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Abstract. In this paper, we propose a new variational model for image denoising and decomposition, witch
combines the total variation minimization model of Rudin, Osher and Fatemi from image restoration, with spaces
of oscillatory functions, following recent ideas introduced by Meyer. The spaces introduced here are appropriate
to model oscillatory patterns of zero mean, such as noise or texture. Numerical results of image denoising, image
decomposition and texture discrimination are presented, showing that the new models decompose better a given
image, possible noisy, into cartoon and oscillatory pattern of zero mean, than the standard ones. The present paper
develops further the models previously introduced by the authors in Vese and Osher (Modeling textures with total
variation minimization and oscillating patterns in image processing, UCLA CAM Report 02-19, May 2002, to
appear in Journal of Scientific Computing, 2003). Other recent and related image decomposition models are also
discussed.
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1. Introduction

Recently, a new concept and a new task have been in-
troduced in image analysis: decompose a given image
f : � → R into two components u + v, such that u is
a cartoon representation of f , a simplified piecewise-
smooth approximation, while v is the oscillatory com-
ponent, consisting of texture and noise. This new im-
age analysis task has been first formulated in theory by
Meyer [27], and the authors of the present paper have
proposed a first practical new model to achieve this
task in [40]. In this present paper, we develop further
the model introduced in [40], discuss some of its vari-
ants, and illustrate its range of applications to image
denoising, image decomposition into cartoon plus tex-
ture, as well as the capability of texture discrimination
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and texture segmentation. We also discuss other new
related models from the literature, all inspired by [27]
and [40].

The canonical, standard, previous models in image
analysis start from the assumption that an image f is the
sum of two components, f = u + v, such that only u
contains the important main features of f . These mod-
els represent u as a function of bounded variation (in
BV (�) or in a subset, SBV(�)), allowing for discon-
tinuities along curves, therefore sharp edges and con-
tours in the image u. The residual v := f − u is mod-
eled in the standard models by a function in L2(�). The
main canonical examples are the total variation min-
imization of Rudin-Osher-Fatemi [35], Rudin-Osher
[34], and the Mumford-Shah segmentation model [29].
The first model decomposes f into u + v, such that
u ∈ BV(�) and v := f − u ∈ L2(�), while the sec-
ond model gives a decomposition f = u + v with
u ∈ SBV(�) (special functions of bounded variation),
and v := f − u ∈ L2(�), as in the ROF model. These



8 Vese and Osher

and other related models retain only the piecewise-
smooth component u from f , and remove away the
texture + noise component v := f − u. Other mod-
els having related properties are [3, 6, 12, 33], among
other.

Instead, we use here a more refined model for de-
scribing the textured component v. It means using a
norm which is truly sensitive to oscillating patterns,
and our choice is motivated by some unexpected prop-
erties of the Rudin-Osher-Fatemi model [35], as it was
remarked by Meyer. Also, some drawbacks of the stan-
dard models are reduced or eliminated in the new mod-
els. Also, more recent analysis favor the idea that the
space BV(�) is not sufficient to model images with tex-
tures and small details properly, such as natural images.
We refer the reader to Gousseau and Morel [19], where
an experimental study of the distribution of bilevels
of natural images is presented, showing that their to-
tal variation blows up to infinity with the increasing
of resolution. A related work by the authors of [19] to-
gether with L. Alvarez is [2]. Also, Mumford and Gidas
[28] explain that natural images are better modeled by
Schwartz distributions which are not measurable func-
tions.

More precisely, we assume that we have a given im-
age f ∈ L2(�), where � is an open and bounded do-
main on R

2, with Lipschitz boundary. In order to re-
cover u from f , in [34, 35] it has been proposed to
solve the following convex minimization problem:

inf
u∈BV(�)

F(u) = λ

∫
�

| f − u|2 dx dy +
∫

�

|∇u|, (1)

where BV(�) is the space of functions of bounded
variation, λ > 0 is a positive tuning parameter and∫
�

|∇u| denotes the total variation of u. This mini-
mization problem has minimizers in the space BV(�)
(see [1, 12]; also [41] for a more general case, [4, 5]
for other properties). New formulations using duality
of more general cases are presented in [41], as well as
in [13, 14] for the TV minimization.

A unique minimizer u formally satisfies the Euler-
Lagrange equation associated with the above mini-
mization problem:

u − f = 1

2λ
div

( ∇u

|∇u|
)

(2)

(for a more precise and rigorous calculation of the sub-
differential of the functional, we refer the reader to
[12, 41]).

As Meyer pointed out [27], the residual v = f − u
in ROF can be expressed as v = div �g, where �g is a
vector field given, in the sense of distributions, by

�g = − 1

2λ

( ∇u

|∇u|
)

,

and satisfying �g ∈ L∞(�), because ‖|�g|‖L∞(�) = 1
2λ

<

∞. Therefore, the residual v = f − u in the Rudin-
Osher-Fatemi model is expressed, in the sense of distri-
butions, as the divergence of a vector field �g ∈ L∞(�),
i.e. as a generalized function, and this also belongs
to L2(�). It turns out that the space of generalized
functions

G(�) = {v = div�g, �g = (g1, g2), g1, g2 ∈ L∞(�)}
is the space W −1,∞(�), the dual space to W 1,1

0 (�).
On the other side, for each u ∈ BV(�), its total

variation
∫
�

|∇u| is finite and can be expressed as:∫
�

|∇u|

= sup
�g

{∫
�

u(div�g) dx dy : �g ∈ C1
c (�; R

2), |�g| ≤ 1

}
.

(3)

Meyer [27] suggests that, in order to better extract
from f = u + v the cartoon part u ∈ BV(�), and to
leave in v the noise or the textured components only,
other weaker norms should be used for the residual
f − u in (1), instead of the L2-norm. He proposes in
[27] three spaces to model oscillatory functions, one of
them being G(�). The space G(�) is a Banach space
induced by the norm ‖v‖∗, defined as the lower bound
of all L∞(�) norms of the functions |�g| where �g =
(g1, g2), |�g(x, y)| =

√
g1(x, y)2 + g2(x, y)2 and where

the infimum is computed over all decompositions v =
div�g of v.

We have the inclusions W 1,1(�) ⊂ BV(�) ⊂ L2

(�) ⊂ G(�) = (W 1,1(�))∗, therefore the norm in G(�)
is a weaker norm than the L2(�) norm.

In [40] and in this present paper, we propose a new
model for image decomposition into cartoon plus tex-
ture. To model the cartoon component u, we use, as
in [34, 35], the space BV(�). To model the oscillatory
component v, we use the spaces W −1,p(�), dual to
W 1,p′

0 (�), for 1 ≤ p < ∞, and where 1
p + 1

p′ = 1. In

practice, it is much easier to work with W −1,p(�), in-
stead of W −1,∞(�) = G(�). Moreover, if p → ∞, the
spaces W −1,p(�) approximate the space W −1,∞(�).
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Also, for any 1 ≤ p < ∞, these are larger spaces than
G(�), and allow for different choices of weaker norms
for the oscillatory component v, function of the desired
result. The obtained new models can be easily solved
in practice, for image denoising, image decomposition,
and texture discrimination.

The outline of the paper is as follows: in the
next section we give the description of the proposed
new models, and discuss some of the properties. In
Section 3 we discuss other related recent models for im-
age decomposition, inspired from [27] and [40]. Then
in Section 4 we present numerical results and compar-
isons, illustrating the motivations for the new models.
We end the paper with a short concluding section.

For related results on oscillatory patterns in non-
linear problems, we refer to [30]. For related image
restoration models based on the total variation mini-
mization model in a wavelet framework, we refer the
reader to [25] and [10, 26]. There is a very large litera-
ture on texture modeling and analysis in the computer
vision and image analysis community, so it is impossi-
ble to mention all related references. We only mention
in addition [8, 11, 20–24, 32, 36–38, 42, 43], among
many other work.

2. Description of the Proposed New Models

For every p ≥ 1, we consider the spaces of generalized
functions

G p(�) = {v = div�g, �g = (g1, g2), g1, g2 ∈ L p(�)},
(4)

induced by the norm

‖v‖G p(�) = inf
v=div�g, g1,g2∈L p(�)

∥∥√
g2

1 + g2
2

∥∥
p
.

For every p ≥ 1, the space G p(�) can be identified
with the space W −1,p(�), the dual of the Sobolev space
W 1,p′

0 (�), with 1
p + 1

p′ = 1. In fact, the norm ‖v‖G p(�)

is a dual norm to the Sobolev norm ‖∇u‖p′ .
Then, we propose the following minimization

problem:

inf
u∈BV(�),�g∈L p(�)2

G p(u, �g)

= |u|BV(�) + λ‖ f − (u + div�g)‖2
L2(�)

+ µ
∥∥√

g2
1 + g2

2

∥∥
L p(�), (5)

or

inf
u∈BV(�),g1,g2∈L p(�)

G p(u, g1, g2)

=
∫

�

|∇u| + λ

∫
�

| f − (u + ∂x g1 + ∂y g2)|2 dx dy

+ µ

[ ∫
�

(√
g2

1 + g2
2

)p
dx dy

] 1
p

, (6)

where λ, µ > 0 are tuning parameters, and p ≥ 1.
The first term insures that u ∈ BV(�), the second

term insures that f −u ≈ div�g, which together with the
third term, insures that v = f − u ≈ div�g ∈ G p(�).
Clearly, if λ → ∞ and p → ∞, this model is formally
an approximation of the model originally proposed by
Meyer [27]. Indeed, if λ → ∞ and p → ∞, then in
the limit f − u = div�g almost everywhere for those �g
with smallest L∞(�) norm. Therefore in the limit, the
middle term in (5) will disappear, and the third term
becomes ‖ f − u‖∗.

Formally minimizing the above energy with re-
spect to u, g1, g2, yields the following Euler-Lagrange
equations:

u = f − ∂x g1 − ∂y g2 + 1

2λ
div

( ∇u

|∇u|
)

, (7)

µ
(∥∥√

g2
1 + g2

2

∥∥
p

)1−p(√
g2

1 + g2
2

)p−2
g1

= 2λ

[
∂

∂x
(u − f ) + ∂2

xx g1 + ∂2
xy g2

]
, (8)

µ
(∥∥√

g2
1 + g2

2

∥∥
p

)1−p(√
g2

1 + g2
2

)p−2
g2

= 2λ

[
∂

∂y
(u − f ) + ∂2

xy g1 + ∂2
yy g2

]
. (9)

If the exterior normal to the boundary ∂� is denoted
by nx , ny , then the associated boundary conditions for
u, g1 and g2 are:

∇u

|∇u| · (nx , ny) = 0,

( f − u − ∂x g1 − ∂y g2)nx = 0,

( f − u − ∂x g1 − ∂y g2)ny = 0.

For practical purposes and computational speed, it
is convenient to use in (5) and (6) the equivalent norms

‖
√

g2
1 + g2

2‖p
p, instead of ‖

√
g2

1 + g2
2‖p. Then, (5) and
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(6) can be substituted by

inf
u∈BV(�),�g∈L p(�)2

G ′
p(u, �g)

= |u|BV(�) + λ‖ f − (u + div�g)‖2
L2(�)

+ µ
∥∥√

g2
1 + g2

2

∥∥p

L p(�), (10)

or

inf
u∈BV(�),g1,g2∈L p(�)

G ′
p(u, g1, g2)

=
∫

�

|∇u| + λ

∫
�

| f − (u + ∂x g1 + ∂y g2)|2 dx dy

+ µ

∫
�

(√
g2

1 + g2
2

)p
dx dy. (11)

By these slight modifications, the obtained Euler-
Lagrange equations contain only local terms, therefore
using shorter computational time. These are:

u = f − ∂x g1 − ∂y g2 + 1

2λ
div

( ∇u

|∇u|
)

, (12)

µp
(√

g2
1 + g2

2

)p−2
g1

= 2λ

[
∂

∂x
(u − f ) + ∂2

xx g1 + ∂2
xy g2

]
, (13)

µp
(√

g2
1 + g2

2

)p−2
g2

= 2λ

[
∂

∂y
(u − f ) + ∂2

xy g1 + ∂2
yy g2

]
. (14)

In our numerical calculations, we have tested the
proposed new models for different values of p. For
1 ≤ p ≤ 20, the results are similar. For p  20, such as
p = 50, 100, . . . , then only textured details of smaller
scale appear in the v component. This shows that the
parameter p ≥ 1 from W −1,p(�) is related with the
size of a “cell” in a periodic pattern v ∈ W −1,p(�).
This remark was pointed out to the first author also by
Kohn.

Remark. We would like to mention that in the above
models and energies, the case p = 2 corresponds to
v ∈ H−1(�), the dual of the space H 1

0 (�). The corre-
sponding particular case p = 2 in (10) is therefore the
following minimization problem:

inf
u∈BV(�),v∈H−1(�)

G ′
2(u, v)

= |u|BV(�) + λ‖ f − (u + v)‖2
L2(�) + µ|v|2H−1(�).

(15)

In this case p = 2, it can be shown that (see for instance
[18]), for v ∈ H−1(�), we have

|v|2H−1(�) =
∫

�

(
g2

1 + g2
2

)
dx dy = inf

h1,h2∈L2(�),v=div�h

×
∫

�

(
h2

1 + h2
2

)
dx dy =

∫
�

|∇ P|2 dx dy

for a unique P ∈ H 1
0 (�), with �g = ∇ P , and therefore

v = div�g = �P , or v = �−1 P .
This specific structure for p = 2, using the inverse

Laplacian, has been exploited further by Osher, to-
gether with Solé and Vese, in a different fashion, in
[31]. This is introduced next, as well as two other recent
models for image decomposition, one of them inspired
from (15), but in a wavelet framework [17], and the
other one [7] inspired from [40] and [27].

3. Other New Related Models
for Image Decomposition

Following the remarks by Meyer from [27] and the im-
age decomposition model introduced by the authors in
[40], other related models have been recently proposed
in theory and practice, as follows.

The model by Osher et al. [31], as a continuation of
the model in [40], can be seen as a modification of the
particular case p = 2 from (15). This gives an exact
decomposition f = u + v, corresponding to λ = ∞ in
(15). This is as follows [31]:

inf
u∈BV(�)

F(u) = |u|BV(�) + λ‖∇�−1( f − u)‖2
L2(�).

(16)

In this case, f −u = �−1 P , with P ∈ H 1(�), ∂ P
∂n |∂� =

0,
∫
�

P(x, y) dx dy = 0. It is shown in [31] that the
energy (16) can be minimized using a new fourth order
nonlinear partial differential equation

u = f − �
[

div

( ∇u

|∇u|
)]

, (17)

with corresponding boundary conditions. The quantity
div( ∇u

|∇u| ) denotes the curvature of level lines of u. This
can be seen also as a smoothing equation, with stronger
regularization effect than by the original Rudin-Osher-
Fatemi model (2). As shown in [31], this model gives
very good results for image denoising and decompo-
sition into cartoon and texture. However, the model
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in [31] has a slow convergence rate, due to a too se-
vere CFL condition imposed by the fourth order non-
linear PDE (efficient numerical methods need to be
constructed for such an equation).

By the models from the present paper, the results
are obtained very fast, in about 100 iterations. Another
important advantage of the models proposed in this
present paper and in [40] is that, explicitly computing
the functions g1 and g2, allows to perform texture seg-
mentation and discrimination. Also, the models (5) and
(10) are more general, allowing for the choice of the
dual norm W −1,p(�), and do not consider only the case
p = 2 (the parameter p plays the role as a scale for

Figure 1. A synthetic original image and its noisy version.

Figure 2. Minimizer u and residual f − u obtained using the ROF
model.

Figure 3. Minimizer u and residual f − u obtained using the
proposed new model.

the size of the cell in the periodic patterns kept in v).
On the other hand, as already mentioned, an advantage
of the model in [31], is that it gives an exact decompo-
sition f = u +v. Comparisons of these models will be
shown in the section devoted to numerical results. Fi-
nally, it is interesting to note that the model (16) gives
the component v = f −u as the Laplacian of the curva-
ture of level lines of u, at least if |∇u| �= 0. This shows
that the textured component v from (16) depends only
on the level lines of the cartoon component u. Here,
in the models from this present paper, the component
v = div�g is much more independent of u.

Another model for image decomposition has been
recently introduced, following [27] and [40], with a
complete mathematical and theoretical formulation, by

Figure 4. A real original image and its noisy version.

Figure 5. Minimizer u and residual f − u obtained using the ROF
model.

Figure 6. Minimizer u and residual f − u obtained using the
proposed new model.
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Figure 7. An initial ultrasound image f .

Aujol et al. [7]. The model is [7]:

inf
(u,v)∈BV(�)×Gµ(�)

( ∫
�

|∇u| + 1

2λ
‖ f − (u + v)‖2

L2(�)

)
,

where Gµ(�) = {v ∈ G(�) : ‖v‖∗ ≤ µ}, where the
space G(�) and ‖v‖∗ have been defined in the Intro-
duction. The proposed model [7] is close to the one
proposed by Meyer in [27], and it is solved using an
interesting dual formulation of the total variation min-
imization, introduced by Chambolle in [13].

Finally, another interesting model, inspired from
[40] and [31], has been recently introduced by
Daubechies and Teschke [17]. The authors have re-
formulated our model corresponding to p = 2 in an

Figure 8. Results obtained with the new model: u left, v = f − u right, from Fig. 7.

Figure 9. An initial textured image f .

interesting wavelet framework. This is as follows [17]:

inf
u,v

F(u, v) = 2α|u|B1
1 (L1(�))

+ ‖ f − (u + v)‖2
L2(�) + λ‖v‖2

H−1(�),

where the space BV(�) from (15) is replaced by the
smaller Besov space B1

1 (L1(�)), since this last one can
be characterized in terms of wavelets coefficients. We
have B1

1 (L1(�)) ≈ W 1,1(�) ⊂ BV(�). Very good re-
sults have been obtained using this model and more
refined versions in [17]. The use of wavelets seams to
be an advantage in representing well the textured details
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in the v component. However, the edges are not so well
preserved in the u component by the space B1

1 (L1(�))
in [17], an edge enhancement technique is also applied.

We would also like to mention that an applica-
tion of the model in [40] has been introduced in [9],
for structure and texture image inpainting, combined
with two other existing techniques for image inpaint-
ing. Finally, following [40], very good numerical re-
sults of image decomposition into cartoon and texture
have been recently obtained by Starck et al. [39] us-
ing an approach that combines the Basis Pursuit De-
noising algorithm and the total variation, in a wavelet
framework.

4. Numerical Results and Comparisons

In this section, we present numerical results of image
denoising, image decomposition and texture segmen-
tation, obtained with the proposed new models. We
also show comparisons with the standard TV model
of Rudin-Osher-Fatemi [35] and with the new fourth
order model from [31].

In our experiments, we have used the values p = 1
and p = 2 in the new models. The parameter µ in
the new models is kept fixed but very small, to allow
highly oscillatory patterns in v = div�g. If µ increases,
than the model becomes very similar with the stan-
dard ROF model, because in that case ‖|�g|‖L p(�) ≈ 0.
The parameter λ in the new models is chosen so that
the residual f − (u + div�g) is almost identically equal
to zero (in practice, this parameter ranges from 0.1 to
1). Slightly different results can be obtained for dif-
ferent parameters, however the dependence with re-
spect to parameters is not too sensitive, especially in

Figure 10. Image decomposition: the minimizer u obtained with the proposed new model (left) and the residual v = f − u (right).

the range of parameters obtained in the experimental
results.

We would also like to point out that, if the image
f contains both random noise and texture, then the
component v = div�g will capture both the texture and
the noise. The same situation happens in other image
decomposition models into cartoon plus texture, for
instance in the model [31].

In Fig. 1 we show an original synthetic image of a
square, and a noisy version. In Fig. 2, we show the
minimizer u and the residual f − u obtained with the
standard TV model (the RMSE between u and the orig-
inal is 0.01194, and the SNR = 27.8329). The image
is very well denoised. However, if we look carefully
at the residual f − u, we can still see the shape of the
square. Next, in Fig. 3, we perform the same test with
the proposed new model for p = 1. The image is also
very well denoised, and the RMSE between u and the
original in this case is smaller, 0.00909, and the SNR =
30.4735; moreover, we do not see any “geometry” from
the square object in the residual f − u. So the new
model separates better the cartoon component from the
noisy oscillatory component. For each experiment, the
parameters are estimated so that the best RMSE is ob-
tained. We use here for the RMSE and the SNR the
expressions

RMSE =
√∑

i=1,M, j=1,N (ui, j − uorig,i, j )2

M N
,

SNR = 10 log 10

×
∑

i, j

[
ui, j −

∑
i, j ui, j

M N

]2

∑
i, j

[
ui, j − uorg,i, j −

∑
i, j (ui, j −uorig,i, j )

M N

]2
.
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Figure 11. Comparisons of the new image decomposition models: results obtained with the model [31] (left), and with the model proposed
here (right).

Figure 12. Image decomposition applied to a fabric textured image.
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In Figs. 4–6 we show a similar experiment, on a real
image representing an office. In Fig. 4 we show the
original image and a noisy version. In Fig. 5 we show
the minimizer u and the residual f − u obtained with
the standard TV model (the RMSE between u and the
original is 0.05809, and the SNR = 17.6823). We note

Figure 13. The component |g1| and detected contour for the fabric image.

Figure 14. Image decomposition of a wood textured image.

that geometry and contours of the large objects are still
kept in the residual f − u. In Fig. 6, we perform the
same test with the proposed new model. The RMSE
between u and the original in this case is 0.05771, and
the SNR = 17.7735. If we look at the residual f −u, we
do not see so much “geometry” from the large features.
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Moreover, some details of the first chair on the left of
the image, which is partially occluded by the desk, are
better preserved with the new model. These details are
lost in the u component from the standard TV model.
So again the new model separates better the cartoon
component from the noisy oscillatory components. For
each experiment, the parameters are estimated so that
the best RMSE is obtained.

We continue the numerical results with an applica-
tion of the proposed new model to an ultrasound im-
age. In Fig. 7, we show an initial ultrasound image f .
In Fig. 8, we show the minimizer u obtained with the
proposed new model, and the residual v = f − u.

We continue the numerical results with an exam-
ple of image decomposition into cartoon plus texture,
obtained by the proposed new model. In Fig. 9 we show
an initial textured image f . The minimizer u of the pro-
posed new energy is shown in Fig. 10 left, while the
residual f − u is shown in Fig. 10 right. We therefore
illustrate again how the proposed new model separates
and decomposes a given image f into a cartoon part u

Figure 15. Top: components |g1| and |g2| from the wood image. Bottom: detected contour.

and an oscillatory part v = f − u of zero mean, such
as texture or noise. Again, in this example, we choose
λ in the new model so that f − (u +div�g) ≈ 0, and the
parameter µ in the new model is very small, to allow
as much texture as possible in the v component.

We show in Fig. 11 a comparison between the pro-
posed model from this paper with the fourth order
model introduced in [31]. We refer the reader to [31]
for more numerical results of image decomposition and
image restoration using the fourth order model from
[31].

Finally, we end the paper illustrating an important
advantage of the proposed models: computing explic-
itly the functions g1 and g2, from v = div�g, we can
perform texture discrimination and texture segmenta-
tion on some textured images, with two different tex-
tures. We show in Figs. 12–15 numerical results already
reported in [40]. For two textured images f represent-
ing fabric textures and wood textures, we compute the
decomposition u + v by the proposed new models.
Then, we apply the active contour based segmentation
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algorithm from [15, 16], to one of the components |g1|
or |g2|, to detect the boundary between the textures
(at least one of these two components shows different
characteristics of the textures). In the wood example,
the difference is mainly in the direction of the two tex-
tures, while in the fabric texture, there is no preferred
direction. However, the textures are well segmented,
even in the more difficult case of the fabric texture.

5. Concluding Remarks

In this paper, we have presented a new, general and
efficient class of models for image denoising and
image restoration, which combine the total variation
minimization model of Rudin-Osher-Fatemi for im-
age restoration, with dual Sobolev spaces appropriate
for oscillatory functions, following ideas introduced
by Meyer. Numerical results for image denoising, im-
age decomposition and texture segmentation have been
presented. This paper is also an extension of the models
introduced by the authors in [40].
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