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This paper is devoted to the modeling of real textured images by functional mini-
mization and partial differential equations. Following the ideas of Yves Meyer in a
total variation minimization framework of L. Rudin, S. Osher, and E. Fatemi, we
decompose a given (possible textured) image f into a sum of two functions u+v,
where u ¥ BV is a function of bounded variation (a cartoon or sketchy approximation
of f), while v is a function representing the texture or noise. To model v we use the
space of oscillating functions introduced by Yves Meyer, which is in some sense the
dual of the BV space. The new algorithm is very simple, making use of differential
equations and is easily solved in practice. Finally, we implement the method by finite
differences, and we present various numerical results on real textured images,
showing the obtained decomposition u+v, but we also show how the method can be
used for texture discrimination and texture segmentation.

KEY WORDS: Functional minimization; partial differential equations; oscillating
functions; functions of bounded variation; finite differences; texture modeling; image
analysis.

1. INTRODUCTION

In many problems of image analysis, we have an observed image f, representing a
real scene. The image f may contain noise (some random pattern of zero mean for
instance) and/or texture (some repeated pattern of small scale details). The image
processing task is to extract the most meaningful information from f. This is
usually formulated as an inverse problem: given f, find another image u, ‘‘close’’ to
f, such that u is a cartoon or simplification of f. In general, u is an image formed
by homogeneous regions and with sharp boundaries. Most models assume the
following relation between f and u: f=u+v, where v is noise or small scale
repeated detail (texture), and extract only the u component from f. Usually, the
component v is not kept, assuming that this models the noise. In this category, we
mention Rudin, Osher, and Fatemi [22], Mumford and Shah [18], Perona and



Malik [20], Alvarez et al. [2], Chambolle and Lions [10], Aubert and Vese [5],
among many others. These models have the ability of computing optimal piecewise-
smooth approximations u of f, while noise or small repeated patterns are removed
from the image.

In some cases, the v component is important, especially if it represents texture.
Texture can be defined as a repeated pattern of small scale details. The noise is also
a pattern of small scale details, but of random, uncorrelated values. Both types of
patterns (additive noise or texture) can be modeled by oscillatory functions taking
both positive and negative values, and of zero mean [17].

Following the ideas of Yves Meyer [17], we show in this paper how we can
extract from f both components u and v, in a simple total variation minimization
framework of Rudin, Osher, and Fatemi [22]. The obtained decomposition can
then be useful for segmentation of textured images and texture discrimination,
among other possible applications. The textured component v is completely repre-
sented using only two functions (g1, g2). This is much simpler and much more effi-
cient than in other techniques for textures, which use a large number of channels to
represent a textured image.

To summarize, we propose in this paper a simple model, which combines the
edge preserving model of ROF, with the texture preserving model of Y. Meyer. The
technique used is by energy minimization and partial differential equations. We
illustrate the benefits of the new decomposition on various numerical results and
applications to texture discrimination and texture segmentation.

We review next the main two ingredients of the proposed model: the total
variation minimization of Rudin, Osher, and Fatemi (ROF) [22] for image
denoising and restoration (see also Rudin and Osher [21]), and the space of
oscillating functions introduced by Yves Meyer [17] to model texture or noise.

Let f: R2
Q R be a given image (we assume that the image initially defined on

a rectangle in R2, has been extended by reflection to the entire space). We assume
that f ¥ L2(R2). In real applications, the observed image f is just a noisy version of
a true image u, or (as we will see in this paper), it is a textured image, and u would
be a simple sketchy approximation or a cartoon image of f. In the presence of
additive noise, the relation between u and f can be expressed by the linear model,
introducing another function v, and such that

f(x, y)=u(x, y)+v(x, y).

In the Rudin, Osher, and Fatemi restoration model [22], v represents noise or
small scale repeated details, while u is an image formed by homogeneous regions,
and with sharp edges. Given f, both u and v are unknown (if v is noise, we may
know some statistics of v, such that it is of zero mean and given variance). In [22],
the problem of reconstructing u from f is posed as a minimization problem in the
space of functions of bounded variation BV(R2), this space allowing for edges or
discontinuities along curves. Their model, very efficient for denoising images while
keeping sharp edges, is

inf
u ¥ L2

F(u)=F |Nu|+l F |f − u|2 dx dy, (1)
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where l > 0 is a tuning parameter. The second term in the energy is a fidelity term,
while the first term is a regularizing term, to remove noise or small details, while
keeping important features and sharp edges.

Existence and uniqueness results for the above minimization problem can be
found in [1], [10], [25], [3] (see also [4]). This problem has minimizers in the
space BV(R2) of functions of bounded variation, which is defined by [11]:
u ¥ BV(R2) iff u ¥ L1(R2) and

sup
gF

3F u div gF dx dy: gF ¥ C1
c (R2; R2), |gF| [ 14 < .. (2)

If we denote by v=f − u or f=u+v, then the above minimization problem
can be written as:

inf
u ¥ BV

3F(u)=F |Nu|+l ||v||2
L2, f=u+v4 . (3)

Formally minimizing F(u) yields the associated Euler–Lagrange equation

u=f+
1
2l

div 1 Nu
|Nu|

2

(for a correct form of the equation 0 ¥ “F(u) satisfied by a minimizer u ¥ BV, we
refer the reader to [25]).

In practice, to avoid division by zero, the curvature term div( Nu
|Nu|) is approxi-

mated by div( Nu
`E

2+|Nu|2
), and the BV solution is obtained as the limit of smoother

minimizers, as E Q 0, as in [1], [25]. This convention will be always made in this
paper.

Then, the function representing noise or texture in the ROF model is
v=f − u=− 1

2l div( Nu
|Nu|), but this is not computed explicitly in the ROF model. Only

the component u is kept in the ROF model.
Note that the above function v in the ROF model can be formally written

as: v=div gF, where gF=(g1, g2) and g1=− 1
2l

ux
|Nu|, g2=− 1

2l
uy

|Nu|. We have that

g2
1(x, y)+g2

2(x, y)= 1
2l for all (x, y), so that ||`g2

1+g2
2 ||L.= 1

2l (later we will use the
notation |gF|=`g2

1+g2
2).

In [17], Yves Meyer proves that the ROF model will remove the texture, if l is
small enough. In order to extract both the u component in BV and the v component
as an oscillating function (texture or noise) from f, Yves Meyer [17] proposes the
use of a space of functions, which is in some sense the dual of the BV space (see
also condition (2)). On the topic of oscillations in non-linear analysis, we would
also like to refer the reader to [19].

Y. Meyer introduces the following definition [17]:

Definition 1. Let G denote the Banach space consisting of all generalized
functions v(x, y) which can be written as

v(x, y)=“x g1(x, y)+“y g2(x, y), g1, g2 ¥ L.(R2), (4)
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induced by the norm ||v||g defined as the lower bound of all L. norms of the func-
tions |gF| where gF=(g1, g2), |gF(x, y)|=`g1(x, y)2+g2(x, y)2 and where the
infimum is computed over all decompositions (4) of v.

Y. Meyer also gives the following three results [17]:

Lemma 1. If v ¥ L2(R2), then |> f(x, y) v(x, y) dx dy| [ ||f||BV ||v||g.

Lemma 2. If the norm of f in G does not exceed 1
2l , then the optimal Rudin,

Osher, and Fatemi decomposition of f is given by u=0, v=f.

Theorem 1. Let f, u, and v be three functions in L2(R2). If ||f||g > 1
2l , then the

Rudin, Osher, and Fatemi decomposition f=u+v is characterized by the following
two conditions:

||v||g=
1

2l
and F u(x, y) v(x, y) dx dy=

1
2l

||u||BV.

In the above results, we have used the notation ||u||BV :=> |Nu| for the total
variation of u.

Y. Meyer shows that, if the v component represents texture or noise, then
v ¥ G, and proposes the following new image restoration model:

inf
u

3E(u)=F |Nu|+l ||v||g, f=u+v4 . (5)

As was justified by Y. Meyer, we shall see that the space G allows for oscillat-
ing functions v, and the oscillations are well measured by the norm ||v||g.

In the next section, we show how we can solve a variant of this model in prac-
tice, making use only of simple partial differential equations.

Other work for restoration of textured images by total variation minimization
in a wavelet framework is by Malgouyres [15, 16], Candés and Guo [29]. Also,
texture modeling by statistical methods was proposed by Zhu, Wu, and Mumford,
in [27, 28], and by Casadei, Mitter, and Perona in [7]. In the context of texture
segmentation, we cite only a few related work, such as Koepfler, Lopez, and Morel
[12], Sapiro [24], Lee, Mumford, and Yuille [14], Lee [13], Ballester and
Gonzalez [6], among many other. A recent work for segmentation of textured
images using segmentation based active contour models in a Gabor transform
framework, is proposed by Sandberg, Chan, and Vese [23].

Finally, we would like to mention other work using u+v models, but in different
contexts. One was proposed by Chambolle and Lions [10], where a given image f
was decomposed into a sum u+v, such that u ¥ BV(W) and v was the smoother part
of f, satisfying Nv ¥ BV(W)2. Another related work involving image decomposition
was proposed by Wells et al. [26], in the context of adaptive segmentation and clas-
sification using statistical methods: the new data Y=ln(X) (the logarithmic trans-
formation of the initial data X), is decomposed into a sum of two other components,
one being piecewise-constant (given by the mean intensities for each class) and the
other one being an additive bias field, to represent intensity inhomogeneities.
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2. DESCRIPTION OF THE MODEL

We are motivated by the following approximation to the L. norm of
|gF|=`g2

1+g2
2, for g1, g2 ¥ L.(R2):

||`g2
1+g2

2 ||L.= lim
p Q .

||`g2
1+g2

2 ||Lp.

Then, we propose the following minimization problem, inspired by (5):

inf
u, g1, g2

3Gp(u, g1, g2)=F |Nu|+l F |f − u − “x g1 − “y g2 |2 dx dy

+m 5F (`g2
1+g2

2)p dx dy6
1
p4 , (6)

where l, m > 0 are tuning parameters, and p Q ..
The first term insures that u ¥ BV(R2), the second term insures that

f % u+div gF, while the third term is a penalty on the norm in G of v=div gF.
Clearly, if l Q . and p Q ., this model is formally an approximation of the model
(5) originally proposed by Y. Meyer.

Formally minimizing the above energy with respect to u, g1, g2, yields the
following Euler–Lagrange equations:

u=f − “x g1 − “y g2+
1

2l
div 1 Nu

|Nu|
2 , (7)

m(||`g2
1+g2

2 ||p)1 − p (`g2
1+g2

2)p − 2 g1=2l 5 “

“x
(u − f )+“

2
xxg1+“

2
xyg2

6 , (8)

m(||`g2
1+g2

2 ||p)1 − p (`g2
1+g2

2)p − 2 g2=2l 5 “

“y
(u − f )+“

2
xyg1+“

2
yyg2

6 . (9)

In our numerical calculations, we have tested the model for different values of
p, with 1 [ p [ 10. The obtained results are very similar. The case p=1 yields faster
calculations per iteration, so we give here the form of the Euler–Lagrange equations
in this case (p=1):

u=f − “x g1 − “y g2+
1
2l

div 1 Nu
|Nu|

2 , (10)

m
g1

`g2
1+g2

2

=2l 5 “

“x
(u − f )+“

2
xxg1+“

2
xyg2

6 , (11)

m
g2

`g2
1+g2

2

=2l 5 “

“y
(u − f )+“

2
xyg1+“

2
yyg2

6 . (12)

If the domain is finite, with exterior normal to the boundary denoted by
(nx, ny), the associated boundary conditions are:
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Nu
|Nu|

(nx, ny)=0,

(f − u − “x g1 − “y g2) nx=0,

(f − u − “x g1 − “y g2) ny=0.

As we shall see in the section devoted to numerical results, the proposed
minimization model (6) allows to extract from a given real textured image f the
components u and v, such that u is a sketchy (cartoon) approximation of f, and
v=div(g1, g2) represents the texture or the noise. In addition, the minimizer
obtained for gF=(g1, g2) allows us to discriminate two textures, by looking at the
functions |gF|=`g2

1+g2
2, |g1 | or |g2 |.

2.1. Analytical Remarks

We list here a few simple analytical remarks about the proposed models. We
will use the following notation: for u ¥ BV, we denote its total variation by:
||u||BV :=> |Nu|. We assume that f ¥ L2.

• In the standard Rudin–Osher–Fatemi model [22], the residual is given by:

f − u=−
1
2l

K(u),

where K(u) denotes the curvature operator, defined by K(u)=div( Nu
|Nu|).

• In the new model for p \ 1, the residual is given by the same expression:

f − (u+v)=−
1
2l

K(u).

• In the new model with p=1, from equations (10)-(12), it is easy to show the
following remarkable relation:

m=|NK(u)|.

• In the new model with p > 1, from Eqs. (7)–(9), we can easily show the
following relations:

m 1 `g2
1+g2

2

||`g2
1+g2

2 ||p
2p − 1

=|NK(u)|,

m ||`g2
1+g2

2 ||p=F `g2
1+g2

2 · |NK(u)|.

If gF is of constant magnitude, then the above relation involves the BV norm
of K(u), or the total variation of K(u). If gF is not of constant magnitude,
then > |gF| · |NK(u)| can be viewed as a weighted BV norm of the curvature
K(u).
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• Lemma 3. If û=0, gF̂ ¥ (Lp)2 is a minimizer of the problem (6), then
||f − div gF̂||g [ 1

2l.

Proof. We will have for any u ¥ BV that:

||u||BV+l ||f − u − div gF̂||2
L2+m || |gF| ||Lp \ l ||f − div gF̂||2

L2+m || |gF̂| ||Lp,

or

||u||BV+l ||u||2
L2 \ 2l F u(f − div gF̂) dx dy.

Substituting in the above inequality u by Eu, and taking E Q 0, we obtain:

:F u(f − div gF̂) dx dy : [ 1
2l

||u||BV.

The conclusion follows from this last inequality and from the duality
between BV and G 5 L2.

• Lemma 4. If û ¥ BV, gF̂=(0, 0) is a minimizer of the problem (6), then
||N(û − f )||Lq [ m

2l, with 1
p+

1
q=1.

Proof. We will have for any gF ¥ (Lp)2 that:

||û||BV+l ||f − û − div gF||2
L2+m || |gF| ||Lp \ ||û||BV+l ||f − û||2

L2,

or

||div gF||2
L2+m || |gF| ||Lp \ 2l F (f − û) div gF dx dy=2l F N(û − f ) · gF.

Substituting in the above inequality gF by EgF, and taking E Q 0, we obtain:

:F N(û − f ) · gF dx dy : [ m

2l
|| |gF| ||Lp.

The conclusion follows from this last inequality and from the duality
between Lp and Lq.

• Lemma 5. u=0 and gF=(0, 0) is a minimizer of the problem (6) iff
||f||g [ 1

2l and ||Nf||Lq [ m
2l.

Proof. The direct implication is a consequence of the two previous
results. The converse implication can be also verified by the previous tech-
niques.

Remark. Lemma 3 could also be justified by applying Lemma 2 proved by
Y. Meyer to f̂=f − div gF̂, for a fixed gF̂.

Remark. Finally, we can apply Theorem 1 to our minimization problem (6)
for a fixed gF. Then, this reduces to the classical Rudin–Osher–Fatemi minimization
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problem for a new data f − div gF, and we have the following property: for fixed gF, if
||f − div gF||g > 1

2l and u is a minimizer, then ||f − u − div gF||g= 1
2l and

F u(x, y) f(x, y) dx dy − F u2(x, y) dx dy − F u(x, y) div gF(x, y) dx dy=
1

2l
||u||BV.

Remark. We have verified some of these simple theoretical results by exper-
imental calculations on simple images.

3. THE NUMERICAL DISCRETIZATION OF THE MODEL

To discretize the Eqs. (7)–(9), we use a semi-implicit finite differences scheme
and an iterative algorithm, based on a fixed point iteration. The equation in u is
discretized following the schemes from [22] and [5]. Similar schemes are then used
for the equations in g1 and g2. The initial guess that we use for the iterative algo-
rithm is as follows: u0=f, g0

1=− 1
2l

fx
|Nf|, g0

2=− 1
2l

fy
|Nf|.

The details of our numerical algorithm are as follows. We use the classical
notations ui, j % u(ih, jh), fi, j % f(ih, jh), g1, i, j % g1(ih, jh) and g2, i, j % g2(ih, jh),
where h > 0 is the step space and (ih, jh) denotes a discrete point, for 0 [ i, j [ M.
To simplify the presentation, let us introduce the notation H(g1, g2)=
(||`g2

1+g2
2 ||p)1 − p (`g2

1+g2
2)p − 2.

The discrete forms of our equations are:

ui, j=fi, j −
g1, i+1, j − g1, i − 1, j

2h
−

g2, i, j+1 − g2, i, j − 1

2h

+
1

2lh2 r ui+1, j − ui, j

=1ui+1, j − ui, j

h
22

+1ui, j+1 − ui, j − 1

2h
22

−
ui, j − ui − 1, j

=1ui, j − ui − 1, j

h
22

+1ui − 1, j+1 − ui − 1, j − 1

2h
22s

+
1

2lh2 r ui, j+1 − ui, j

=1ui+1, j − ui − 1, j

2h
22

+1ui, j+1 − ui, j

h
22

−
ui, j − ui, j − 1

=1ui+1, j − 1 − ui − 1, j − 1

2h
22

+1ui, j − ui, j − 1

h
22s ,
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mH(g1, i, j, g2, i, j) g1, i, j=2l 5ui+1, j − ui − 1, j

2h
−

fi+1, j − fi − 1, j

2h
+

g1, i+1, j − 2g1, i, j+g1, i − 1, j

h2

+
1

2h2 (2g2, i, j+g2, i − 1, j − 1+g2, i+1, j+1 − g2, i, j − 1 − g2, i − 1, j − g2, i+1, j − g2, i, j+1)6 ,

mH(g1, i, j, g2, i, j) g2, i, j=2l 5ui, j+1 − ui, j − 1

2h
−

fi, j+1 − fi, j − 1

2h
+

g2, i, j+1 − 2g2, i, j+g2, i, j − 1

h2

+
1

2h2 (2g1, i, j+g1, i − 1, j − 1+g1, i+1, j+1 − g1, i, j − 1 − g1, i − 1, j − g1, i+1, j − g1, i, j+1)6 .

We introduce the following linearized equations:

un+1
i, j =fi, j −

gn
1, i+1, j − gn

1, i − 1, j

2h
−

gn
2, i, j+1 − gn

2, i, j − 1

2h

+
1

2lh2 r un
i+1, j − un+1

i, j

=1un
i+1, j − un

i, j

h
22

+1un
i, j+1 − un

i, j − 1

2h
22

−
un+1

i, j − un
i − 1, j

=1un
i, j − un

i − 1, j

h
22

+1un
i − 1, j+1 − un

i − 1, j − 1

2h
22s

+
1

2lh2 r un
i, j+1 − un+1

i, j

=1un
i+1, j − un

i − 1, j

2h
22

+1un
i, j+1 − un

i, j

h
22

−
un+1

i, j − un
i, j − 1

=1un
i+1, j − 1 − un

i − 1, j − 1

2h
22

+1un
i, j − un

i, j − 1

h
22s ,

mH(gn
1, i, j, gn

2, i, j) gn+1
1, i, j=2l 5un

i+1, j − un
i − 1, j

2h
−

fi+1, j − fi − 1, j

2h
+

gn
1, i+1, j − 2gn+1

1, i, j+gn
1, i − 1, j

h2

+
1

2h2 (2gn
2, i, j+gn

2, i − 1, j − 1+gn
2, i+1, j+1 − gn

2, i, j − 1 − gn
2, i − 1, j − gn

2, i+1, j − gn
2, i, j+1)6 ,

mH(gn
1, i, j, gn

2, i, j) gn+1
2, i, j=2l 5un

i, j+1 − un
i, j − 1

2h
−

fi, j+1 − fi, j − 1

2h
+

gn
2, i, j+1 − 2gn+1

2, i, j+gn
2, i, j − 1

h2

+
1

2h2 (2gn
1, i, j+gn

1, i − 1, j − 1+gn
1, i+1, j+1 − gn

1, i, j − 1 − gn
1, i − 1, j − gn

1, i+1, j − gn
1, i, j+1)6 .
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Introducing the notations:

c1=
1

=1un
i+1, j − un

i, j

h
22

+1un
i, j+1 − un

i, j − 1

2h
22

,

c2=
1

=1un
i, j − un

i − 1, j

h
22

+1un
i − 1, j+1 − un

i − 1, j − 1

2h
22

,

c3=
1

=1un
i+1, j − un

i − 1, j

2h
22

+1un
i, j+1 − un

i, j

h
22

,

c4=
1

=1un
i+1, j − 1 − un

i − 1, j − 1

2h
22

+1un
i, j − un

i, j − 1

h
22

,

and solving in each equation for un+1
i, j , gn+1

1, i, j and for gn+1
2, i, j respectively, we obtain:

un+1
i, j =R 1

1+
1

2lh2 (c1+c2+c3+c4)
S 5fi, j −

gn
1, i+1, j − gn

1, i − 1, j

2h
−

gn
2, i, j+1 − gn

2, i, j − 1

2h

+
1

2lh2 (c1un
i+1, j+c2un

i − 1, j+c3un
i, j+1+c4un

i, j − 1)6 ,

gn+1
1, i, j=R 2l

mH(gn
1, i, j, gn

2, i, j)+
4l

h2

S 5un
i+1, j − un

i − 1, j

2h
−

fi+1, j − fi − 1, j

2h
+

gn
1, i+1, j+gn

1, i − 1, j

h2

+
1

2h2 (2gn
2, i, j+gn

2, i − 1, j − 1+gn
2, i+1, j+1 − gn

2, i, j − 1 − gn
2, i − 1, j − gn

2, i+1, j − gn
2, i, j+1)6 ,

gn+1
2, i, j=R 2l

mH(gn
1, i, j, gn

2, i, j)+
4l

h2

S 5un
i, j+1 − un

i, j − 1

2h
−

fi, j+1 − fi, j − 1

2h
+

gn
2, i, j+1+gn

2, i, j − 1

h2

+
1

2h2 (2gn
1, i, j+gn

1, i − 1, j − 1+gn
1, i+1, j+1 − gn

1, i, j − 1 − gn
1, i − 1, j − gn

1, i+1, j − gn
1, i, j+1)6 .

As it can be noticed from the above formula, we have used the following
approximation of the mixed derivatives:

“
2
xyg1(i, j) %

1
2h2 (2g1, i, j+g1, i − 1, j − 1+g1, i+1, j+1 − g1, i, j − 1 − g1, i − 1, j − g1, i+1, j − g1, i, j+1),
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and similarly for g2. We have also tested another approximation to the mixed deri-
vatives, which is:

“
2
xyg1(i, j) %

1
4h2 (g1, i+1, j+1+g1, i − 1, j − 1 − g1, i+1, j − 1 − g1, i − 1, j+1),

which also gave good results.
In practice, we set h=1 and in our computer algorithm, we employ another

fixed-point method: instead of un
i, j, gn

1, i, j and gn
2, i, j, we always use the most recent

value computed for each function at that point. At the boundary, we extend ui, j by
reflection outside the domain, and a simple boundary condition for gF would be
Dirichlet boundary condition, which appears to work well in practice. We perform
about 100 iterations for each experimental result. Other implicit or explicit schemes
could have been constructed and used.

4. NUMERICAL RESULTS

In this section, we show various numerical results using the proposed model. In
all results, we take the space step h=1, and we perform 100 iterations in most
cases. Since in practice we have not noticed differences between the cases p=1 and
p > 1, we show the numerical results obtained with p=1.

In Fig. 1 we consider a real textured image without noise for the initial data f.
In Fig. 2 left we show the result u obtained with the ROF model, and in Fig. 2 right
we show the residual f − u (plus a constant for illustration purposes). We see that
texture (in form of geometry) is still present in the residual f − u.

Next, in Fig. 3 we show the results obtained with the new model, for the same
parameter l. Note from Fig. 3 that u+v represents very well the initial textured
image f, and that in the residual f − u − v there is much less geometry and texture
than by the ROF model. As expected, the image u in Fig. 3 is a sketchy approxi-
mation of f, while v is an oscillatory function (again, we have added a constant to
the result v, for illustration purposes).

Fig. 1. An initial textured image.
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Fig. 2. Result using the ROF model with l=0.1.

Fig. 3. Result using the new model with l=0.1, m=0.1.

Fig. 4. An initial fingerprint image.
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Fig. 5. Result using the ROF model with l=0.1.

Fig. 6. Result using the new model with l=0.1, m=0.1.

Fig. 7. Original fingerprint image (left) and a noisy version f (right).
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Fig. 8. Result using the ROF model with l=0.03.

Similar results and comparisons are presented in Figs. 4–6, for another
textured image without noise, representing a fingerprint.

Then, we show comparisons and numerical results for both models with a
noisy fingerprint image, shown in Fig. 7. The result u obtained with the ROF model
is presented in Fig. 8 left, and the residual in Fig. right. We see that the noise has
been removed, but most of the texture is also removed from u.

In Fig. 9 we show results obtained with the new model applied to the noisy
fingerprint image, for various parameters m, but the same parameter l. Note that,
as expected, the proposed model keeps together the texture and the noise for
smaller m. It was also proved by Yves Meyer [17] that random additive noise of
zero mean belongs to the same space G. So, the noise is considered as texture by the
proposed model. Note that, for decreasing m, more texture appears in the v com-
ponent by the new model, but also more noise is kept.

In the next two examples (the fabric image and the wood image), we show that
the new model can be used as a texture discriminator, by looking at the functions
|g1 |, |g2 | or |gF|=`g2

1+g2
2. Even if the two textures are very similar, in these three

components, their differences are clearly seen and can be discriminated.
Also, note that in general, texture discrimination is very expensive, since the

image f is substituted by a sequence of images, transforms of f at different scale,
orientation and phase parameters (such as Gabor transforms), yielding a large set
of initial data. Here, just one component suffices to discriminate textures, like |g1 |,
|g2 |, or |gF|. In general, if we do not know which component(s) should be used, then
at most three channels are needed for texture discrimination and texture segmenta-
tion, in a multi-channel segmentation fashion.

Note that we do not need to perform a learning process of the texture and its
statistics, as it is often done. Other methods for texture segmentation are using the
so called ‘‘textons’’, as local averages of curvature of level lines and of the orienta-
tion of tangents to level lines (see for instance Koepfler, Lopez, and Morel [12] and
Chan and Vese [9]).
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Fig. 9. Results using the new model with l=0.03 and m=2; 1; 0.5; 0.1.
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Fig. 10. Results on the fabric image with the new model, with l=0.01 and m=0.001.

Fig. 11. Results corresponding to the fabric image. Texture discrimination using the functions |g1 |,
|g2 |, or |gF|. The detected contour is obtained by applying the active contour model without edges
from [8, 9] to |g1 |.
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Fig. 12. Results on the wood image with the new model, with l=0.1 and m=0.00001.

Fig. 13. Results corresponding to the wood image. Texture discrimination using the functions |g1 |,
|g2 |, or |gF|. The detected contour is obtained by applying the active contour model without edges
from [8, 9] to |g2 |.
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Fig. 14. Left: f. Right: u+v with l=0.2, m=0.01, 100 iterations, p=1.

We show in Fig. 10 an initial image (fabric texture), and the results u+v, u and
v obtained by the new model. In Fig. 11 we show the functions |g1 |, |g2 |, and |gF|.
Here, we also show the contour between the two textures, extracted by applying the
active contour model without gradient based segmentation from [8, 9] to the image
|g1 |.

Similar results are shown in Figs. 12 and 13, for another image (wood texture).
Again, two of the functions |g1 |, |g2 |, and |gF| help to discriminate the textures.

Finally, we show one more numerical result in Figs. 14 and 15. We show the
initial image f (a noisy version of a real image), the result u+v and the u and v

Fig. 15. u (left) and v (right) components for the image in Fig. 14.
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components. Note that u+v is practically identical with f. The noise is kept in the v
component and therefore in the sum u+v, but it has been removed from the u
component.

Remark. Note that, since the residual |f − u − v| is very small but not exactly
zero, the proposed model produces in fact a decomposition of the form:
f=u+v+r, where r=− 1

2l div( Nu
|Nu|). In the limit, as l Q ., the model approximates

a decomposition of the form f=u+v.

5. CONCLUDING REMARKS

In this paper, we have shown how we can decompose a given image f into the
sum u+v, where u ¥ BV is a function of bounded variation (a cartoon representa-
tion of f), and v is an oscillatory function, representing random noise or texture.
We have also shown how the method can be used to texture segmentation and
texture discrimination. The proposed model combines the idea of the total variation
minimization in image restoration of Rudin, Osher, and Fatemi [22] with the ideas
introduced by Meyer [17] for the appropriate space to model texture or noise. At
this moment, the model cannot distinguish between noise and texture. We plan to
discuss in the future how to denoise the v component, in the case of noisy textured
images. Finally, we validate the claims of Yves Meyer on several experimental
results, and we show in particular that textures can be defined and represented only
using two functions gF=(g1, g2). This is different from the wavelet decomposition
techniques or from the use of the Gabor transform.
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