or cross dissolving). 
Linear interpolation is based on the sum of least squares of two 
images f and g: 

21
2dist( , ) ( ) df g f g x≡ −∫ . 

Minimizing this distance with respect to f simply gives us a 
linear interpolation between images f and g. 

  Although it is the most commonly used, it is not necessarily 
the best. First, it is not scale invariant, if we rescale one of the 
images then we obtain a different distance. Moreover, two 
images that only differ in scaling are considered different under 
this distance measure. In this paper, we try to interpret images 
in a different way and avoid these disadvantages. In order to 
accomplish this, we first redefine the meaning of identical or 
equivalent images. We turn to the idea of “shape spaces” to 
look for solutions. 

II. RELATED WORK AND MOTIVATIONS 
In this section, we closely follow the discussion in [4]. The 

study of shapes has been proposed in [5-9] as a novel 
environment in statistics for comparing shapes where a metric 
and a probabilistic measure could be defined. It has been 
successfully used in comparing shapes where distinct 
landmarks could be found.   In this case, shapes are defined as 
the equivalence classes of M points in RN where the 
equivalence class is defined by a similarity group including 
rotation, translation and scaling. The space of all shapes could 
thus be viewed as a collection of fiber bundles where motions 
in the space could be “along the fiber” or “across the fiber”. 
Motions along the fiber are simply motions between equivalent 
classes, while motions across the fiber correspond to 
“deformations” from one class to another class.  

  Another approach that also has motivated our work is the 
success of variational methods and the use of PDEs to model 
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shapes and images. For example, in [10-13], a general frame 
work of deformations and warping was proposed and the 
application of this framework to object comparison has shown 
to be very successful. In this framework, deformations could be 
rigorously defined in terms of group actions and the notion of 
distance could be made precise using these theories. For 
contributions from other authors, see, for example [14-16]. 

  Our work is also closely related to nonlinear image 
smoothing techniques. Anisotropic diffusion [17, 18] is one of 
the first nonlinear smoothing techniques. The original idea of 
anisotropic diffusion is to smooth selectively within more 
homogeneous areas while preserving edges when a large 
gradient is detected.  The PDE that governs anisotropic 
diffusion can be written in the following form: 

div( ( ) )I t c I I∂ ∂ = ∇ ∇  
where I is an image and c is the diffusion coefficient. It has 
been noted in [19] that this PDE could also be derived by 
minimizing the following energy:  

min ( ) ( )
I

E I p I dx
Ω

= ∇∫ . 

The function p is the penalty function. The PDE that minimizes 
the energy has the form:  

( )( )div 'I t p I I I∂ ∂ = ∇ ∇ ∇ . 
Thus the diffusion coefficient c in the original model can be 
written as a function of p: ( ) '( )c pξ ξ ξ= . 

In developing our models, we were originally looking for 
ways to extend the anisotropic diffusion, which could be 
viewed as a “prior-less” smoothing as opposed to a “prior-
based” smoothing. The connection between anisotropic 
diffusion and our work resides in the fact that, by forming a 
suitable variational problem, our work could be incorporated 
into a “prior-based” smoothing when two images being 
compared contain similar information with one (the template) 
of the two images having a better image quality. For more 
details, please refer to the results and discussion sections. 

III. DESCRIPTION OF THE MODEL 

A. A natural way of defining equivalent images 
Inspired by the idea of shape spaces, we want to define 

differences between images in a way that the difference is 
defined in terms of equivalence classes of images. Difference 
between two images will only be nonzero when they are not 
equivalent. But what similarity group action should be chosen 
to define equivalent classes? 

  Human perception of an image depends mostly by the 
contrast of the image. Areas with high contrast are perceived as 
boundaries of objects while areas with more homogeneous 
intensities are often viewed as inside an object. So our goal is 
to construct a new distance measure that only takes into 
account the relative change in intensity of the images. This 

means we should consider two images 1I  and 2I  to be 

equivalent if there exist real numbers 1 0k >  and 2k  such that 
the following holds: 

 1 1 2 2( ) ( ) , .I x k I x k x= + ∀ ∈ Ω                     (1) 
 So our similarity group should include translation (k2) and 

rescaling (k1) of the intensities. Later on, we will relax the 
restrictions on k1 by allowing negativity of k1.  

  This concept shares many features with the shape spaces. 
For example, images, like shape spaces, are organized in fiber 
bundles where a fiber bundle is just the collection of images 
that are equivalent under the similarity group actions we just 
defined. Also, motions from one image to another also fall into 
two categories: across the bundles and within the bundles by 
defining them in a similar way. 

  Thus, we have a new space on which images must be 
identified by their gradient fields, regardless of the scaling. 
Now we need a proper distance measure which is always non-
negative and is zero only between equivalent images. We will 
derive distance measure between images f and g based on the 
following inequality, which is derived from the Cauchy-
Schwarz inequality 

2 2d d ( )d 0f x g x f g x∇ ∇ − ∇ • ∇ ≥∫ ∫ ∫  

B. The models 
We will present three different distance measures based on 

the above inequality. The first model is related to measuring 
differences of images where equivalent images are defined as 
in (1) without allowing negative k1, while the second model 
allows any real value of k1. The last one is a further 
generalization. Each one of them has slightly different 
properties and leads to its own PDE by employing gradient 
descent to solve the Euler-Lagrange equations.  

For images f and g, we can look at the following 
minimization problems to match the gradient field of f to the 
gradient field of g: 
model a 

2 2min ( ) d d ( )d
f

E f f x g x f g x= ∇ ∇ − ∇ • ∇∫ ∫ ∫ . 

model b 
2 2 2min ( ) | | d | | d ( d )

f
E f f x g x f g x= ∇ ∇ − ∇ • ∇∫ ∫ ∫ . 

Model B is different from model a in that the negative image 
of g (up to a scalar) is also considered to be equivalent to g. 
model c 

We propose a third model that is even more nonlinear by 
applying the absolute function to the integrand of the last term 
on the right hand side of model b. It also turns out to be the 
most interesting of the three models (see results). By 
equivalence class in this space we mean that the following 
energy between two images is 0: 

0-7803-7636-6/03/$17.00 ©2003 IEEE. 1093



 

2 2 2min ( ) | | d | | d ( | | d )
f

E f f x g x f g x= ∇ ∇ − ∇ • ∇∫ ∫ ∫ . 

C. Modified models 
An undesirable property of these models is that, since they 

are not properly normalized, images are collapsed to constant 
images when time goes to infinity. In order to avoid this 
problem, we could normalize the energy to be minimized so 
that it is always between 0 and 1. Thus, we look at the 
following modified versions of our models:  
model a’  

2 2 1/ 2

d
min ( ) 1

( | | d | | d )f

f g x
E f

f x g x

∇ • ∇
= −

∇ ∇
∫

∫ ∫
, 

and the gradient descent PDE is: 

2

2 2

d

| | d

| | d | | d

f g x
f g

f xf

t f x g x

∇ • ∇
∆ − ∆

∇∂
=

∂ ∇ ∇

∫
∫
∫ ∫

. 

model b’  
2

2 2

( d )
min ( ) 1

| | d | | df

f g x
E f

f x g x

∇ • ∇
= −

∇ ∇
∫

∫ ∫
, 

and the gradient descent PDE is: 
2

2

2 2

( d )
( d )

| | d

| | d | | d

f g x
f f g x g

f xf

t f x g x

∇ • ∇
∆ − ∇ • ∇ ∆

∇∂
=

∂ ∇ ∇

∫ ∫∫
∫ ∫

. 

model c’ 

2 2 1/ 2

| | d
min ( ) 1

( | | d | | d )f

f g x
E f

f x g x

∇ • ∇
= −

∇ ∇
∫

∫ ∫
, 

and the gradient descent PDE is: 

2

2 2

| | d
div ( sgn( ) )

| | d

| | d | | d

f g x
f f g g

f xf

t f x g x

∇ • ∇
∆ − ∇ • ∇ ∇

∇∂
=

∂ ∇ ∇

∫
∫

∫ ∫
 

IV. IMPLEMENTATION 
Since the PDE we need to solve is an inhomogeneous heat 

equation, let us write down the PDE in the following form: 

 
f

F f
t

α
∂

= + ∆
∂

 

The semi-implicit scheme is used to solve this PDE, which 
now reads: 

( )1

1

1

n

d
n n n

l
l

f I t A f tFα+

−

=

= − ∆ + ∆ 
 
 

∑
r r r

. 

Furthermore, by using Additive Operator Splitting (AOS) 
scheme [20, 21], we update f in the following way:  

( ) ( )11

1

1 d
n n n n

l
l

f I d t A f tF
d

α
−+

=

= − ∆ + ∆∑
r r r

. 

Here d is the dimension of the problem and A is the one-
dimensional discretized Laplacian operator along lth axis. The 
splitting is of order one in time and order two in space. 
Moreover it is unconditionally stable. By splitting the operator 
into a coordinate-by-coordinate fashion we now only need to 
invert a tri-diagonal matrix along each coordinate and this 
allows an O(m2) implementation by the Thomas algorithm. 

V. RESULTS 
For results presented in this section all calculation were 

performed on 128 by 128 grid points and the spatial step is 1. 

A. Test of the basic model 
We only present the numerical results for model a. The goal 

is to blend a circular shape (Fig. 1(a)) to an oval shape. The 
intermediate images during blending process are shown in Fig. 
1(b)-(d). We notice that along the blending process the image 
intensities outside the circles also change with time, which does 
not happen in simple interpolation technique. This 
phenomenon generates a flow-like motion that gives novel 
visual effects. These effects might be closely related the 
resemblance of the governing PDE to the heat equation. 

B. Test of modified model on medical images 
  Simple modification of model c’ allows us to combine 

features of two images and to generate a hybrid or fusion 
image. The idea is similar to [18, 22]. We consider denoising 
an image f0 by solving f in the following problem: 

1 2
02

2 2 1/ 2

min ( ) ( ) d

1 | | d ( | | d | | d )

E f f f x

c f g x f x g x

= −∫

+ − ∇ • ∇ ∇ ∇∫ ∫ ∫  
. 

The PDE that governs this minimization problem is: 

[ ]

2 2 1 2
0

2

( ) ( d d )

| | d
div sgn ( )

| | d

f
f f c f x g x

t

f g x
f f g g

f x

−∂
= − + ∇ ∇ ×∫ ∫

∂

∇ • ∇∫ ∆ − ∇ • ∇ ∇
∇∫

 
  

.     (2) 

The above variational problem could be viewed as a prior-
based image denoising. The idea is that f0 is a corrupted image 
that we would like to recover. Furthermore, we know that g 
contains the same information but we do not know exactly how 
the intensity values relate in these two images. By applying the 
above model, we seek to find a recovered image that is close to 
g while constraining the result to be not far away from the 
initial image f0. 
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Figure 1.  Image blending process described in A of the results section. (a): 
The initial image containing an circular object; (b), (c) and (d): Intermediate 
images. The template image is visually similar to (d). 
 

 
Figure 2.  Image blending in brain MRI imaging. (a): SPGR MRI image as the 
initial image; (b): FDG-PET image as the template; (c): hybrid of image (a) 
and (b); (d): T2-star MRI image as another template; (e): hybrid image of (a) 
and (d). 
  

  In order to test this modified model, we turn to biomedical 
imaging for test images. In biomedicine, images of different 
modalities, such as CT, MRI, and PET, are often obtained for 
the same subject. This is especially true in brain imaging as 
different images could provide information on brain structures 
and functions. We chose to test our model on MRI and PET 
images.  

FDG-PET imaging and MRI imaging of the brain were 
obtained from a normal subject in the Brain Trauma Project at 
UCLA. The available sequences in MRI images include SPGR, 
T2, and T2-star. All MRI images were first co-registered to 
PET using mutual information [23, 24] as the similarity 
measure. The mutual information between MRI and PET 
images were optimized using Powell’s multi-dimensional 
search algorithm. We looked at two specific issues. First, we 
combined the features in MRI and PET images by solving (2). 
Second, we examined how different sequences in MRI images 

influenced each other under this model. For all computations, 
the intensity values of all images were normalized to 0 to 256 
before computation. 

  To investigate the first issue, we chose SPGR MRI images 
as the test images since SPGR images had the best spatial 
resolution and image quality. After MRI-PET coregistration 
was performed, an SPGR image slice (Fig. 2(a)) and a PET 
image slice (Fig. 2(b)) were extracted. We then used the SPGR 
image as the initial image and the corresponding PET image as 
the template. The fusion image was calculated by solving (2). 
The weight c of the regularizer is determined empirically. The 
final c used in this test was 62 10× . The corresponding PDE 
was solved at t = 2 to get the final fusion image. The result is 
shown in Fig. 2(c). Note that the overall contrast of the fusion 
images is very much like that of the initial SPGR image while 
the shape of the gray and white matters resemble that of the 
corresponding PET image.  

  For the second issue, we chose T2-star and SPGR images. 
T2-star images usually have lower resolution and in this subject 
the extracted slice was noted to have magnetic field 
inhomogeniety that resulted in shading of the image (frontal 
lobe has a much higher value than the occipital lobe) as shown 
in Fig. 2(d). On the other hand, the corresponding SPGR (Fig. 
2(a)) was of good quality without shading. We thus used the 
SPGR image as the template and the T2-star as the initial 
image and see if we could improve the quality of the T2-star 
image. The result is shown in Fig. 2(e). The weight c used in 
this test was 66 10× and again the corresponding PDE was 
solved at t = 2. We notice that, although the resolution of the 
fusion image did not improve significantly, the intensity 
inhomogeneity almost completely disappeared. 

VI. DISCUSSIONS AND CONCLUSIONS 
In this paper, we propose a new method of defining the 

difference of two images. The idea is to look at the gradient 
field instead of the image itself. This results in a novel 
approach of image blending and a method of combining or 
hybridizing two images. The advantage of our approach is that 
it is scale free; the scale of the image is determined by the PDE 
that governs the minimization process. The drawback of our 
approach is that since we are working on the gradient fields we 
have to restrict ourselves to the space H1, which in theory does 
not allow discontinuous solutions. Though we do point out that 
numerically images are discretized signals and the gradient 
could always be viewed as finite. 

  Experimental results showed that our approach generated 
flow-like transition between images. This flow-like blending 
phenomenon is not observed in simple linear interpolation 
blending and provides a novel perception to human eyes. 
Although our model generates better results than simple 
interpolation method, it still has the undesirable overlapping 
effect of objects in the transition process. Thus, we have to 
emphasize that our model is not intended to improve or replace 
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image warping, but instead offers a different view of image 
blending and of quantifying differences between images. 

  We also applied our approach to biomedical images. We 
generated a hybrid MRI-PET image with features from both 
modalities. We also showed that by incorporating the 
information from SPGR image we were able to correct the 
magnetic field inhomogeneity of the corresponding T2-star 
images.  

  Another issue is that, in model c we seek to minimize the 
following energy: 

2 2 1/ 2

| | d
min ( ) 1

( | | d | | d )f

f g x
E f

f x g x

∇ • ∇
= −

∇ ∇
∫

∫ ∫
. 

We can further generalize the model by replacing the absolute 
value function in the numerator with a continuous function Ψ : 

2 2 1/ 2

( ) d
min ( ) 1

( | | d | | d )f

f g x
E f

f x g x

Ψ ∇ • ∇
= −

∇ ∇
∫

∫ ∫
. 

If we further require that this function is always non-negative 
and symmetric and its graph lies below the absolute value 
function, then our energy is still defined and between 0 and 1.  

 Moreover, if Ψ is differentiable, then the associated gradient 
descent PDE becomes: 

2

2 2

( ) d
div ( ' ( ) )

| | d

| | d | | d

f g x
f f g g

f xf

t f x g x

Ψ ∇ • ∇
∆ − Ψ ∇ • ∇ ∇

∇∂
=

∂ ∇ ∇

∫
∫

∫ ∫
. 

As a concrete example, the following choice of Ψ  satisfies all 
the requirements: 

2( ) log (1 )ξ ε ξΨ = + + ,  where ε  is a small number. 
By modifying the model this way, one can achieve an 
anisotropic form of the original model.  Work to explore how 
different choices of Ψ  will influence the results is still ongoing 
in our laboratory. 
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