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Abstract 

This paper deals with the matching of geometric 
objects including points, curves, surfaces, and 
subvolumes using implicit object representations in both 
linear and non-linear settings. This framework can be 
applied to feature-based non-linear image warping in 
biomedical imaging with the deformation constrained to 
be one-to-one, onto, and diffeomorphic. Moreover, a 
theoretical connection is established between the well 
known Hausdorff metric and the framework proposed in 
this paper. A general strategy for matching geometric 
objects in both 2D and 3D is discussed. The 
corresponding Euler-Lagrange equations are presented 
and gradient descent method is employed to solve the 
time dependent partial differential equations.

1. Introduction 

Object comparison is a challenging problem in 
computer vision, image processing, pattern recognition, 
statistics, artificial intelligence, and many other 
scientific fields. Shape, by far the most common 
geometric concept encountered in object comparison, 
plays an important role in both theory and application. A 
fundamental problem in shape comparison is shape 
matching, in which one shape is matched to other shapes 
by minimizing a dissimilarity measure. 

In this paper, we introduce an unifying approach for 
matching general geometric patterns such as point sets, 
curves, surfaces, and regions in both 2D and 3D using 
an implicit representation based on the level set method. 
This approach offers a new perspective in terms of how 
the geometric patterns are formulated mathematically 
and provides a flexible framework for both rigid and 
non-rigid object matching. 

2. Implicit representation of objects 

Traditionally in computer science, a shape is 
represented by a set of points that discretizes the contour 
of the shape.  This approach has led to a large number 

of techniques for shape comparison based on matching 
the discretized point sets. In this paper, we take a 
different view by viewing geometric objects as the level 
contours of some functions defined on the whole image.  

2.1. Implicit representation of shapes 

Since the introduction of the level set method [1], 
implicit representation of shapes has been investigated 
extensively in the image processing community. In short, 
the closed contour of a shape can be represented by the 
zero level set of a level set function defined on the 
image. Though in theory, any level set function can be 
used for implicit representation, computationally it is 
often desirable that the level set function is the signed 
distance function to its zero level set.  In this paper, we 
will assign positive values for areas inside the shape in 
the corresponding level set function. 

2.2. Implicit representation of open curves 

In order to represent an open curve C in 2D using 
level set functions, we follow the idea in [2] by 
extending C to a closed curve (represented by the zero 
level set of ϕ1), and we further define a second closed 
curve (represented by the zero level set of ϕ2), which 
encloses C and crosses the zero level set of ϕ1 only at the 
end points of C. Then the open curve C can be written in 
the following way 

}0)(,0)(|{ 21 >== xxxC ϕϕ .          (1) 

As for open curves in 2D, the representation for an 
open surface in 3D requires also the intersection of two 
level set functions in 3D. By the same argument, an 
open curve in 3-dimensional space can be represented 
by the intersection of three level set functions 

}0)(,0)(,0)(|{ 321 >=== xxxxC ϕϕϕ .     (2) 

2.3.  Implicit representation of points 

Though not well known, it is also possible to 
represent points using the intersection of level set 
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functions. For example, given two level set functions ϕ1,
ϕ2 in 2D, the intersections of their zero level sets xi, and 
any continuous function F, the following equation holds 

  =∇×∇
i

ixFdxF )()()( 2121 ϕϕϕδϕδ .     (3)

The values of a function F at the intersections of the 
zero level sets of ϕ1 and ϕ2 could be recovered by an 
integral involving level set functions ϕ1 and ϕ2. This 
allows incorporation of point constraints into other 
variational formulations.  Notice in 3D the left hand 
side of equation (3) evaluates the (closed) curve length 
of the intersection of 3D level set functions ϕ1 and ϕ2.

   Similarly, given three level set functions in 3D with 
similar notations as in 2D, we have  

  =∇⋅∇×∇
i

ixFdxF )()()()( 221321 ϕϕϕϕδϕδϕδ . (4) 

3. Theory 

In object comparison, people are usually interested in 
matching with respect to certain equivalent classes. The 
equivalence class of an object is often defined as the 
invariance class of objects subject to group actions such 
as translation, rotation, and scaling. The level set method 
can be easily adapted to take equivalence classes into 
account. To this end, assuming a level set function φ is 
the signed distance function of its zero level set, then the 
following transformed level set function is still the 
signed distance function to its zero level set 

.
cos)(sin)(

,
sin)(cos)(~

   
 
 −+−−−+−=

r

byax

r

byax
r

θθθθφφ

(5)
In [3], the authors registered shapes by comparing 

their corresponding signed distance functions. In order 
to compare the distance functions independent of the 
size of the image, the authors proposed to compare only 
a narrow band near the zero level set. However, this 
approach usually requires a pre-processing to align the 
two shapes before registration by matching the centers 
of mass, for example. This approach fails when the 
shapes are far apart and the narrow bands do not overlap 
as no descent direction can be determined.  
  In this paper, we propose a different and more general 
strategy that can be utilized for objects of all types. 
Moreover, exact matching is achieved when the 
proposed cost function is zero. Thus, both comparison 
and exact matching are possible under this framework. 

3.1. Overlapping shape matching 

A different, yet widely used approach other than [3] 
for matching overlapping shapes in any dimension is to 
minimize the symmetric difference of the two level set 
functions. If the shapes are represented by the zero level 
set of φ and ψ, then the abovementioned approach boils 

down to solving for the translation-rotation-scaling 
parameters a, b, r, and θ such that under this 
transformation (as shown in equation (5)) the following 
cost function is minimized: 

dxHHHH
rba

−+− ))}
~

(1)(())(1)(
~

({min
,,,

φψψφ
θ

.   (6) 

Here H is the Heaviside function.  
  It is straightforward to see that this cost function is 
zero when these two shapes can be exactly registered.  
When minimizing this cost function, we need the 
derivative of the cost function with respect toφ~

)
~

())(21(~ φδψ
φ

H
F −=

∂
∂ .            (7) 

3.2. Non-overlapping shape matching 

The above cost function does not work for 
non-overlapping shapes as no gradient descent direction 
can be obtained. To overcome this, we could incorporate 
distance information into the cost function. Assuming 
level set functions φ and ψ are the signed distance 
function to their zero level sets, we look at the following 
modified cost function instead.  

dxHHHH
rba

−−−− ))}
~

(1)((
~

))(1)(
~
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φψφψφψ
θ

. (8) 

The derivative of the cost function with respect to φ~ is

).
~

())(1(}
~
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~
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~
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φ
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F −+−−−=

∂
∂ (9)

  In short, we integrate -φ in the area: ψ>0, φ<0, and 
integrate -ψ in the area:ψ<0, φ>0 and sum up the two 
integrals. Thus, this cost function is also non-negative 
and zero only when the shapes can be exactly registered. 
Moreover, since we are integrating the distance function 
to the shape, we always have gradient descent 
information wherever the initial position is.  

3.3. Open curve matching 

The above discussion on non-overlapping shapes 
helps us design cost functions for objects of any kind. 
Let us turn to the case of open curves, and construct the 
cost function by calculating the sum of line integrals on 
these two curves with respect to the other curve’s 
distance function. Let us assume the two open curves C 
and C’ of interest are represented by level set functions
φ1, φ2 and ψ1, ψ2 respectively as in (1). Moreover, let us 
denote the distance functions of C and C’ by Dφ(x) and
Dψ(x). We now look at the following cost function: 

dxHDHD
rba
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~

(
~

)
~
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~
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∇+∇ φφφδψψψδ ψφθ
.

(10)
As before, we calculate the following 
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Here )
~

( 11 φδδ = , )
~

( 22 φδδ = , and )
~

( 22 φHH = .

Let us consider one more example, namely, closed 
curves in 3D. Assuming that one closed curve is 
represented by the intersection of φ1, φ2 and its distance 
function Dφ(x) with ψ1, ψ2, and Dψ(x) similarly defined 
for the other closed curve, we can consider the following 
cost function: 
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The partial derivatives of this cost function are 
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Here the projection operator P acting on a vector v is  

2
v

vv
IPv

⊗−= .                            (18) 

  For the implementation details, please refer to [3, 4]. 

3.4. Minimizing the Hausdorff Metric 

We now explore the relationship between these cost 
functions and the Hausdorff metric. The Hausdorff 
metric H arises in geometric measure theory as a metric 
between two subsets A, B in Rn defined as  

);),(),,(max(),( ABhBAhBAH =
( ).,max),( YxdYXh

Xx∈
=                    (20) 

Here d(x, Y) is the usual Euclidean distance from the 
point x to its closest point restricted on the set Y.

Let us re-examine the matching of open curves and 

modify the cost function by raising the distance 
functions to some power p and then take the p-th root  

.
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         (21) 

If we let p go to infinity, the limit of the above cost 
function is exactly the Hausdorff metric between the two 
curves. Numerically, we use a p much larger than one to 
approximate the L infinity norm. Thus, minimizing the 
Hausdorff metric between geometric objects is natural 
using this framework. Moreover, this also provides a 
strong theoretical foundation for our approach. 

3.5. Non-rigid feature based warping in 
computational anatomy 

Computational anatomy [5-7] is an emerging new 
discipline that deals with analyzing large collections of 
biomedical images. A fundamental problem in 
computational anatomy is mapping one image dataset to 
another through a diffeomorphic transformation. The 
strategy proposed in this paper can be utilized to 
perform feature based image warping in computational 
anatomy. We solve for a displacement u at each point x
such that under this displacement one image is 
transformed to the other. Moreover, we model u as the 
inverse map of the solution of an Euler transport 
equation with velocity field v

).),,((),(

);,()( 1

ttxgvtxg
t

txgxux

=
∂
∂

=− −

                  (22) 

For a detailed discussion, we refer the reader to [4, 6].  

4.  RESULT 

To validate our approach, brain MR images from one 
control subject and an average human brain template as 
discussed in [6] are used. A template of 3D structural 
and functional landmark curved lines is delineated on 
the brain surfaces. Figure 1 shows the brain hemisphere 
of the normal subject with the identified landmark 
curves in 3D. The brain surfaces are represented by a 
spherically-parameterized, triangulated 3D mesh, and 
thus in the flattened-out parameter space the landmark 
curves could be easily re-identified. Furthermore, a RGB 
color code is used to store the original 3D position at 
each point in the flat parameter space. The landmark 
based warping is then applied on the parameter space 
and the deformation is pulled back onto 3D brain 
surfaces using the color-coded 3D information. Figure 2 
shows the flattened brain surface of the control subject 
before and after warping with the landmark curves 
overlaid. This transform matches the landmark curves 
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while smoothly propagating the transform to the rest of 
the parameter space. 
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Figure 1. The brain hemisphere of one normal 
subject with the identified nine landmark sulcal 
curves used for brain surface matching. Left 
panel: sulcal delineations on the original 3D 
brain surface (left hemisphere). Right panel: the 
surface of the left hemisphere overlaid with the 
same nine sulcal curves in the flattened 
parameter space. 

(a)

(b)

(c)
Figure 2. Brain warping using landmark curve 
matching from the normal subject in Figure 1 to 
the average human brain: (a) The flattened brain 
surface overlaid with average landmark curves. 
(b) Warped brain in (a) overlaid with average 
landmark curves. (c) Warped brain with grid 
deformation.  
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