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ABSTRACT
This paper is devoted to the registration of gene expression

data to a neuroanatomical mouse atlas in two dimensions. We

use a nonlinear elasticity regularization allowing large defor-

mations, guided by an intensity-based data fidelity term and

by landmarks. We overcome the difficulty of minimizing the

nonlinear elasticity functional by introducing an additional

variable v � ∇u, where u is the displacement. Thus, in

the obtained Euler-Lagrange equation, the nonlinearity is no

longer in the derivatives of the unknown, u. Experimental re-

sults show gene expression data mapped to a mouse atlas for

a standard L2 data fidelity term in the presence of landmarks.

We also present comparisons with biharmonic regularization.

An advantage of the proposed nonlinear elasticity model is

that usually no regridding is necessary, while keeping the data

term, regularization term and landmark term in a unified min-

imization approach.

Index Terms— mouse atlas, gene expression, registra-

tion, landmarks, nonlinear elasticity

1. INTRODUCTION AND RELATED PRIOR WORK

An important task in medical imaging, for clinical studies of

disease and for atlas-based identification and segmentation of

anatomical structures, is the comparison between a reference

image R (e.g. a labeled anatomical atlas) and a template im-

age T (e.g., an MRI scan). This is commonly done using

image registration. Given a reference R and a template T ,

both defined on the same image domain Ω, we have to find a

smooth invertible deformation Φ : Ω → Ω so that the tem-

plate is transformed into an image T ◦ Φ “similar” to the ref-

erence.

An overview of mathematical methods for image regis-

tration is presented in [1] (including landmarks, L2 similar-

ity measure, splines, linear diffusion, linear elasticity, bihar-

monic and fluid regularizations). We also refer to related rel-

evant work [2] for a well-known large deformation fluid reg-
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istration method (not in variational form), and to a variational

registration for large deformations (LDDMM) [3], [4].

A much related work, using non-linear elasticity regular-

ization is [5], but by a different implementation based on the

finite element method. We also refer to [6] for using non-

linear elasticity principles, but different from our proposed

approach. Elasticity theory is also being used in [7], again

implemented using the finite element method.

Different variational methods for regularization of the

deformation (by linear elasticity or by diffusion tensor and

geometry-driven regularization) using mutual information

and other information-theoretic approaches, are presented in

[8], in a theoretical framework.

We also wish to refer to related work [9], where a consis-

tent landmark and intensity-based registration method is pre-

sented using thin-plate spline regularization (or biharmonic

regularization). Another related reference where data, reg-

ularization and landmarks are combined, as in the present

work, is [10]. We would like to mention the more recent work

on a log-unbiased fluid registration method [11], [12].

We propose to use a nonlinear elasticity model for regu-

larization of the displacement, since this allows smooth larger

deformations without need of regridding most of the times.

As we have mentioned, in prior work based on nonlinear elas-

ticity principles, the finite element method has been used.

However, we propose a different implementation by intro-

ducing an auxiliary variable for the Jacobian matrix of the

displacement, that removes the nonlinearity in the derivatives

(inspired from more theoretical work [13] and work [14] for

a joint segmentation and registration model). We apply this

idea to mapping gene expression data to mouse atlas.

Genetic mutations and knock-out strains of mice provide

critical models for a variety of human diseases. Mouse brain

atlases facilitate the integration of anatomic, genetic, and

physiologic observations from multiple subjects in a common

space. For example, the C57BL/6J mouse digital brain atlas

[15], [16] is a comprehensive framework for storing and ac-

cessing information, and serves as a canonical representation

of the mouse brain. Brain data alignment to an atlas is an

important pre-processing step that ensures proper registration
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of imaging brain data to the atlas, usability of the atlas as a

common and unbiased framework and facilitates statistical

analysis and comparison of data from multiple subjects.

2. DESCRIPTION OF THE MODELS

We aim to compute a smooth deformation Φ(x) = x + u(x),
by estimating the displacement vector field u from an energy

minimization based on three terms: intensity similarity mea-

sure, regularization, and landmark-based distance function.

Thus we solve the minimization problem

inf
u

{
J(u) = Fid(u) + αReg(u) + γDLM (u)

}
,

by gradient descent in u = (u1, u2) in two dimensions:

∂ul

∂t
= −∂Fid

∂ul
(u) − α

∂Reg

∂ul
(u) − γ

∂DLM

∂ul
(u), l = 1, 2.

2.1. Similarity measure

We chose the standard L2 distance as similarity measure be-

tween T (Φ) and R, and this is complemented by the use of

additional landmarks as geometrical constraints. We will see

that, even if T (gene data) and R (mouse atlas) are of different

modalities, satisfactory results are obtained without requiring

more sophisticated distances, such as the mutual information.

Therefore our fidelity term (similarity measure) is simply:

Fid(u) =
1
2

∫
Ω

|T (x + u(x)) − R(x)|2dx, with

∂Fid

∂ul
(u) = (T (x + u(x)) − R(x))

∂T

∂xl
(x + u(x)).

2.2. Landmark distance function

The landmark distance DLM can be defined as a quadratic

penalty term as follows [1]:

DLM (u) =
1
2

m∑
k=1

‖xR,k − Φ(xT,k)‖2 =
1
2

m∑
k=1

[(
xR,k

1

−(xT,k
1 + u1(xT,k))

)2

+
(
xR,k

2 − (xT,k
2 + u2(xT,k))

)2]
,

where ‖ · ‖ denotes the Euclidean norm, xR,k and xT,k are

the landmarks chosen from the reference image and template

image respectively, and Φ(xT,k) = xT,k + u(xT,k). The ge-

ometrical constraint is enforced by making γ > 0 progres-

sively larger with time. For the gradient descent, we obtain

∂DLM

∂u
(u)(x) = −

{
0 if x �= xT,k

xR,k − xT,k − u(xT,k) , k = 1, .., m.

2.3. Regularization

Our main choice of the regularization term is inspired from

nonlinear elasticity, since, by comparison with linear diffu-

sion, linear elasticity or biharmonic regularizations, it may

allow larger deformations without regridding. We propose a

particular implementation that removes the non-linearity in

the derivatives, inspired by [13], [14]. In our experimental re-

sults, we will compare the non-linear elasticity regularization

with the more standard Ḣ2 regularization or biharmonic reg-

ularization (called curvature regularization in J. Modersitzki

[1]).

2.3.1. Nonlinear Elasticity Regularization

Assuming that the material undergoes large deformations,

the strain energy is given by (corresponding to Saint Venant-

Kirchhoff hyperelastic materials) [17] Reg(u) =
∫
Ω

W (ε)dx,

with tensor ε(u) = 1
2 (∇ut+∇u+∇ut∇u) and stored energy

W (ε) =
λ

2
(trace(ε))2 + μtrace(ε2) =

λ

8

(
2(divu)

+
2∑

k=1

|∇uk|2
)2

+
μ

4

( 2∑
i=1

[2
∂ui

∂xi
+

2∑
k=1

(
∂uk

∂xi
)2]2

+
2∑

i,j=1,i �=j

[
∂uj

∂xi
+

∂ui

∂xj
+

2∑
k=1

∂uk

∂xi

∂uk

∂xj
]2

)
.

Here λ and μ are the Lamé coefficients of the material. An

admissible deformation field Φ : Ω → Ω, Φ(x) = x + u(x),
should satisfy det∇Φ > 0 in Ω, Φ(x) = x on ∂Ω, and Φ
is one-to-one and onto on Ω. If the nonlinear term above

∇ut∇u were dropped, then this would correspond to the lin-

ear elasticity assumption, appropriate for small deformations.

It is cumbersome to directly compute and discretize

the associated Euler-Lagrange equation in u. To avoid

this difficulty, we introduce in two dimensions the variable

v =
(

v11 v12

v21 v22

)
, which approximates ∇u. For β large

enough, Reg(u) can be well approximated by

Regβ(u, v) =
∫

Ω

[
W

(1
2
(vt + v + vtv)

)
+ β|v −∇u|2

]
dx

=
∫

Ω

(λ

8
[2(v11 + v22) + (v2

11 + v2
12 + v2

21 + v2
22)]

2

+
μ

4
[(2v11 + v2

11 + v2
21)

2 + (2v22 + v2
12 + v2

22)
2

+2(v12 + v21 + v11v12 + v21v22)2]
)
dx

+β

∫
Ω

[∣∣∣v11 − ∂u1

∂x1

∣∣∣2 +
∣∣∣v12 − ∂u1

∂x2

∣∣∣2

+
∣∣∣v21 − ∂u2

∂x1

∣∣∣2 +
∣∣∣v22 − ∂u2

∂x2

∣∣∣2]dx.
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The (linear) Euler-Lagrange equation in ul, l = 1, 2 is

∂Regβ(u, v)
∂ul

= −2β(�ul − ∂vl1

∂x1
− ∂vl2

∂x2
).

The Euler-Lagrange equation in v by gradient descent is

∂v11

∂t
= 2αβ(

∂u1

∂x1
− v11) − αλI(1 + v11)

− αμ(2v11 + v2
11 + v2

21)(1 + v11) − αμIIv12,

∂v12

∂t
= 2αβ(

∂u1

∂x2
− v12) − αλIv12

− αμ(2v22 + v2
12 + v2

22)v12 − αμII(1 + v11),
∂v21

∂t
= 2αβ(

∂u2

∂x1
− v21) − αλIv21

− αμ(2v11 + v2
11 + v2

21)v21 − αμII(1 + v22),
∂v22

∂t
= 2αβ(

∂u2

∂x2
− v22) − αλI(1 + v22)

− αμ(2v22 + v2
12 + v2

22)(1 + v22) − αμIIv21,

where I = v11 + v22 + 1
2v2

11 + 1
2v2

21 + 1
2v2

12 + 1
2v2

22, and

II = v12 + v21 + v11v12 + v21v22.

2.3.2. Biharmonic Regularization

The Ḣ2 (biharmonic) regularization is

Reg(u) = 1
2

∑2
l=1

∫
Ω
(�ul)2dx, with ∂Reg

∂u (u) = �2u.

3. EXPERIMENTAL RESULTS

We show experimental results obtained by the two methods

presented in the previous section for mapping one 2D slice of

gene expression data (template T ) to a 2D slice of the mouse

atlas (reference R), in the presence of landmarks. The data

is provided by the Center for Computational Biology, UCLA.

The methods have been independently tested on 8 pairs, all

of size 200x200 pixels, with the mouse brain and the gene

expression located in the center of the image, over a black

background (thus the non-brain regions have been removed,

to produce better matching). The number of iterations for

both methods depends on how small we wish the landmark

distance and the similarity measure to be. The landmarks

are marked by an experienced neuroanatomist based on the

anatomical structures present in the images. This is based

on prior knowledge in neuroanatomy. A position probability

model might be derived, function of local geometric features.

However, in real cases, methods for preparing gene expres-

sion images and results are very different. We do not know

what would be the appropriate approach to derive a proba-

bility model that would reflect such diversity. The mouse

atlas acquired from the LONI database was pre-segmented.

The gene expression data was segmented manually to facili-

tate data processing in other applications. Some studies have

developed algorithms for automatically segmenting the brain

area of gene expression data.

Fig. 1 shows an example of such a data pair. We show the

deformation grid with positions of landmarks superimposed

(Fig. 2), and a color map of the Jacobian values given by

det(∇Φ) in Fig. 3, for both biharmonic and nonlinear elastic-

ity regularization. No regridding was necessary, and the Jaco-

bian values remain strictly positive. We notice that the nonlin-

ear elasticity regularization produces better landmark match-

ing; also, the more deformed regions have undergone expan-

sion, while using the biharmonic regularization, the more de-

formed regions have undergone contraction. Similar results

have been obtained for other mouse gene-atlas pairs. More

tests have to be done.

Fig. 1. Mouse atlas (reference R, left) and gene expression

(template T , right) with specified landmarks.

4. CONCLUSION AND FUTURE WORK

We presented variational registration models for obtain-

ing smooth deformations between two dimensional slices

of mouse atlas and gene expression data. We proposed a

nonlinear elastic regularization with an implementation that

removes the nonlinearity in the derivatives. Experimental

results were shown that required relatively large deforma-

tions and enforced landmark constraints, but no regridding

was necessary. A better parameter selection and extension to

three dimensions will be made.
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