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ABSTRACT

This paper is devoted to a recent topic in image analysis: the decomposition of an image into a cartoon or
geometric part, and an oscillatory or texture part. Here, we propose a practical solution to the (BV,G) model
proposed by Y. Meyer1 . We impose that the cartoon is a function of bounded variation, while the texture is
represented as the Laplacian of some function whose gradient belongs to L∞. The problem thus becomes related
with the absolutely minimizing Lipschitz extensions and the infinity Laplacian. Experimental results for image
denoising and cartoon + texture separation, together with details of the algorithm, are also presented.

Keywords: functional minimization, partial differential equation, image denoising, image decomposition, tex-
ture modeling, sup norm.

1. INTRODUCTION

We limit the presentation to two dimensions and gray-scale images, but any number of dimensions and vector-
valued data can be considered. Let Ω be an open, bounded, and connected domain in R2 with Lipschitz-
continuous boundary, and f : Ω → R a given image-function, the observation. Sometimes we will assume that
f : R2 → R. Often the image f has been corrupted by noise and/or blur. Important problems in image analysis
are, for instance, the inverse reconstruction problem, the extraction of information and of main features, or the
separation of different features. Mathematically this is often related with K−functionals or J −functionals in
the theory of interpolation between spaces, and amounts to find for f ∈ X1 + X2 optimal pairs (u, v) ∈ X1 ×X2

by solving one of the equivalent minimizations

inf
f=u+v, u∈X1, v∈X2

{
‖u‖X1 + λ‖v‖X2

}
= inf

u∈X1

{
‖u‖X1 + λ‖f − u‖X2

}
,

where X1 and X2 are spaces of functions or of distributions. More generally, we can formulate decompositions
f = u + v via energy minimization

inf
(u,v)∈X1×X2

{
K(u, v) = F1(u) + λF2(v) : f = u + v

}
,

where F1, F2 ≥ 0 are functionals such that X1 = {u : F1(u) < ∞}, X2 = {v : F2(v) < ∞} (for example
Fi(·) = ‖ · ‖Xi), and f ∈ X1 + X2. The constant λ > 0 is a tuning parameter. For instance, in image denoising,
f is the observed noisy version of the true unknown image u, while v represents additive noise of zero mean.
In this case X1 ⊂ X2, f ∈ X2 and X1 is a space of functions “smoother” or less oscillating than those in X2.
However, sharp edges or boundaries have to be represented in u. Another related problem is the separation of
the geometric (cartoon) component u of f from the oscillatory component v, representing texture or noise of zero
mean. In other cases, u can be seen as a structure component of f , while v is clutter2 (where f is the image of
a building occluded by trees, u contains only the building from f and v contains only the trees). A good model
for K is given by a choice of X1 and X2 so that with the above given properties of u and v, the values F1(u) and
F2(v) are small, and F1(v) > F1(u), F2(u) > F2(v).
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Variational models in image restoration by regularization can be seen as decomposition models. Indeed,
consider the canonical model: given f ∈ L2(Ω), solve

inf
u

{
F (u) =

∫

Ω

φ(|Du|)dx + λ‖f − u‖2
L2(Ω)

}
, (1)

where φ : [0,∞) → [0,∞) is a continuous potential, increasing, with at most linear growth at infinity (to
allow discontinuities along curves); examples are φ(t) = t2

1+t2 , |t|
1+|t| , log(1 + t2) in the non-convex case, |t|,√

1 + t2, log cosh(1 + t2) in the convex case. The unknown minimizer u has to be recovered from f , assuming
the degradation model f = u + noise. For more details on this class of models we refer the reader to3 ,4 ,5 ,6 ,7

,8 ,9 . Model (1) can be formulated as an image decomposition model,

inf
(u,v), f=u+v

F (u, v) =
∫

Ω

φ(|Du|)dx + λ‖v‖2
L2(Ω).

The model should produce a cartoon or piecewise-smooth component u (geometric component) and an additive
oscillatory component of zero mean v ∈ L2(Ω). In the convex case, the above functional is well defined and has
a unique minimizer on the space of functions of bounded variation BV (Ω)10 ,9 ,6 ,7 ,11 . The case φ(t) = |t|
corresponds to the total variation model (L. Rudin, S. Osher, E. Fatemi12 ,5 ,13), often called “ROF” model,

inf
(u,v)∈L2(Ω)×BV (Ω)

{∫

Ω

|Du| + λ‖v‖2
L2(Ω), f = u + v

}
(2)

and will be of particular interest.

When v is additive Gaussian noise of zero mean, of uniform variance, the space v ∈ L2(Ω) is the natural
choice. Also, having u ∈ BV (Ω) insures that u will be made of homogeneous regions with sharp boundaries.
However, there are some limitations of model (2). For instance, it can be shown14 ,1 ,11 that, even if the initial
data f is the characteristic function of a smooth convex domain with finite perimeter, without noise, the solution
u of the model (2) is not exactly f (therefore, the residual v = f −u is not zero): the ROF model does not always
correctly separate oscillations from BV components. On the other hand, Mumford and Gidas15 mention that
natural images, containing texture, noise, clutter, and other oscillatory details, cannot be modeled by functions,
but rather by distributions, or generalized functions. Also, in Gousseau, Morel16 , Alvarez, Gousseau, Morel17

it is shown that natural images (with textured details of different scales) are not well modeled by functions of
bounded variation. On the other hand, the ROF model and all models in the class (1) only keep u, a piecewise-
smooth function, and treat v as noise or residual. Similarly, in the non-convex Mumford and Shah model18 ,19

for computing optimal piecewise-smooth approximations u of f , only the cartoon component u is kept.

Thus we have to relax the conditions on u or on v in the model (2), and to model images by functions in
larger spaces. One way to modify (2) is to keep the L2 norm and to work with non-convex potentials φ. However,
in this case, the problem is theoretically open and may not have a solution. Thus we prefer to keep the BV
regularization, and we follow Meyer’s idea1 , to work with weaker norms than the L2 norm for v.

We propose here a new method, which allows to model textures using partial differential equations and
oscillating patterns. A new task in image analysis is introduced, called image decomposition into cartoon +
texture, following a proposal of Y. Meyer1 . The main idea is to model the residual v = f − u as a generalized
function, in a space of distributions more appropriate for oscillations. In order to better extract both the u
component in BV and the v component as an oscillating function (texture in natural images or noise) from f ,
Meyer1 proposes in R2, among several choices, the following space for v, larger than L2(R2), denoted by G,

Definition 1.1. Let G(R2) be the Banach space of distributions v = div�g, g1, g2 ∈ L∞(R2), endowed with the
norm

‖v‖G(R2) = inf
�g=(g1,g2)∈(L∞(R2))2, v=div�g

‖|�g|‖L∞(R2).
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Y. Meyer proposes in the same lecture notes1 the following image decomposition model into “cartoon and
texture”:

inf
(u,v)∈(BV ×G)

{
E(u) =

∫
|Du| + λ‖v‖G, f = u + v

}
. (3)

As explained in1 , the space G allows for oscillating functions v, and the oscillations are well measured by the
norm ‖v‖G. Also, we can say that the space G is, roughly speaking, the dual of BV (this is not exactly true, but
each one of the spaces BV and G is the dual of a subset of the other one). The space G can be isometrically and
isomorphically identified with the dual of {u ∈ ˙BV (R2) : Du ∈ L1(R2)} (working with homogeneous versions).

However, it is not possible to directly solve and use the model (3) in practice, because we cannot express the
Euler-Lagrange equation associated with the minimization problem, due to the definition of the G-norm. Moti-
vated by the following approximation to the L∞(Ω) norm of |�g|, ‖√g2

1 + g2
2‖L∞(Ω) = limp→∞ ‖√g2

1 + g2
2‖Lp(Ω),

a first direction in approximating (3) has been proposed in20 ,21 by the following minimization with a Lagrange
multiplier µ for the constraint,

inf
u,g1,g2

{
Gp(u, g1, g2) =

∫

Ω

|Du| + µ

∫

Ω

|f − u − div�g|2dx + λ‖|�g|‖Lp(Ω), (4)

where λ, µ > 0 are tuning parameters, and 1 < p < ∞. The first term insures that u ∈ BV (Ω), the second
term insures that f ≈ u + div�g, while the third term is a penalty on the norm of v = div�g: if µ → ∞
and p → ∞, this model is an approximation of the model (3) originally proposed by Meyer (by this model,
v = div�g ∈ L2(Ω) ∩Gp(Ω), with ‖v‖Gp(Ω) = infv=div�g,gi∈Lp(Ω) ‖|�g|‖Lp(Ω)). Formally minimizing (4) with respect
to the unknowns, leads to a coupled system of three non-linear Euler-Lagrange equations in u, g1, g2. In the case
p = 2, the norm ‖v‖Gp(Ω) coincides with the norm in Ḣ−1(Ω), dual to the homogeneous Ḣ1(Ω) space endowed
with ‖u‖Ḣ1(Ω) =

∫
Ω |Du|2dx22 . This case p = 2 has been modified in23 where v = div�g = div(DP ), with P a

scalar function and producing an exact (BV, Ḣ−1) decomposition model f = u + 
P , by

inf
u∈BV (Ω)

∫

Ω

|Du| + λ

∫

Ω

|D
−1(f − u)|2dx (5)

(this is also related with another (BV, E) model proposed by Y. Meyer1 , where v = 
P , P ∈ Ḃ1∞,∞).

In the work of Aujol et al.24 ,25 ,26 , another approximation has been proposed to the (BV, G) model: again
v ∈ L2(Ω) ∩ G(Ω), and minimizing

inf
(u,v)∈BV (Ω)×Gµ(Ω)

∫

Ω

|Du| + 1
2λ

‖f − u − v‖2
L2(Ω),

where Gµ(Ω) = {v ∈ G(Ω) : ‖v‖G(Ω) ≤ µ}. Duality results are used to solve this model in practice.

Note that the expression v = div�g introduces numerically some anisotropy (unlike v = 
P ), as observed in27

where another approximation to Meyer’s (BV, G) model was proposed:

inf
(u,�g)∈BV (Ω)×L∞(Ω,R2)

{∫

Ω

|Du| + µ

∫

Ω

|f − u − div(�g)|2dx + λ

∫

Ω

√
g1(x)2 + g2(x)2δ(x − x0)dx

}
.

Here δ is the Dirac function (an impulse function) in two dimensions concentrated at the origin, and
√

g1(x0)2 + g2(x0)2 = ‖|�g|‖L∞(Ω).

A numerical computation has been proposed in27 by alternating minimization (at each step n ≥ 0, if un, gn
i are

known, let x0 = argmaxx∈Ω|�g(x)|; then x0 is kept fixed and the energy to be minimized in u = un+1, gi = gn+1
i

is now of integral form and associated Euler-Lagrange equations can be expressed; update x0 and repeat).

More recently, other solutions have been proposed to solve (BV, G) decomposition models, including28 using
second order cone programming, and29 using duality results. In this paper we would like to propose another
“isotropic” decomposition f ≈ u+
P = div(DP ), with �g = DP ∈ L∞(Ω)2. To minimize the sup norm of |DP |,
we make use of the infinity Laplacian30 ,31 ,32 .
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2. DESCRIPTION OF THE PROPOSED MODEL

Given f ∈ L2(Ω), the proposed new model is

inf
u∈BV (Ω),DP∈L∞(Ω)2,�P∈L2(Ω)

F (u, P ) =
∫

Ω

|Du| + µ

∫

Ω

|f − (u + 
P )|2dx + λ‖DP‖L∞(Ω). (6)

In the limit, as µ → ∞, we have f = u + 
P , with u ∈ BV (Ω) and v ∈ {v = 
P = div(DP ), DP ∈
L∞(Ω)2}, with norm ‖v‖ = inf{P, v=�P=div(DP ), DP∈L∞(Ω)2} ‖|DP |‖L∞(Ω) (based on the assumption of the
Hodge decomposition of any �g ∈ L∞(Ω) into �g = DP + �Q, where P is a scalar function and �Q is a divergence-
free vector field, thus div�g = 
P ).

To minimize the above energy, we make here use of the so-called absolutely minimizing Lipschitz extensions
AMLE (30 ,31 , introduced in image analysis in32), the difficulty being due to the last term. We first recall the
AMLE notion: given a bounded, open and connected domain Ω with sufficiently smooth boundary, and boundary
data φ on ∂Ω, solve

inf
P∈W 1,∞(Ω), P=φ on ∂Ω

‖|DP |‖L∞(Ω). (7)

A minimizer P is called an absolutely minimizing Lipschitz extension of φ into Ω. It is shown that

P 2
x1

Px1x1 + 2Px1Px2Px1x2 + P 2
x2

Px2x2 = 0 in Ω

is the Euler-Lagrange equation for the minimal Lipschitz extension problem, in the sense of viscosity solutions
or smooth solutions P (using the notation Pxi = ∂P

∂xi
). In32 time-dependent versions of this problem have been

used for image interpolation:

∂P

∂t
= P 2

x1
Px1x1 + 2Px1Px2Px1x2 + P 2

x2
Px2x2 in (0,∞) × Ω,

P (0, x) = P0(x) in Ω,

P (t, x) = φ(x) for (t, x) ∈ (0,∞) × ∂Ω,

together with its “normalized version”

∂P

∂t
=

P 2
x1

|DP |2 Px1,x1 + 2
Px1Px2

|DP |2 Px1,x2 +
P 2

x2

|DP |2 Px2,x2 in (0,∞) × Ω,

P (0, x) = P0(x) in Ω,

P (t, x) = φ(x) for (t, x) ∈ (0,∞) × ∂Ω.

The operator D2P
(

DP
|DP | ,

DP
|DP |

)
=

P 2
x1

|DP |2 Px1x1 + 2Px1Px2
|DP |2 Px1x2 +

P 2
x2

|DP |2 Px2x2 = 
∞P represents the second order

derivative of P in the normalized gradient direction DP
|DP | .

(7) can be seen as the limiting case p → ∞ of the inhomogeneous Dirichlet problem with 1 < p < ∞
inf

P∈W 1,p(Ω), P=φ on ∂Ω
‖|DP |‖p

Lp(Ω), (8)

whose Euler-Lagrange equation is 
pu = 0 in Ω. This limiting process p → ∞ is made rigorous in30 ,31 .

In our case, we associate homogeneous Neumann boundary conditions to P on ∂Ω, to insure that
∫
Ω

Pdx =

0. Therefore, by the above results, we obtain the following Euler-Lagrange equations, in a time-dependent
gradient descent method, to minimize (6):

∂u

∂t
= 2µ(f − u −
P ) + div

( Du

|Du|
)
,

∂P

∂t
= 2µ
(f − u −
P ) + λ

( P 2
x1

|DP |2 Px1x1 + 2
Px1Px2

|DP |2 Px1x2 +
P 2

x2

|DP |2 Px2x2

)
, (9)

P (0, x) = P0(x), in (0,∞) × Ω,

u(0, x) = f(x), in (0,∞) × Ω,
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Figure 1. Synthetic original image and its noisy version f .

and with associated boundary conditions for u, P and (f − u − 
P ) on ∂Ω. In practice, this coupled system
of partial differential equations is solved by finite differences to steady state. The numerical time-step 
t is
chosen such that a discrete version of the energy (6) is decreasing at each iteration. The initial P0 is chosen to
be identically zero, or an arbitrary (almost random) periodic pattern. Note that the proposed method has only
two unknowns u, P , instead of three unknowns u, g1, g2

20 ,27 and insures that v = 
P ∈ L2(Ω) ∩ G(Ω).

3. EXPERIMENTAL RESULTS

We present in this section several experimental results for image denoising and cartoon and texture decomposition
using the proposed method (6), (9). Comparisons with the ROF model5 are also given in the denoising case,
showing that the new model gives improved results, as expected. We also show plots of the discrete energy versus
iterations. In practice, the residual f − u −
P is small, but not exactly zero. Thus we incorporate this small
residual in the component v, therefore for the oscillatory component we plot f − u instead of only 
P (this still
gives us an f − u ∈ G(Ω), because f − u = 
P − 1

2µdiv
(

Du
|Du|

)
∈ G(Ω)).

In Figures 1 and 2 we show two original images and their noisy versions. In Figure 3 we show a denoised
result u of the synthetic square image using the proposed method, and the oscillatory component f −u, together
with the obtained root mean square error (RMSE) and the signal-to-noise ratio (SNR); we also show here the
plot of the computed energy decreasing versus iterations, illustrating that the algorithm is in practice stable and
well-behaved. The same denoising test is performed with the model5 in Figure 4. We notice that, as expected,
the proposed new method produces better results. Similar tests are shown with the noisy real image “Lena” in
Figures 5 and 6. Again, the proposed method gives better denoised result than with the ROF method, based on
the values of the RMSE and of the SNR. Note that all the above mentioned denoising methods, including the
proposed one, are different from the non-local means method33 which gives very good denoising results and also
f = u + v decompositions, but with a more expensive computational work).

We end this section with two image decomposition results into cartoon and texture applied to real images,
obtained by the proposed method (Figures 7 and 8). The first image from Figure 7 is a fingerprint image, while
the second image from 8 is part of the well-known Barbara image. As we can see, the proposed method gives
very satisfactory results of separation into cartoon and texture.

In conclusion, we have illustrated that the proposed method gives better results than those obtained by the
ROF model5 (although the ROF method5 is simpler). We think that the proposed results are comparable with
those obtained by the other methods mentioned in Section 1, as approximations to the (BV, G) model proposed
by Y. Meyer. Theoretical results, including characterization of minimizers, will be analyzed in future work.
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Figure 2. Real original image and its noisy version f .
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Figure 3. Top: denoised u and residual f − u by the proposed method. Bottom: energy decrease versus iterations.
RMSE=0.0050, SNR=29.0836.
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Figure 4. Denoised u and residual f−u by the ROF method for the synthetic noisy image. RMSE=0.0053, SNR=28.6534.
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Figure 5. Top: denoised u and residual f − u by the proposed method for the real noisy Lena image. Bottom: energy
decrease versus iterations. RMSE=0.0565, SNR=17.9983.
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1/ ..

Figure 6. Denoised u and residual f−u by the ROF method for the real noisy Lena image. RMSE=0.0567, SNR=17.9744.

Figure 7. Left: initial textured image f . Middle: cartoon component u. Right: texture component f − u ≈ v (obtained
by the proposed image decomposition model).

Figure 8. Left: initial textured image f . Middle: cartoon component u. Right: texture component f − u ≈ v (obtained
by the proposed image decomposition model).
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