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In this paper, we propose an active contour algorithm for object detection in vector-
valued images (such as RGB or multispectral). The model is an extension of the
scalar Chan–Vese algorithm to the vector-valued case [1]. The model minimizes a
Mumford–Shah functional over the length of the contour, plus the sum of the fitting
error over each component of the vector-valued image. Like the Chan–Vese model,
our vector-valued model can detect edges both with or without gradient. We show
examples where our model detects vector-valued objects which are undetectable
in any scalar representation. For instance, objects with different missing parts in
different channels are completely detected (such as occlusion). Also, in color images,
objects which are invisible in each channel or in intensity can be detected by our
algorithm. Finally, the model is robust with respect to noise, requiring no a priori
denoising step. C© 2000 Academic Press

Key Words: vector-valued images; active contours; level sets; segmentation; PDEs;
object detection.

0. INTRODUCTION

Active contours are used to detect objects in a given imageu0 using techniques of curve
evolution. The basic idea is, starting with an initial curveC, to deform the curve to the
boundary of the object, under some constraints from the imageu0.

The classical approaches use the gradient of the imageu0 to locate the edges. Therefore,
an edge-function is used, strictly positive inside homogeneous regions and zero on the
edges, to stop the evolving curve on the desired boundary. Using this edge-function, the
deformation is usually obtained by minimizing with respect toC a functional, whose (local)
minimizer is given by the boundary of the object [2]. The objective functional is the sum of
two terms: the first controls the smoothness of the curve, while the second (depending on the
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gradient ofu0) attracts the curve toward the boundary. For instance, this model cannot handle
automatic topology changes of the contour, and also it depends on the parameterization of
the curve.

In problems of curve evolution, including snakes and active contours, the level set method
of Osher and Sethian [3] has been used extensively because it allows for automatic topology
changes, cusps, and corners; moreover, the computations are made on a fixed rectangular
grid. Using this approach, geometric active contour models, using a stopping edge-function,
have been proposed in [4] and also in [5–7]. These models are based on the theory of
curve evolution and geometric flows and in particular on the mean curvature motion of
Osher and Sethian [3]. The evolving curve moves by mean curvature, but with an ex-
tra factor in the speed, by the stopping edge-function. Therefore, the curve stops on the
edges, where the edge-function vanishes. A typical example of edge-function used is given
by

g(|∇u0|) = 1

1+ |∇(Gσ ∗ u0)|2 ,

whereg is a positive and decreasing function such that limt→∞ g(t)= 0. The imageu0 is
first convolved with the GaussianGσ (x, y)= σ−1/2 exp−|x

2+y|2|/4σ , especially for the cases
whereu0 is noisy. But in practice,g is never zero on the edges, and therefore the evolving
curve may not stop on the desired boundary. To overcome this problem, a new model has
been proposed in [8] as a problem of geodesic computation in a Riemannian space, accord-
ing to the metricg. The associated Euler–Lagrange equation, in level set formulation, has
a new additional gradient term (compared with the previous geometric models [4–7]). This
term increases the attraction of the evolving curve toward the boundary of the object and
is of special help when the boundary has high variations on its gradient values. For another
related approach, see also [9].

These models use the gradient of a smoother version of the imageu0 to detect edges.
But, if the image is noisy, the smoothing in the edge-function has to be strong, thus blurring
edge features, or a preprocessing has to be implemented, to remove the noise.

In contrast, the Chan–Vese (C-V) active contour model without edges proposed in [1]
does not use the stopping edge-functiong to find the boundary. Instead, the stopping term
is based on Mumford–Shah segmentation techniques. This model has several advantages:
it detects edges both with and without gradient (see [10] for a discussion on edges without
gradient, called cognitive edges); it automatically detects interior contours; the initial curve
does not necessarily have to start around the objects to be detected and instead can be placed
anywhere in the image; it gives in addition a partition of the image into two regions, the
first formed by the set of the detected objects, while the second one gives the background;
finally, there is no need for an a priori noise removal.

The previously described methods have been developed to detect objects in a single image,
but what happens when we have several different registered images of the same object? This
occurs in multispectral images taken at different wavelengths, in medical images taken by
different equipment (i.e., PET, MRI, and CT), in color images, or in textured images. Each
image channel may have signal characteristics that can be combined with other channels to
enhance contour detection.

Several models of restoration, edge detection, and also active contours have been proposed
for vector-valued images. For restoration of color images, we mention the works in [11–13].
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In [11, 12], vector edges are computed based on the classical Riemannian geometry, while
in [13], the model is based on a particular extension of the total variation of Rudin, Osher,
and Fatemi [14] to color images.

Based on the idea of vector edges defined using the classical Riemannian geometry from
[11, 12], and on the geodesic active contour model for single-valued images introduced in
[8], a color snakes model is introduced in [15, 16]. The notion of vector edges is then used
to define the stopping edge-function. This model is also applied to vector-valued images
obtained from a textured image.

Again, all these models for vector-valued images are based on the gradient of the image
to discriminate edges.

A segmentation of color images based on the Mumford–Shah model and the region
growing method is proposed in [17], and a segmentation of vector-valued images for texture
discrimination is proposed in [18, 19]. We also refer the reader to a work on curve evolution
and segmentation functionals for color images in [20] and to a work on snakes, region
growing, and energy–Bayes–MDL for multiband image segmentation in [21].

A related geodesic active region model for texture segmentation, using a multivalued
frame analysis, is proposed in [22].

In this paper, the Chan–Vese method [1] is extended to vector-valued images. Our al-
gorithm uses the level set method of Osher and Sethian [3] to determine the boundary of
the detected objects. An example of the vector-valued object detector can be seen in Fig. 1.
Each channel has a different piece missing, but when the two channels are combined, the
complete object is detected. Another example where this algorithm is of particular interest
is an occlusion occurring in one channel, while a second channel, complete yet noisier, is
available. Another example is RGB images, where intensity detectors and channel by chan-
nel boundary detectors fail. All these examples are covered in Section 2 on experimental
results.

Other related works on occlusion in single-valued images have been proposed in [23]
and more recently in [24].

The outline of the paper is as follows. The following section contains general background
of the C-V model and its extension to vector-valued images. Section 2 contains experimental
results. Finally, we end the paper by a short concluding section.

FIG. 1. Each channel has a different part of the same triangle missing. The vector-valued algorithm can detect
the full triangle.
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1. THE MODEL

1.1. Background: The Scalar Case

LetÄ be a bounded open subset ofIR2, with ∂Ä the boundary. Letu0 be a given image
such thatu0: Ǟ→ IR. Let C(s): [0, 1]→ IR2 be a piecewise parameterizedC1 curve.

We first recall the C–V model [1], which has the following form:

F(c+, c−,C) = µ · Length(C)+ λ+
∫

inside(C)
|u0(x, y)− c+|2 dx dy

+ λ−
∫

outside(C)
|u0(x, y)− c−|2 dx dy, (1)

wherec+ andc− are constant unknowns representing the average value ofu0 inside and
outside the curve, respectively. The parametersµ>0 andλ+, λ−> 0 are weights for the
regularizing term and the fitting term, respectively. The minimization problem

inf
c+,c−,C

F(c+, c−,C)

is considered as a reduction of the Mumford–Shah segmentation model [26]. Minimizing
the fitting error in (1), the model looks for the best partition ofu0 taking only two values,
namelyc+ andc−, and with one edgeC, the boundary between these two regions, given by
{u0≈ c+} and{u0≈ c−}. The object to be detected will be given by one of the regions, and
the curveC will be the boundary of the object. The additional length term is a regularizing
term and has a scaling role. Ifµ is large, only larger objects are detected, while for smallµ,
objects of smaller size are also detected. Because the model does not make use of a stopping
edge-function based on the gradient, it can detect edges both with and without gradient.

For curve evolution, the level set method has been used extensively, in particular where
the motion is governed by mean curvature, as in [3]. This formulation behaves well even
with cusps, corners, and automatic topological changes. The motion by mean curvature [3]
is given by 

∂φ

∂t = |∇φ| div
( ∇φ
|∇φ|

)
,

φ(0, x, y) = φ0(x, y), t ∈ [0,∞), (x, y) ∈ IR2,

whereφ is the level set function, assumed Lipschitz continuous. By this evolution equation,
the level curves ofφ move by mean curvature, in the normal direction.

Now we can rewrite the original model (1) in the level set formulation. Let the evolving
curveC beC={(x, y) ∈ Ä :φ(x, y)= 0}, assuming thatφ has opposite signs on each side
of C. Following [27, 1], the energy can be written as:

F(c+, c−, φ) = µ · Length{φ = 0} + λ+
∫
φ≥0
|u0(x, y)− c+|2 dx dy

+ λ−
∫
φ<0
|u0(x, y)− c−|2 dx dy.
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FIG. 2. Each channel has a different part of the same triangle missing. The boundary of the full triangle is
found (for instance, the left wing is detected due to channel 1, while the fuselage is detected due to channel 2).
This illustrates the ability of our algorithm to detect missing information in each channel and the complete object.
The parameters are as follows:µ= 0.01 · 2112, λ+i = λ−i = 1, for i = 1, 2.

Using the heaviside functionH , defined by

H (z) =
{

1 if z≥ 0,

0 if z< 0,

and the Dirac delta functionδ(z)= d
dzH (z) (in the sense of distributions), we can rewrite

FIG. 3. In this example noise is present in both channels. The boundary of the full triangle is found. This is
done without filtering the noise, allowing us to detect the edges without blurring the image, the method typically
used by the classical approaches. The parameters are as follows:µ= 0.05 · 2552, λ+i = 0.7, λ−i = 1, for i = 1, 2.
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FIG. 4. Example of occlusion, present in both channels. Only using the combined channels, the complete
information can be extracted. The parameters are as follows:µ= 0.05 · 2552, λ+i = 2, λ−i = 1.2, for i = 1, 2.

the energy functional as follows:

F(c+, c−, φ) = µ
∫
Ä

δ(φ(x, y))|∇φ(x, y)| + λ+
∫
Ä

|u0(x, y)− c+|2H (φ(x, y)) dx dy

+ λ−
∫
Ä

|u0(x, y)− c−|2(1− H (φ(x, y))) dx dy.

Minimizing F(c+, c−, φ) with respect to the constantsc+ andc−, for a fixedφ, yields
the following expressions forc+ andc−, function ofφ:{

c+ = average(u0) onφ ≥ 0,

c− = average(u0) onφ < 0.

Minimizing the energyF(c+, c−, φ) with respect toφ, for fixed c+ and c−, using a
gradient descent method, yields the associated Euler–Lagrange equation forφ, governed
by the mean curvature and the error terms (see [1] for more details).

The scalar C–V model has many advantages. In particular, it can detect contours without
gradient (or cognitive contours) and interior contours automatically. Also, it has a level set
formulation. It is therefore natural to extend this model to vector-valued images. This is
presented next.

1.2. The Vector-Valued Model

We now present a natural extension of the previous scalar C–V model to the vector case.
Let u0,i be thei th channel of an image onÄ, with i = 1, . . . , N channels, andC the

evolving curve. Each channel would contain the same image with some differences, for
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FIG. 5. While the first channel has not much noise, but has an occlusion in it, the second channel is very
noisy. From these two pictures, we try to detect as much of the airplane as possible. The parameters are as follows:
µ= 0.001 · 2552, λ+1 = λ−1 = 1 , λ+2 = λ−2 = 0.55. In this example, we first performed a renormalization of the
channels to [0, 255].

FIG. 6. We give here an example of a color image that has three objects of different colors, while the corre-
sponding gray scale image only shows two of them. Here we use the transformation: Intensity Picture= 0.342·R
+ 0.500·G+ 0.158·B, the formula used by most image visualization tools. In this example, we have chosen the
intensities in such a way that in the gray level picture, the third object has the same intensity as the background.

FIG. 7. The boundary of all the circles is found, while in the gray-scale image the boundary of one of the circles
would never be detected. Note that, since this image does not have gradient edges, a gradient-based algorithm
would not be able to find the three objects. Also, a channel by channel algorithm would always detect two out of
three circles. The parameters are as follows:µ= 0.06 · 2552, λ+i = λ−i = 1, for i = 1, 2, 3.

FIG. 8. Results on a real RGB image. The algorithm detects blurred contours, in noisy data. The parameters
are as follows:µ= 0.03 · 2552, λ+i = λ−i = 1, for i = 1, 2, 3.
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instance different wavelengths at which the image was taken and color images. Letc+ =
(c+1 , . . . , c

+
N) andc− = (c−1 , . . . , c

−
N) be two unknown constant vectors.

The extension of the C–V model to the vector case is

F(c+, c−, φ) = µ · Length(C)+
∫

inside(C)

1

N

N∑
i=1

λ+i |u0,i (x, y)− c+i |2 dx dy

+
∫

outside(C)

1

N

N∑
i=1

λ−i |u0,i (x, y)− c−i |2 dx dy,

whereλ+i > 0 andλ−i > 0 are parameters for each channel.
As in the scalar case, the model looks for the best vector-valued approximation taking

only two values, the constant vectorsc+ andc−. The active contourC is the boundary
between these two regions. The energy balances the length of the contours in the image,
with the fitting ofu0, averaged over all channels. In this form, our model can detect edges
present in at least one of the channels and not necessarily in all channels. We can associate
this property with the syntax OR.

Rewriting it in level set form, we obtain

F(c+, c−, φ) = µ
∫
Ä

δ(φ(x, y))|∇φ(x, y)| dx dy

+
∫
Ä

1

N

N∑
i=1

λ+i |u0,i (x, y)− c+i |2H (φ(x, y)) dx dy

+
∫
Ä

1

N

N∑
i=1

λ−i |u0,i (x, y)− c−i |2(1− H (φ(x, y))) dx dy,

for i = 1, . . . , N.
The parametersµ andλ+,− = (λ+,−1 , . . . , λ

+,−
N ) are integral to tuning the object detector

sensitivity.µ is the weight for the length term, while thēλ coefficients are the weights
for the error term. Largeµ or smallλ̄ are necessary for the model to filter high frequency
noise. Likewise, larger coefficients̄λ are necessary to detect objects with fine detail. See
Experimental Results for such examples.

Minimizing the energy with respect to the constantsc+i , c
−
i , for i = 1, . . . , N, we obtain:

c+i =
∫
Ä

u0,i (x, y)H (φ(x, y)) dx dy∫
Ä

H (φ(x, y)) dx dy
(average(u0,i ) onφ ≥ 0),

c−i =
∫
Ä

u0,i (x, y)(1− H (φ(x, y))) dx dy∫
Ä

H (φ(x, y)) dx dy
(average(u0,i ) onφ < 0).

We need now to calculate the Euler–Lagrange equation forφ. To do so, we will regularize
the functionsH andδ by C1 approximations, denoting them byHε andδε (asε → 0), as
in [1]. Two examples of such approximations are given by

H1,ε(z) =


1 if z> ε,

0 if z< −ε, δ1,ε(z) = H ′1,ε(z),

1
2

[
1+ z

ε
+ 1

π
sin
(
πz
ε

)]
if |z| ≤ ε,
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as proposed in [27], and by

H2,ε(z) = 1

2

(
1+ 2

π
arctan

(
z

ε

))
, δ2,ε(z) = H ′2,ε(z),

as proposed in [1].
Then defineFε as follows:

Fε(c+, c−, φ) = µεtÄδε(φ(x, y))|∇φ(x, y)| dx dy

+εtÄ 1

N

N∑
i=1

λ+i |u0,i (x, y)− c+i |2Hε(φ(x, y)) dx dy

+εtÄ 1

N

N∑
i=1

λ−i |u0,i (x, y)− c−i |2(1− Hε(φ(x, y))) dx dy.

The regularized minimization problem that we will solve is

ε fc+,c−,φFε(c+, c−, φ).

Assuming thatc+ andc− are constant vectors, and minimizingFε with respect toφ, yields
the following Euler–Lagrange equation forφ (parameterizing the descent direction by an
artificial time),

∂φ

∂t
= δε

[
µ · div

( ∇φ
|∇φ|

)
− 1

N

N∑
i=1

λ+i (u0,i − c+i )2+ 1

N

N∑
i=1

λ−i (u0,i − c−i )2

]

in Ä, and with the boundary condition

δε(φ)

|∇φ|
∂φ

∂ En = 0

on ∂Ä, whereEn denotes the unit normal at the boundary ofÄ.
To solve this evolution problem, we use a finite differences scheme, as suggested in [1].

2. EXPERIMENTAL RESULTS

We will use several artificial images and a satellite image to show the benefits of the C–V
algorithm used in vector-valued form. The figures are shown as follows. First, a series of
images is shown for each channel. Each series contains the original image as well as the
progression of the contour. The density within the contour is defined by the norm of the
inside averages (c+i ) and the outside averages (c−i ), given by (1/

√
N)
√

(c1)2+ · · · + (cN)2,
with corresponding+ and− superscripts. In all our numerical results, the initial level set
function is positive inside the initial curve (a circle or an ellipse) and negative outside
the curve. As seen in the sample pictures, choosing the parameters requires some a priori
information about the image. For example, the parameters must be adapted to differentiate
between cases where a missing feature is due to an occlusion or an added feature is due to
noise. Another example is the case where the noise of one channel is substantially greater
than in the other channels.
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In Fig. 2, both channels have the same triangle, but with a different piece missing. Each
channel on its own is not sufficient to detect the complete triangle. In combination, the
complete triangle is easily detected.

Objects are detected even when significant noise is present. When noise is added, see
Fig. 3, the objects are detected without first performing noise reduction on the images. This
is superior to other noise reduction methods which tend to blur edge details. Parameters
were adapted to remove high frequency noise (for instance, taking a largerµ than for the
previous example without noise).

In Fig. 4, the first example of occlusion is shown. The occlusion is present in both
channels. Only the vector-valued model combining both channels can extract the complete
information, including the missing information from each channel. The model has also the
ability to automatically detect interior contours, as we can see in this example.

Another example can be found in multispectral images. In Fig. 5, we have an airplane
imaged from mid-wave and long-wave infrared channels. One channel is very noisy making
it very difficult to detect the edges of the entire airplane, while the other, less noisy, channel
has a partial occlusion of the airplane. Each channel is insufficient for determination of the
complete contour. However, in combination, most of the features are detected.

The vector-valued C–V model can also be used on color images. By dividing the image
into red, green, and blue (RGB) channels, one can detect objects normally undetectable when
the color image is transformed to a scalar intensity image. An example of this can be seen
in Fig. 6. We can see the stop-light in the RGB image, while the scalar intensity image has
the bottom object missing. Channel by channel detection would also be insufficient in this
case, since features of the image are not complete in any single channel (see Fig. 7). Our
model, however, detects all three features easily. Also note, in this particular example, the
algorithm detects edges without gradient.

We end the experimental results with Fig. 8, representing a real RGB image. The algorithm
detects blurred edges, in a noisy environment.

3. CONCLUSION

An algorithm was proposed to detect contours in vector-valued images that may or may
not contain gradient edges. By using contour information from all the components of the
image vector, a highly detailed contour can be found which is superior to contours generated
from a single dimension of the image vector. This model has all the benefits of the C–V
algorithm, including robustness even with noisy data and automatic detection of interior
contours.
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