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Active Contours Without Edges

Tony F. ChanMember, IEEEand Luminita A. Vese

Abstract—in this paper, we propose a new model for active con- the image (the external energy). Observe that, by minimizing
tours to detect objects in a given image, based on techniques ofthe energy (1), we are trying to locate the curve at the points

curve evolution, Mumford—Shah fun_ctlonal for segmentation and of maxima|Vuo|, acting as an edge-detector, while keeping a
level sets. Our model can detect objects whose boundaries are not

necessarily defined by gradient. We minimize an energy which can smoothness in the curve (object bounQary). »

be seen as a particular case of the minimal partition problem. In A general edge-detector can be defined by a positive and de-
the level set formulation, the problem becomes a “mean-curvature creasing functiory, depending on the gradient of the imagg
flow™-like evolving the active contour, which will stop on the de- gych that

sired boundary. However, the stopping term does not depend on

the gradient of the image, as in the classical active contour models, lim g(z) = 0.

butis instead related to a particular segmentation of the image. We z—00

will give a numerical algorithm using finite differences. Finally, we For instance

will present various experimental results and in particular some
examples for which the classical snakes methods based on the gra- 1

dient are not applicable. Also, the initial curve can be anywhere in 9(|Vuo(z, y)|) = 1+ [VGy(z,y) * uo(z, y) P’ pzl
the image, and interior contours are automatically detected. aATe R

Index Terms—Active contours, curvature, energy minimization, Where Go * "o, a smoother version O%' is the convo-
finite differences, level sets, partial differential equations, segmen- lution of 2th82 imageu, with the GaussianG,(z,y) =
tation. o~ 2~z v /4 The function g(|Vu|) is positive in
homogeneous regions, and zero at the edges.

In problems of curve evolution, the level set method and in
particular the motion by mean curvature of Osher and Sethian

HE BASIC idea in active contour models or snakes is fd9] have been used extensively, because it allows for cusps,

evolve a curve, subject to constraints from a given imag®@rners, and automatic topological changes. Moreover, the dis-
ug, in order to detect objects in thatimage. For instance, startiogetization of the problem is made on a fixed rectangular grid.
with a curve around the object to be detected, the curve movise curveC is represented implicitly via a Lipschitz functign
toward its interior normal and has to stop on the boundary of thg C = {(z, )|#(z, v) = 0}, and the evolution of the curve is
object. given by the zero-level curve at timef the functionp(t, =, ¥).

Let 2 be a bounded open subsefts, with 92 its boundary. Evolving the curve in normal direction with speeff amounts
Letup: © — R be a given image, and(s): [0, 1] — R*be a to solve the differential equation [19]
parameterized curve. 96

In the classical snakes and active contour models (see [9], [3], — = |V@|F, 0, x, y) = ¢o(z, y)

[13], [4]), an edge-detector is used, depending on the gradient ot
of the imageuy, to stop the evolving curve on the boundary oWhere the sef(z, y)|$o(x, y) = 0} defines the initial contour.

. INTRODUCTION

the desired object. We briefly recall these models next. A particular case is the motion by mean curvature, whes
The snake model [9] idnf /1 (C), where div(Vo(x, y)/|Vé(x, v)|) is the curvature of the level-curve of
¢ passing througliz, %). The equation becomes
1 1
J(C) :a/ |C’(s)|2ds+/3/ 1C”(s)|ds a6 a7 ,
= — R
0 L 0 at |V(f)|d|V |V(/)| ’ te (Ov OO), T €
A [ IVualCE) s ® 0. 2. 9) = dola. ). € R
0

A geometric active contour model based on the mean curva-

Here,«, 3 and A are positive parameters. The_ first two termg, e motion is given by the following evolution equation [3]:
control the smoothness of the contour (the internal energy),

while the third term attracts the contour toward the object in 99 (Vo
= = 9V )|[Vel [ div | =] +v
ot V9] )
. | | in (0, o) x R @
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Its zero level curve moves in the normal direction with speatifferent types of contours, we refer the reader to [8]). In addi-
9(|Vuol) (curv(¢)(x, y)+up) and therefore stops on the desiredion, our model has a level set formulation, interior contours are
boundary, wherg vanishes. The constantis a correction term automatically detected, and the initial curve can be anywhere in
chosen so that the quantitdiv(Ve(x, v)/|Vé(x, y)|) + v) the image.
remains always positive. This constant may be interpreted as dhe outline of the paper is as follows. In the next section we
force pushing the curve toward the object, when the curvaturgroduce our model as an energy minimization and discuss the
becomes null or negative. Alse,> 0 is a constraint on the arearelationship with the Mumford—Shah functional for segmenta-
inside the curve, increasing the propagation speed. tion. Also, we formulate the model in terms of level set functions
Two other active contour models based on level sets weaxad compute the associated Euler—Lagrange equations. In Sec-
proposed in [13], again using the image gradient to stop thien Ill we present an iterative algorithm for solving the problem
curve. The first one is and its discretization. In Section IV we validate our model by
various numerical results on synthetic and real images, showing
a¢ the advantages of our model described before, and we end the
o =1Vl v+ - ing sect
ot < (M, — M) paper by a brief concluding section.
. . 9 Other related works are [29], [10], [26], and [24] on active
0, 2, ) = do(z, y) IN [0, 00) x R contours and segmentation, [28] and [11] on shape reconstruc-
wherew is a constant, and/; and M, are the maximum and tion from unorganized points, and finally the recent works [20]
minimum values of the magnitude of the image gradj&ig,, « and [21], where a probability based geodesic active region
uo|. Again, the speed of the evolving curve becomes zero on tm;)de_l compmed with classical gradient based active contour
points with highest gradients, and therefore the curve stops §fhniques is proposed.
the desired boundary, defined by strong gradients. The second
model [13] is similar to the geometric model [3], with= 1. II. DESCRIPTION OF THEMODEL
Other related works are [14] and [15].
The geodesic model [4] is

124

|VGU * U,0| — MQ)) 5

Let us define the evolving curvg in €2, as the boundary of an
open subset of Q2 (i.e.w C §2, andC = dw). In what follows,
) inside(C') denotes the regiow, and outside(C) denotes the
. _ y region§} \ @.
Hclf 1a(C) =2 /0 ()] - 9(IVuo(Cs)]) . ) Our méthod is the minimization of an energy based-segmen-
tation. Let us first explain the basic idea of the model in a simple
This is a problem of geodesic computation in a Riemannigdse. Assume that the imaggis formed by two regions of ap-
space, according to a metric induced by the imageSolving  proximatively piecewise-constant intensities, of distinct values
the minimization problem (3) consists in finding the path ofi andug. Assume further that the object to be detected is repre-
minimal new length in that metric. A minimize& will be ob-  sented by the region with the valug. Let denote its boundary
tained wheng(|Vuo(C(s)|) vanishes, i.e., when the cur® by ;. Then we haver, ~ v} inside the object [oinside(Cp)],
is on the boundary of the object. The geodesic active CONtOYd 14y ~ g outside the object [ooutside(Cp)]. Now let us

model (3) from [4] also has a level set formulation consider the following “fitting” term:
7] . v
20 — 196l (v (17w o) +vo(1uaD ). BO+FO) = [ ol ) —er dody
in [0, co[xR2 “)

+/ fuo(z, ) — eaf? de dy
d)(ov x, y) = ¢0(-T7 y) in |R2- outside(C)

Because all these classical snakes and active contour modéI§reC is any other variable curve, and the constantsc,,
rely on the edge-functiog, depending on the image gradienfléPending orC’, are the averages e, inside ¢’ and respec-
V|, to stop the curve evolution, these models can detect ofiyely outsideC'. In this simple case, it is obvious thab, the
objects with edges defined by gradient. In practice, the digoundary of the object, is the minimizer of the fitting term
crete gradients are bounded and then the stopping fungtion
is never zero on the edges, and the curve may pass through B £1(C) + F2(C)} = 0~ F1(Co) + F2(Co)-
the boundary, especially for the models in [3], [13]-[15]. If the
imageuy is very noisy, then the isotropic smoothing Gaussiahhis can be seen easily. For instance, if the cutvis outside
has to be strong, which will smooth the edges too. In this pap#re object, therF1(C) > 0 and F»>(C) ~ 0. If the curveC is
we propose a different active contour model, without a stoppimggide the object, thed; (C) = 0 but F5(C) > 0. If the curve
edge-function, i.e. a model which is not based on the gradiefitis both inside and outside the object, thenC) > 0 and
of the imageu for the stopping process. The stopping term i&>(C") > 0. Finally, the fitting energy is minimized i£' = C,
based on Mumford—Shah segmentation techniques [18]. In th&s, if the curveC' is on the boundary of the object. These basic
way, we obtain a model which can detect contours both with tgmarks are illustrated in Fig. 1.
without gradient, for instance objects with very smooth bound- In our active contour model we will minimize the above fit-
aries or even with discontinuous boundaries (for a discussiontimg term and we will add some regularizing terms, like the



268 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 2, FEBRUARY 2001

Fpi) =0, FaiT) = 0 FiiCh e, Bl =0 Ou i%e
Fisting =0 Fribinge = il N, $<
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o<0
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N

Fyll] = Oy Foil 0 F (LD e FL) s Fig. 2. CurveC = {(z, y): ¢(x, y) =} propagating in normal direction.
Fitting = 0 Fiiting = 0}
whereug: ! — R is a given imagey and\ are positive param-
eters. The solution image obtained by minimizing this func-

tional is formed by smooth region8; and with sharp bound-
aries, denoted here Ly.

A reduced form of this problem is simply the restriction of
FMS to piecewise constant functionsi.e.,u = constant ¢; on
each connected compondntof @\ C. Therefore, as it was also
Fig.1. Consider all possible cases in the position of the curve. The fitting te'I.I'JﬂOIHtEd outby D. Mumford and J. Shah [18],= average (o)
is minimized only in the case when the curve is on the boundary of the obje@N €ach connected componétit The reduced case is called the
minimal partition problem.
Our active contour model with = 0 andA; = X2 = X is
a particular case of the minimal partition problem, in which we
look for the best approximation of uq, as a function taking
only two values, namely

length of the curve”, and (or) the area of the region inside
Therefore, we introduce the energy functiofdt , c», C), de-
fined by

F(cy, 2, C) = p - Length C) + v - Aredinside(C))

2
oY /mside(c) (. ) — 2 de dy - )

{ averagéuo) insideC

averagéug) outsideC
e [ uofe ) - ol dedy,

outside(C) and with one edge”, represented by the snake or the active
wherep > 0, > 0, A1, A» > Oare fixed parameters. In almostcontour.

all our numerical calculations (see further), wefix= A, = 1 This particular case of the minimal partition problem can be
andv = 0. formulated and solved using the level set method [19]. This is
Therefore, we consider the minimization problem: presented in the next section.
inf  F(ep, o, C). B. Level Set Formulation of the Model
Cl,CQ,C

Inthe level set method [19; C Q) is represented by the zero
Remark 1:In our model, the term Lengfly) could be level set of a Lipschitz functiog: @ — R, such that

re-written in a more general way ésength(C))?, withp > 1.

If we COAQS|der the case of an arbltrary d|mensm}r.1> 1(.e., C = 0w = {(x, y) € & ¢(x, y) = O},

Q c R"), thenp can have the following valueg: = 1 for o

all N,orp = N/(N — 1). For the last expression, we use inside(C) = w = {(z, y) € X ¢z, y) > 0}

the isoperimetric inequality [7], which says in some sense that | outside(C) = Q\© = {(z, y) € Q: ¢(z, y) < 0}.

(Length(C))N/(N=1) is “comparable” with Areginside(C)):

Recall thatv C €2 is open, and” = dw. We illustrate in Fig. 2

A insid <e-(L N/(N-1) ¢ . )
redinside(C)) < ¢ (Length(C)) the above assumptions and notations on the level set function

wherec is a constant depending only d¥. ¢, defining the evolving curv€’. For more details, we refer the
reader to [19].
A. Relation with the Mumford—Shah Functional For the level set formulation of our variational active contour

model, we replace the unknown variabiléy the unknown vari-
able¢, and we follow [27].
FMS(y, C) = - Length©) Using the Heaviside functioi/, and the one-dimensional
) Dirac measuréy, and defined, respectively, by
A [ Juole, ) —ute, P dedy
Q

The Mumford—Shah functional for segmentation is [18]

1, if2>0 d

+/ Vu(z, y)|? dz d HV:{ bo(2) = — H(z
Q\CI (z, y)| Yy (2) 0. itz <0, o() = H(2)
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(inthe sense of distributions), we express the terms in the eneogges, there are no constrains on the values ahdec,. Then,

F in the following way (see also [7]):

Lengthis = 0} = | [VH(¢(e. 3))|dr dy

2

Areal > 0} = /Q H(g(, ) de dy,

and

/ o, ) — ex | de dy
>0
- / oz, u) — e > H(p(x, ) dee dy,

/ |U0(37’ y) —C2|2 dz dy
?<0

- / oz, ) — 22 (1 — H((z, v)) da dy.

Then, the energ¥'(ci, ¢2, ¢) can be written as

Fley, co, ¢)
—u / 5z, )| V(e, )| da dy

o [ HO ) dedy

+ / oz, ) — en2 H(d(z, ) da dy
«Q

- / So( ¢, )V (. )| da dy,

c1 andc, are in fact given by

{ c1() = averagéuo) in {¢ 2 0}
¢2(@) = averagéuo) in { < 0}.

Remark 2: By the previous formulas, we can see that the en-
ergy can be written only function @f (¢), which is the charac-
teristic function of the seb. Let us denote it by,,. Then we
can rewrite the energy in the new forf

JT(Xw)IN/Q VX (2, y)ldwdy+u/9xw(a:, y) dz dy
+ A1 /Q (uo(z, y)—c1(xu(@, ) xu(z, y) dz dy

Y /Q (uo(, 9)
— ca(xw(@, 1)))* (1 = x(=, v)) da dy.

Therefore, we can consider the new minimization problem
inf F(xo), xo(z, y) €40, 1} L — a.e. (8)
Xew

among characteristic functions of sets with finite perimeter in
Q. Here,L — «.¢. means almost everywhere with respect to the
Lebesgue measure.

We expect, of course, to have existence of minimizers of the
energyF (e, co,C), due to several general results: our model
is a particular case of the minimal partition problem, for which
the existence has been proved in [18] (assuming:thad con-
tinuous on2), and also in [16] and [17], for more general data
ug. Also, the existence for the general Mumford—Shah segmen-

2 [ uole, ) = ol (1= H(gle, ) do dy.
& tation problem has been proved in [5]. On the other hand, it can
We note thatu as defined in (5), solution of our modelbe easily shown, by the lower-semicontinuity of the total varia-
as a particular case of the Mumford—Shah minimal partitidion [, |Vx..| dz dy and classical arguments of calculus of vari-
problem, can simply be written using the level set formulatioations, that our minimization problem (8) has minimizers (this
as can be an alternative proof of the existence). In this paper, the
~level set functiony is used only to represent the curve and it
w(z, y) = clH(p(z, y)) + c2(1 — H(P(z, v))), (%, ¥) € Q. has many numerical advantages, but the problem could also be
formulated and solved only in terms of characteristic functions.
- In order to compute the associated Euler—Lagrange equation
It Is easy t0 express ¢, the yunknown functionp, we consider slightly regularized

Keeping ¢ fixed and minimizing the energy(ci, cz, ¢)
with respect to the constants and c,,

these constants function gfby

/ wol, YH(Hz, y)) do dy
¢y = 22
/QH(d)(x, y)) dx dy

versions of the function& andé,, denoted here b¥d. andé.,
ase — 0. Let H. beanyC? (Q) regularization ofd, andé. =
H!. We will give further examples of such approximations. Let
us denote by, the associated regularized functional, defined

by

if [, H(¢(z, y)) dxdy > 0 (i.e. if the curve has a nonempty  Fi(ci, c2, ¢)
interior in 2), and
) — i [ 8.00(e )IToC )l dody

- e A He(0(, ) dedy

+ /Q luoe, ) — co” Ho((e, ) de dy

/Q wo(, ) (1 — H(d(, ) da dy
/Q (1— H(p(e. ) de dy

ca(p) =

if [(1 — H(¢(z, u)))dady > 0 (i.e. if the curve has a

2
nonempty exterior irf2). For the corresponding “degenerate” + A2 /Q [wo(z, y) — 2" (1 = He(d(2, ))) du dy.
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-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Fig. 3. Two different regularizations of the (top) heaviside function and
(bottom) delta functiord, .

Keepingc; ande; fixed, and minimizingF. with respect to
¢, we deduce the associated Euler-Lagrange equatior.for
Parameterizing the descent direction by an artificial tinxe0,

the equation im*)(t, x, U) (With </)(07 x, U) _ d)o(% U) defining Fig. 4. Detection of different objects from a noisy image, with various

shapes and with an interior contour. Left; and the contour. Right:

the initial contour) is the piecewise-constant approximation of,. Size = 100 x 100,
35 s Lo ([ Z5) v nu oyt i S OS8R = 01250
- =4 V(| —=—)—-v-— - - 60s.
a1 =00 e (75 ) = =t e
— 2 f— i
Fha(uo — ) } 0in (0, 00) x 2, In this paper, we introduce and use in our experiments the fol-
#(0, z, y) = do(z, y) in Q, lowing C>°(€?) regularization ofH
6. a
() —(é =00ond2 9)
Vel o1 1 2 2
where7i denotes the exterior normal to the boundafy, and Hao(#) = ) 1+ - arctan (E) :
¢ /01 denotes the normal derivative ¢fat the boundary.
l1l. N UMERICAL APPROXIMATION OF THEMODEL These distinct approximations and regularizations of the func-
First possible regularization &f by C2(2) functions, as pro- ions # andé, (taking é. = H) are presented in Fig. 3. As
posed in [27], is e — 0, both approximations converge 6 andéy. A differ-

ence is that; . has a small support, the intenjale, <], while
2  is different of zero everywhere. Because our energy is non-
Hy.(2) = 0if z < —¢ convex (allowing there_fqre many Io<_:a| minima), the solution
’ 1 [1 N % N 1 sin (Zﬂ i 12 < may depend on the initial curve. WitH, . andé; ., the al-
e 7 = gorithm sometimes computes a local minimizer of the energy,

lifz>e¢
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Fig.5. Detection of three blurred objects of distinct intensities. SizZ&)0 x
100, ¢o(x, y) = —/(r — 15)2 + (y — 60)% + 12, u = 0.01 - 2552, no
reinitialization, cpu= 48.67 s.

%ﬁm“l% G
i
) ]

Fig. 6. Detection of lines and curves not necessarily closed.Sigé¢ x 64,
bo(z, y) = —/(x—32.5)2 + (y—32.5)2 4+ 30, 0 = 0.02 - 2552, no
reinitialization, cpu= 2.88 s.
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Fig. 7. Grouping based on Kanizsa's “proximity rule.” Size: 64 64,
do(r,y) = —/(+—325)2+(y—325)2 + 30, u = 2 - 2552, no
reinitialization, cpu= 5.76 s.

» 'l

ﬂli

.OO

Fig. 8. Grouping based on chromatic identity. Size:%644, ¢q(x, y) =
—/(a = 32.5)2 4+ (y — 32.5)2 4+ 30.5, p = 2- 2552, no reinitialization, cpu
= 5.76 s.

around{¢(x, y) = 0} usingH; . andé; .; but usingH, . and
2., the equation acts on all level curves. In this way, in practice,
we can obtain a global minimizer, independently of the position
of the initial curve; moreover, this allows to automatically de-
tect interior contours (see Section IV). We mention that, in order
to extend the evolution to all level sets@fanother possibility

is to replacefo(¢) by |V¢| (see [27]). In our paper, we work
with §p(¢), to remain close to the initial minimization problem.
The problem of extending the evolution to all level setspof
was solved here using the approximati@n of &y, which is
different of zero everywhere.

To discretize the equation i, we use a finite differences
implicit scheme. We recall first the usual notations:Hdie the
space step)t be the time step, ang:;, y;) = (ih, jh) be the
grid points, forl <4, j < M.Let¢} ; = ¢p(nAt, z;, y;) be an
approximation ofp(t, z, y), withn > 0, ¢° = ¢o. The finite
differences are

AZ i j
AV p; ;

=i —
=i —

(/)i—l,j?
d)i,j—la

bi )
Pij-

ALy = div1y —
AN i ;= i1 —

The algorithm is as follows (we essentially adopt the method

while with H, . andé, ., the algorithm has the tendency to comfrom [23] for the discretization of the divergence operator and
pute a global minimizer. One of the reasons is that the Euler—Lthe iterative algorithm from [1]): knowing™, we first compute
grange equation fop acts only locally, on a few level curvesc; (¢™) and ca(¢™) using (6) and (7), respectively. Then, we
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Fig. 9. Object with smooth contour. Top: results using our model without edge-function. Bottom: results using the classical model (2) withtedge-func

computep”™t! by the following discretization and linearizationwhere#(t, -) is our solutions at timet. Then the news(t, )
of (9) in¢ will be 1, such that) is obtained at the steady state of (10).
The solutiom)(¢, -) of (10) will have the same zero-level set
L g as¢(t, -) and away from this setV| will converge to 1. To
“Tt” discretize the equation (10), we use the scheme proposed in [22]
and [25].
= Su(¢) LN Finalll)./, t-he principal steps of the algorithm are:
0 h? « Initialize ¢° by ¢, n = 0.
» Computec; (¢™) andca(¢™) by (6) and (7).
AN « Solve the PDE irp from (9), to obtaing™t.
* Reinitialize¢ locally to the signed distance function to the
\/(Ai ?J)Q/(hQ) T (d)ZHl - d)ZJ*l)Q/(%)Q curve (this i)tep is)(/)ptional).g
+ LN e Check whether the solution is stationary. If not= n+1
h? " and repeat.
Aid)?jl We note that the use of a time-dependent PDE¢#as not
n n - crucial. The stationary problem obtained directly from the mini-
\/(d)”lﬂ' — #1)?/(2R)2 + (A6 (h) mization problem could also be solved numerically, using a sim-
ilar finite differences scheme.

—v = Ar(uoi; — c1(9™))? + Aa(uo,ij — ca(9™))?
IV. EXPERIMENTAL RESULTS

o . . . We conclude this paper by presenting numerical results
Thls_llnearsystem is solved by an iterative method, and formo&ging our model on various synthetic and real images, with
details, werefer the reader to [1].

Wh ki ith level set d Dirac delta funci different types of contours and shapes. We show the active
et e o . S ancs Eomour evohing i h gl mage, and he assoiate
: : . ) iecewise-constant approximation iven by the averages
function to its zero-level curve, as in [25] and [27]. This prep PP o (9 y g

i ; ¢, andes). In our numerical experiments, we generally choose
vents the level set function to become too flat, or it can be se

as a rescaling and regularization. For our algorithm, the reinj parameters as followsy = Az = 1, v =0, h = 1
T . ) ) ' he step space)dt = 0.1 (the time step). We only use the
tialization is optional. On the other hand, it should not be to P spacen ( P) y

. o roximationsH, . andé, . of the Heaviside and Dirac delta
strong, because, as it was remarked by Fedkiw, it preventSf P e 2

) . . nctions € = h = 1), in order to automatically detect interior
terior contours from growing. Only for a few numerical resur[ﬁontours, and to insure the computation of a global minimizer.

we have applied the reinitialization, solving the following eVOC)nIy the length parameter, which has a scaling role, is not
lution equation [25]: the same in all experiments. If we have to detect all or as many
_ objects as possible and of any size, theshould be small.
{% = sign(¢(t))(1 — [V¢|) If we have to detect only larger objects (for example objects

(0, ) = ¢(t, - (10) formed by grouping), and to not detect smaller objects (like
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Fig. 10. Detection of a simulated minefield, with contour without gradient
Size= 100 x 100, ¢o(z, y) = —\/(z — 50.5)> + (y — 50.5)2 + 47, p =
0.2 - 2552, no reinitialization, cpu= 144.81 s.

points, due to the noise), thenhas to be larger. We will give
the exact value ofi each time, together with the initial level setrig. 11. Europe night-lights. Size= 118 x 113, ¢o(x, y) =
function ¢y, and the cpu time, in seconds, of our calculations;/(x —59.)2 + (y —57.)> 4+ 55, p = 0.05 - 2552, five iterations
performed on a 140 MHz Sun Ultra 1 with 256 MB of RAM. ©°f reinitialization, cpu= 32.74 s.
In Fig. 4, we show how our model works on a noisy synthetic
image, with various shapes and an interior contour, which is au-in the next examples (Figs. 7 and 8) we consider images with
tomatically detected, without considering a second initial curvé&ontours without gradient” or “cognitive contours” (see [8]).
Due to the level set implementation, the model allows autom&ffe also illustrate here the role of the length term as a scale
ical change of topology. parameter: ifu is small, then also smaller objects will be de-
In Fig. 5, we show that our model can detect different objectscted; if: is larger, then only larger objects are detected, or ob-
of different intensities, and with blurred boundaries. Again, thects formed by grouping. In Fig. 7, we show that our algorithm
interior contour of the torus is automatically detected. This &an detect objects defined by grouping according to Kanizsa’'s
also due to the fact that the velocity has a global dependence, gmaximity rule.” In Fig. 8 we show how the grouping is based
the curve is automatically attracted toward the objects. In thes the chromatic resemblance or identity, among objects of the
example we also show that the initial curve does not necessagfme shape.
surround the objects. We next consider an image with very smooth contours. In
In Fig. 6, we show how we can detect lines and curves (nbig. 9 top, we show results obtained using our model, while
necessarily closed) in a noisy image. The final level set functiom Fig. 9 bottom, we show the results obtained with a classical
is zero on the curves and negative outside the curves. active contour model based on the edge-funcigW«o|) [here
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Fig. 12. Spiral from an art picture. Size 234 x 191, p = 0.000003 3 - 2552, five iterations of reinitialization, cpe= 108.85 s.

the geometric model (2)], by which the curve cannot detect theln Fig. 10, we validate our model on a very different problem:
smooth boundary. to detect features in spatial point processes in the presence of
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Fig. 13. Detection of the contours of a plane from a noisy image.Si8& x 53, At = 0.01, u = 0.17- 2552, ¢g(x, y) = —\/(x — 45)2 + (y — 39)2 + 6,
one iteration of reinitialization, cpe: 2.87 s.

substantial cluster. One application is the detection of mine- [nbensity uy  Aversge cj,cp  Lurnian
fields using reconnaissance aircraft images that identify many
objects that are not mines. These problems are usually solved
using statistical methods (see [6] and [2]). By this application,
we show again how our model can be used to detect objects
or features with contours without gradient. This is not possible
using classical snakes or active contours based on the gradient.
A similar application is presented in Fig. 11, where the white
points are Europe night-lights.

We also show examples on real noisy images, with different
types of contours or shapes, illustrating all the advantages of
our model: the ability of detecting smooth boundaries, scaiy. 14. Examples of images for which the averages “inside” and “outside”
adaptivity, automatic change of topology, and robustness witie objects are the same.
respect to noise.

In Fig. 12, we consider an art picture from thes Angeles p = 1]. The initial curve is the boundary of the image. After a
Timesby Brian Forrest. Herey = 2 from Remark 1Section Il time, a curve in the middle of the image appears and expands
[we have(LengthC))? in the energy, witlp = 2 instead of until merges with the initial evolving curve.

AVETRETS ), 0y Lirlentatsan
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Fig. 15. Grouping based on shape identity. In our model, we replac&dm

Fig. 14 top left, by the curvature of the level curvesigf(Fig. 14 top right). Size

=64 x 64,10 = 0.05-2552, 9o (x, y) = —/(x — 32.5)2 + (y — 32.5)2 +
30.5, 5 iterations of reinitialization, cpe 10.20 s.

)

Fig. 16. Grouping based on orientation identity. In our model, we replaged
from Fig. 14 bottom left, by the orientation of the normal to the level curves

of ug (Fig. 14 bottom right). Sizef4 x 64, ¢ = 0.025 - 2552, v = 0.02 -
2552, ¢o(x, y) = —/(x —32.5)2 + (y — 32.5)2 + 30, five iterations of
reinitialization, cpu= 10.25 s.

Finally, in Fig. 13, the algorithm detects the contours of a [6]

plane from a real noisy image.
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smooth the initial image, even if it is very noisy and in this way,
the locations of boundaries are very well detected and preserved.
By our model, we can detect objects whose boundaries are not
necessarily defined by gradient or with very smooth boundaries,
for which the classical active contour models are not applicable.
Finally, we can automatically detect interior contours starting
with only one initial curve. The position of the initial curve can
be anywhere in the image, and it does not necessarily surround
the objects to be detected. We validated our model by various
numerical results.
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