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In this paper, we propose an active contour algorithm for object detection in vector-
valued images (such as RGB or multispectral). The model is an extension of the
scalar Chan—Vese algorithm to the vector-valued case [1]. The model minimizes a
Mumford—Shah functional over the length of the contour, plus the sum of the fitting
error over each component of the vector-valued image. Like the Chan—Vese model,
our vector-valued model can detect edges both with or without gradient. We show
examples where our model detects vector-valued objects which are undetectable
in any scalar representation. For instance, objects with different missing parts in
different channels are completely detected (such as occlusion). Also, in color images,
objects which are invisible in each channel or in intensity can be detected by our
algorithm. Finally, the model is robust with respect to noise, requiring no a priori
denoising step. © 2000 Academic Press

Key Wordsvector-valued images; active contours; level sets; segmentation; PDEs;
object detection.

0. INTRODUCTION

Active contours are used to detect objects in a given imggesing techniques of curve
evolution. The basic idea is, starting with an initial cu@eto deform the curve to the
boundary of the object, under some constraints from the image

The classical approaches use the gradient of the imat®elocate the edges. Therefore,
an edge-function is used, strictly positive inside homogeneous regions and zero or
edges, to stop the evolving curve on the desired boundary. Using this edge-function
deformation is usually obtained by minimizing with respedtta functional, whose (local)
minimizer is given by the boundary of the object [2]. The objective functional is the sum
two terms: the first controls the smoothness of the curve, while the second (depending o
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gradient ollp) attracts the curve toward the boundary. For instance, this model cannot hal
automatic topology changes of the contour, and also it depends on the parameterizati
the curve.

In problems of curve evolution, including snakes and active contours, the level set me
of Osher and Sethian [3] has been used extensively because it allows for automatic topc
changes, cusps, and corners; moreover, the computations are made on a fixed recta
grid. Using this approach, geometric active contour models, using a stopping edge-func
have been proposed in [4] and also in [5-7]. These models are based on the theo
curve evolution and geometric flows and in particular on the mean curvature motior
Osher and Sethian [3]. The evolving curve moves by mean curvature, but with an
tra factor in the speed, by the stopping edge-function. Therefore, the curve stops or
edges, where the edge-function vanishes. A typical example of edge-function used is ¢

by

1
1+ |V(Go *uo)|?’

g(IVuo|) =

whereg is a positive and decreasing function such that ligg g(t) = 0. The imagaul is
first convolved with the Gaussid®, (X, y) = o Y2 exp ¥*+YFI/4 especially for the cases
whereug is noisy. But in practiceg is never zero on the edges, and therefore the evolvir
curve may not stop on the desired boundary. To overcome this problem, a new mode
been proposed in [8] as a problem of geodesic computation in a Riemannian space, ac
ing to the metriag. The associated Euler—Lagrange equation, in level set formulation, |
a new additional gradient term (compared with the previous geometric models [4—7]).
term increases the attraction of the evolving curve toward the boundary of the object
is of special help when the boundary has high variations on its gradient values. For anc
related approach, see also [9].

These models use the gradient of a smoother version of the imatgedetect edges.
But, if the image is noisy, the smoothing in the edge-function has to be strong, thus blur
edge features, or a preprocessing has to be implemented, to remove the noise.

In contrast, the Chan—Vese (C-V) active contour model without edges proposed in
does not use the stopping edge-functipto find the boundary. Instead, the stopping tern
is based on Mumford—Shah segmentation techniques. This model has several advan
it detects edges both with and without gradient (see [10] for a discussion on edges wit
gradient, called cognitive edges); it automatically detects interior contours; the initial cu
does not necessarily have to start around the objects to be detected and instead can be
anywhere in the image; it gives in addition a partition of the image into two regions, 1
first formed by the set of the detected objects, while the second one gives the backgrc
finally, there is no need for an a priori noise removal.

The previously described methods have been developed to detect objectsinasingleiir
but what happens when we have several different registered images of the same object
occurs in multispectral images taken at different wavelengths, in medical images take
different equipment (i.e., PET, MRI, and CT), in color images, or in textured images. E:
image channel may have signal characteristics that can be combined with other chann
enhance contour detection.

Several models of restoration, edge detection, and also active contours have been pro
for vector-valued images. For restoration of color images, we mention the works in [11-
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In [11, 12], vector edges are computed based on the classical Riemannian geometry, \
in [13], the model is based on a particular extension of the total variation of Rudin, Ost
and Fatemi [14] to color images.

Based on the idea of vector edges defined using the classical Riemannian geometry
[11, 12], and on the geodesic active contour model for single-valued images introduce
[8], a color snakes model is introduced in [15, 16]. The notion of vector edges is then u
to define the stopping edge-function. This model is also applied to vector-valued ima
obtained from a textured image.

Again, all these models for vector-valued images are based on the gradient of the in
to discriminate edges.

A segmentation of color images based on the Mumford—Shah model and the re
growing method is proposed in [17], and a segmentation of vector-valued images for tex
discrimination is proposed in [18, 19]. We also refer the reader to a work on curve evolut
and segmentation functionals for color images in [20] and to a work on snakes, reg
growing, and energy—Bayes—MDL for multiband image segmentation in [21].

A related geodesic active region model for texture segmentation, using a multivall
frame analysis, is proposed in [22].

In this paper, the Chan—Vese method [1] is extended to vector-valued images. Ou
gorithm uses the level set method of Osher and Sethian [3] to determine the boundal
the detected objects. An example of the vector-valued object detector can be seenin F
Each channel has a different piece missing, but when the two channels are combinec
complete object is detected. Another example where this algorithm is of particular inte
is an occlusion occurring in one channel, while a second channel, complete yet noisie
available. Another example is RGB images, where intensity detectors and channel by c
nel boundary detectors fail. All these examples are covered in Section 2 on experime
results.

Other related works on occlusion in single-valued images have been proposed in
and more recently in [24].

The outline of the paper is as follows. The following section contains general backgrol
ofthe C-V model and its extension to vector-valued images. Section 2 contains experime
results. Finally, we end the paper by a short concluding section.

Channel 1 Initial contour Final contour

Channel 2 Initial contour Final contour

a A

FIG.1. Eachchannel has a different part of the same triangle missing. The vector-valued algorithm can d
the full triangle.
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1. THE MODEL

1.1. Background: The Scalar Case

Let 2 be a bounded open subsetlgf, with 32 the boundary. Letip be a given image
such thatg: @ — IR. Let C(s): [0, 1] — IR? be a piecewise parameteriz€d curve.
We first recall the C—V model [1], which has the following form:

F(ct,c™,C) = /L~LengthC)+A+/ luo(x, y) — c"|?dx dy
insideC)

e / lUo(x. y) — ¢~ [2dx dy, &
outsideC)

wherec™ andc™ are constant unknowns representing the average valug iokide and
outside the curve, respectively. The parametets0 andi™, A~ > 0 are weights for the
regularizing term and the fitting term, respectively. The minimization problem

inf F(c*,c™,C)
ct,c-,C

is considered as a reduction of the Mumford—Shah segmentation model [26]. Minimiz
the fitting error in (1), the model looks for the best partitiorugftaking only two values,
namelyc™ andc—, and with one edg€, the boundary between these two regions, given b
{up~ct} and{up~c}. The object to be detected will be given by one of the regions, at
the curveC will be the boundary of the object. The additional length term is a regularizit
term and has a scaling role.ufis large, only larger objects are detected, while for small
objects of smaller size are also detected. Because the model does not make use of a stt
edge-function based on the gradient, it can detect edges both with and without gradie

For curve evolution, the level set method has been used extensively, in particular w
the motion is governed by mean curvature, as in [3]. This formulation behaves well e
with cusps, corners, and automatic topological changes. The motion by mean curvatur
is given by

5 = IVeldiv(Fs).

¢(Ov X, y) = ¢0(X9 y),t € [Oa 00)7 (Xv y) € |R2’

whereg is the level set function, assumed Lipschitz continuous. By this evolution equati
the level curves o move by mean curvature, in the normal direction.

Now we can rewrite the original model (1) in the level set formulation. Let the evolvir
curveC beC ={(x, y) € Q:¢(x, y) =0}, assuming thap has opposite signs on each side
of C. Following [27, 1], the energy can be written as:

F(ct,c™, ¢) = - Lengtgp = 0} +A+/ luo(X, y) — cT|?dx dy
$=0

+r/ lo(x. y) — ¢~ 2dx dy.
¢<0



134 CHAN, SANDBERG, AND VESE

Channel 1

A A A A

Channel 2

a 4o 4o 4

Recovered object and averages

& A

FIG. 2. Each channel has a different part of the same triangle missing. The boundary of the full triangl
found (for instance, the left wing is detected due to channel 1, while the fuselage is detected due to chann
This illustrates the ability of our algorithm to detect missing information in each channel and the complete ob
The parameters are as follows=0.01- 2112, A" =27 =1, fori =1, 2.

Using the heaviside functioH, defined by

1 ifz>0,

H =
@=10 ifz<o0

d

and the Dirac delta functiod(z) = g;

H(2) (in the sense of distributions), we can rewrite

Channel 1

A A A A

| ; v .;‘_f_ : i R

Recovered object and averages

FIG. 3. In this example noise is present in both channels. The boundary of the full triangle is found. Thi:
done without filtering the noise, allowing us to detect the edges without blurring the image, the method typic
used by the classical approaches. The parameters are as follen&05 - 255, Ai+ =07, =1,fori=1,2.



ACTIVE CONTOURS FOR VECTOR-VALUED IMAGES 135

Channel 1 Channel 2 Recovered Objects

OCTOE AV
CONTOURE GONPOURS
OTHE  AGIVE
CENTOURE GONPOURS

GCTIPE  AGPIVE fw
CANTEIRE GONDOURS "0 s

QCTIYE ACUIVID  ACTIVE
CONTOURY) GONDOURS CONTOURS

FIG. 4. Example of occlusion, present in both channels. Only using the combined channels, the comj
information can be extracted. The parameters are as follows0.05- 258, A" =2, A7 =1.2, fori =1, 2.

the energy functional as follows:
Fch.c.g) =1 f 56X, Y)IVH(X. y)| + 4+ / Uo(x. y) — CHPH($(x, y)) dx dy
e /Q Uo(x, y) — ¢ 2(L — H(#(x. y)) dx dy

Minimizing F(c*, ¢, ¢) with respect to the constant$ andc™, for a fixed, yields
the following expressions fa"™ andc™, function of¢:

ct = averagefp) on¢ > 0,
¢~ = averageafp) on¢ < 0.

Minimizing the energyF(c', ¢, ¢) with respect top, for fixed c™ andc™, using a
gradient descent method, yields the associated Euler—Lagrange equatfgrgtmerned
by the mean curvature and the error terms (see [1] for more details).

The scalar C-V model has many advantages. In particular, it can detect contours wit
gradient (or cognitive contours) and interior contours automatically. Also, it has a level
formulation. It is therefore natural to extend this model to vector-valued images. Thit
presented next.

1.2. The Vector-Valued Model

We now present a natural extension of the previous scalar C—V model to the vector c
Let up; be theith channel of an image oft, withi =1, ..., N channels, an€ the
evolving curve. Each channel would contain the same image with some differences
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Channel 1 without occlusion Channel 2 with noise

n 5 >

FIG. 5. While the first channel has not much noise, but has an occlusion in it, the second channel is
noisy. From these two pictures, we try to detect as much of the airplane as possible. The parameters are as fc
1 =0.001- 255, A =27 =1,1f =2; =0.55. In this example, we first performed a renormalization of the
channels to [0, 255].

FIG. 6. We give here an example of a color image that has three objects of different colors, while the co
sponding gray scale image only shows two of them. Here we use the transformation: Intensity-Pc842- R
+0.500- G+ 0.158- B, the formula used by most image visualization tools. In this example, we have chosen
intensities in such a way that in the gray level picture, the third object has the same intensity as the backgro

FIG.7. Theboundary of all the circles is found, while in the gray-scale image the boundary of one of the circ
would never be detected. Note that, since this image does not have gradient edges, a gradient-based alg
would not be able to find the three objects. Also, a channel by channel algorithm would always detect two o
three circles. The parameters are as follows: 0.06- 255, At = =1, fori =1, 2, 3.

FIG. 8. Results on areal RGB image. The algorithm detects blurred contours, in noisy data. The param
are as followsy = 0.03- 255, A = =1, fori =1,2, 3.
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RGB Picture Intensity Picture

Recovered objects and averages combined in RGB mode

Recovered object contours combined in RGB mode

Recovered averages combined in RGB mode
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instance different wavelengths at which the image was taken and color images. £et
(cT,....cy) andc = (c, ..., cy) be two unknown constant vectors.
The extension of the C-V model to the vector case is

N
F(ct,c, ¢) = u-LengthC) +/ > atluei(x, y) — ¢F P dx dy
i=1

1
insidec) N
1 Q 5
+/ — A ugi (X, y) — ¢ |“dx dy,
outsideC) N ; I I !

whereA;” > 0 andi;” > 0 are parameters for each channel.

As in the scalar case, the model looks for the best vector-valued approximation tal
only two values, the constant vectars andc—. The active contou€ is the boundary
between these two regions. The energy balances the length of the contours in the in
with the fitting ofup, averaged over all channels. In this form, our model can detect edc
presentin at least one of the channels and not necessarily in all channels. We can ass
this property with the syntax OR.

Rewriting it in level set form, we obtain

FER. e ) = 1t /Q 5(6(x. ) V(x. y)| dx dy

1 N
+/QNZ)H+|UOJ(X, y) - ¢ PH(g(x. y) dx dy
i=1

1S U —~12(1 _ H dxd
+/9Ni; U0 (X, ) — ¢ AL — H(g(x, ) dx dy,

fori=1,..., N.

The parameterg andi+— = (A7, ..., A7) are integral to tuning the object detector
sensitivity. 1 is the weight for the length term, while thecoefficients are the weights
for the error term. Large or smallx are necessary for the model to filter high frequenc
noise. Likewise, larger coefficientsare necessary to detect objects with fine detail. Se
Experimental Results for such examples.

Minimizing the energy with respect to the constantsc, fori =1, ..., N, we obtain:

ct = fQ Uoi (X, Y)H(o(x, y))dx dy
' Jo H(@(x, y)) dx dy
- — Jo Uoi (X, Y)(1 — H(g(x, y))) dx dy
' Jo H(@#(x, y))dx dy
We need now to calculate the Euler—Lagrange equatiop.féo do so, we will regularize

the functionsH ands by C! approximations, denoting them By, ands. (ase — 0), as
in [1]. Two examples of such approximations are given by

(averagefo,) on¢ > 0),

(averagefp;) on¢ < 0).

1 ifz>e,
Hl,s(z) — 0 |f Z< —&, 51,8(2) = HJ’.,S(Z)’
(14 2+ Lsin(Z2)] if |z] <&,
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as proposed in [27], and by

1 2 Z
Ho.(2) = 5(1+ - arctar(;)), 82.£(2) = Hy (2).

as proposed in [1].
Then define, as follows:

Fe(Ct, C™, ¢) = petadc(o(x, Y))IVo(x, y)l dx dy

1 N
tetors > A Uoi (X, ¥) — G PHe(g(x. ) dx dy
i=1

N
Feta YA I (x, ¥) — 6 (1~ He(p(x, y) dx dy.

i=1
The regularized minimization problem that we will solve is
€ fc_+,cT,¢ F. (C_+, C__, ?).

Assuming that+ andc— are constant vectors, and minimizifig with respect tap, yields
the following Euler—Lagrange equation fer(parameterizing the descent direction by ar
artificial time),

3¢ (Vo 18 1, _
— =4 Ldiv —= __E)j L ch)? _E)" )2
in ©, and with the boundary condition

5009 _ g
|IVo| 0R

on 92, whereii denotes the unit normal at the boundarygnf
To solve this evolution problem, we use a finite differences scheme, as suggested ir

2. EXPERIMENTAL RESULTS

We will use several artificial images and a satellite image to show the benefits of the (
algorithm used in vector-valued form. The figures are shown as follows. First, a serie
images is shown for each channel. Each series contains the original image as well a
progression of the contour. The density within the contour is defined by the norm of
inside averagesy) and the outside averagess§, given by (¥+/N)y/(c1)2 + - - - + (cn)2,
with correspondingt and— superscripts. In all our numerical results, the initial level se
function is positive inside the initial curve (a circle or an ellipse) and negative outsi
the curve. As seen in the sample pictures, choosing the parameters requires some a
information about the image. For example, the parameters must be adapted to differer
between cases where a missing feature is due to an occlusion or an added feature is
noise. Another example is the case where the noise of one channel is substantially gr
than in the other channels.
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In Fig. 2, both channels have the same triangle, but with a different piece missing. E
channel on its own is not sufficient to detect the complete triangle. In combination,
complete triangle is easily detected.

Objects are detected even when significant noise is present. When noise is addec
Fig. 3, the objects are detected without first performing noise reduction on the images.
is superior to other noise reduction methods which tend to blur edge details. Parame
were adapted to remove high frequency noise (for instance, taking a latgen for the
previous example without noise).

In Fig. 4, the first example of occlusion is shown. The occlusion is present in b
channels. Only the vector-valued model combining both channels can extract the comj
information, including the missing information from each channel. The model has also
ability to automatically detect interior contours, as we can see in this example.

Another example can be found in multispectral images. In Fig. 5, we have an airpl
imaged from mid-wave and long-wave infrared channels. One channelis very noisy mal
it very difficult to detect the edges of the entire airplane, while the other, less noisy, char
has a partial occlusion of the airplane. Each channel is insufficient for determination of
complete contour. However, in combination, most of the features are detected.

The vector-valued C-V model can also be used on color images. By dividing the im:
intored, green, and blue (RGB) channels, one can detect objects normally undetectable!
the color image is transformed to a scalar intensity image. An example of this can be ¢
in Fig. 6. We can see the stop-light in the RGB image, while the scalar intensity image
the bottom object missing. Channel by channel detection would also be insufficient in-
case, since features of the image are not complete in any single channel (see Fig. 7)
model, however, detects all three features easily. Also note, in this particular example
algorithm detects edges without gradient.

We end the experimental results with Fig. 8, representing areal RGB image. The algori
detects blurred edges, in a noisy environment.

3. CONCLUSION

An algorithm was proposed to detect contours in vector-valued images that may or 1
not contain gradient edges. By using contour information from all the components of
image vector, a highly detailed contour can be found which is superior to contours gener
from a single dimension of the image vector. This model has all the benefits of the C
algorithm, including robustness even with noisy data and automatic detection of inte
contours.
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