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ABSTRACT 
 

In this paper, we present a new framework for object 
matching between two images. This method could handle 
multiple pairs of overlapping and non-overlapping 
shapes, open curves, and landmarks.  When implemented 
in 3-D, the same framework could be used to warp 3-D 
objects with minimal modification.  

Our approach is to use the level set formulation to 
represent the objects to be matched. Using this 
representation, the problem becomes an energy 
minimization problem. Cost functions for warping 
overlapping, non-overlapping, open curves, and 
landmarks are proposed. Euler-Lagrange equations are 
applied and gradient descent is used to solve the 
corresponding partial differential equations. Moreover, a 
general framework for linking the level set approach and 
the infinite dimensional group actions is discussed. 
 
 

1. INTRODUCTION 
 
Object warping is a challenging problem which deals 
with how to find a diffeomorphic transformation that 
matches one object to the other. It is an important issue 
in computer vision and pattern recognition as well as 
many other scientific fields. Recently, image warping has 
also been an active research area in biomedicine to meet 
the challenges of representing and comparing different 
biological structures or images of different modalities. 
Several strategies of non-rigid warping algorithms have 
been proposed in the past decade.  

Landmark matching and non-rigid dense matching 
are two important techniques in image warping.  
Landmark matching involves first identifying user-
defined landmarks that need to be matched.  By 
interpolating the discrete matching of the landmarks, one 
tries to obtain a dense diffeomorphism for the whole 
image. Dense matching starts by forming a cost function 
that is minimized when the objects are matched. In order 

to ensure smooth matching, a regularizing term on the 
deformation field is added.  

In this paper, we will use the terms template and 
study to denote the images to be matched. Let us denote 
the template image as T(x) and the study image as S(x) 
which are images on the spatial domain Ω ⊂ R2. The 
problem of image warping is to find a displacement field 
u(x) at each point x such that a properly defined cost 
function, which will be denoted by D(T,S,u), between the 
deformed template and the study is minimized. The 
displacement field is a vector field such that given any 
displacement field u the deformed template is given by 
T(x-u). The term displacement is used because it can be 
viewed as how a point in the template is moved away 
from its original location. The most common way to 
define the measure between the deformed template and 
the study image is based on the L2 norm 
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Gradient descent of the corresponding Euler-Lagrange 
equation is often used to minimize this cost function, and 
an artificial time t has to be introduced in order to solve 
for the displacement field.  
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The function f(x,u(x,t)) (up to a sign), which is often 
called the force field or the body force, describes the 
derivative of the distance measure with respect to the 
displacement field u.  

Unfortunately this problem is known to be ill posed. 
One way to overcome this difficulty is to add 
regularization on the underlying deformation. This will 
be discussed in more details in the next section. 
 

2. PREVIOUS WORK 
 

2.1.  Regularizer Based on the Displacement 
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How to properly constrain the deformation depends on 
the nature of the matching. Several models based on 
regularizing the displacement field u have been 
proposed. Please refer to the review paper [1] for more 
details.  

 Here ( )  denotes the i-th component of a vector. ii

 
3. THEORY 

 
In this paper, we try to generalize the landmark matching 
problem by replacing the finite pairs of landmarks to be 
matched by finite pairs of shapes or curves. We turn to 
the idea of level set method for ways of representing 
objects. 

  
2.2.  Diffeomorphisms through Infinite Dimensional 
Group Actions 
 
In the past decade, many researchers have tried to 
establish rigorous theories based on continuum 
mechanics that ensure diffeomorphic transformation by 
working on the forward and inverse deformation directly 
(see [2] and the references therein for a complete 
description). 

To summarize, a shape will be represented by a level 
set function with the zero level set being the contour of 
the shape; an open curve will be represented by two level 
set functions; a landmark will be represented by a level 
set function, which at any given point takes the value of 
the distance to this landmark. All level set functions in 
the template will be denoted by ϕ, and those in the study 
by φ. 

In summary, let g-1(x)=x-u which models the deformation 
field, and G be the group which is formed by all the 
diffeomorphisms that map Ω∈ to itself.   X
A path [ ]( , ) ( ), 0,1t tg x t g x g G for t= ∈ ∀ ∈

tv

, in G is 

linked to the velocity field by the following equation 

 
3.1. Distance and Force Field Pairs for Object 
Matching 
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t

∂
=

∂
.                            (3)              In this section, let us describe briefly the cost functions 

and the corresponding force fields for matching shapes, 
open curves and landmarks based on their corresponding 
level set functions and the setup in 3.2. For derivations, 
please refer to [3]. Note that all the formulations are in 
the sense of distribution. 

 

Once the forward path tg  is defined, the inverse path is 

uniquely determined by 1( ( ))t tg g x x− = , and is linked to 

the velocity by 1( ) ( )t
1 ( )t tg x Dg− = − x v x
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. Given a 

path ( , )g x t and its associated velocity, we define the 
energy of the path by 

 
Overlapping shape matching 

1

1

( , , ) ( ( ))[1 ( ( ))]

( ( ))[1 ( ( ))] .

over t

t

D T S t H x H g dx

H g H x dx

φ ϕ

ϕ φ

Ω

Ω

−

−

= −

+ −

∫

∫
     (7)

 
1 1

2

0 0

( ) ( ) ( ), ( ) .
L

t t

tt tE g v x dt Lv x Lv x dt
= =

= =∫ ∫
       (4)

 

 Here L is a differential operator. Furthermore, let us 
define the momentum p by †( , ) ( ) ( )t tp x t p x L Lv x= = , 

here is the adjoint operator of L. We then have the 
following theorem from [2]. 
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Non-overlapping shape matching 
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Theorem  
Given 0 1,g g G∈ , the function d defined as 
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(10) is a metric on G. Moreover, the geodesic satisfies the 

Euler-Lagrange equation 
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Open curve matching  
The cost function and force field pairs could be easily 
integrated into the framework of 2.2.  For instance, we 
have the following theorems, which are extensions of the 
theorems in [2]. 
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Theorem 
The path that minimizes the following inexact matching 
problem  

(11) 

1
2 11

1

2 2 1

1

1
1 2 1

1

1

1 2 1 2

1 1 2

1

1

1

1 1 1

1

1

1

( , ) { , ( )
( )

( ) , ( ) } ( )

( )
( ) ( )

( )

( ) ( )

( ) ( ) ( ).

s

t

s

t
s

t

s t

t

t t t

t

t

T t

f x t H D g
g

D g g g

g
D H div g

g

D g g

H D g

δ
ϕ

ϕ

δ ϕ ϕ ϕ

ϕ
δ ϕ

ϕ

δ δ ϕ ϕ

δ φ φ φ

−

−

−

−

−

− − −

−

−

−

< ∇ ∇ >
∇

+ < ∇ ∇ > ∇

∇
− ∇

∇

+ ∇ ∇

∇ ∇

= −

+

(12)  

1 1
0

2
1

, 0

inf ( ) ( , , 1)
t t t t

Lt
g Dg v g id tt

v x dt D T S t
− −

=
∂

=− = =∂

+ =∫
    (15) 

 
satisfies equation (6) and the boundary condition at t=1 
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Theorem 
The path that minimizes the following space-time 
matching problem Here DT and DS are the distance functions to the curves in 

the template and study respectively, and the following 
notations are used ( )
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Landmark matching 
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Here D(T,S,t) and f are the cost function and force field 
pairs defined in 3.1. 
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4. IMPLEMENTATION 
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For simplicity, we will choose the Horn and Schunck 
functional for regularizing the displacement. The 
advantage of this regularizer is that it is in the form of 
inhomogeneous heat equations and thus fast solver exists 
via the additive operator splitting method. Please refer to 
[3] for implementation details. 
 

5. RESULTS 
 
In this paper, all the images are of size 128 by 128 pixels. 
The grid size is 0.1. The numerical approximations for 
calculating the Heaviside function and the delta function 
could be found in [4]. 

(14) 
 

with Figures 1 and 3 are two matching problems 
(matching non-overlapping ring shapes in figure 1, and 
arcs in figure 3) where (a) being the template and (b) the 
study. Figures 2 and 4 are the final deformed templates 
with underlying grid deformations. Figure 5 is the 
transformation that deforms landmark pair (40, 50) and 
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3.2.  Incorporating the Distance Measure into Infinite 
Dimensional Group Actions 

  



     (80, 70) to (50, 40) and (70, 80) respectively. For more 
details, please refer to [3]. 
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Figure 4.  The deformation field obtained by the proposed 
method for matching figure 3 (a) to 3 (b). 
 Figure 1.  Illustration of a matching problem with two non-

overlapping rings in the template (a) and the study (b). 

 

 

 

Figure 5.  The deformation field obtained by matching 
starting (40,50) to (50,40), and (80, 70) to (70, 80).   
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