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Abstract. This paper is devoted to piecewise-constant segmentation of
images using a curve evolution approach in a variational formulation.
The problem to be solved is also called the minimal partition problem,
as formulated by Mumford and Shah [20]. The proposed new models
are extensions of the techniques previously introduced in [9], [10], [27].
We represent here the set of boundaries of the segmentation implicitly,
by a multilayer of level-lines of a continuous function. In the standard
approach of front propagation, only one level line is used to represent
the boundary. The multilayer idea is inspired from previous work on
island dynamics for epitaxial growth [14], [4]. Using a multilayer level set
approach, the computational cost is smaller and in some applications, a
nested structure of the level lines can be useful.

1 Introduction

We model here images by functions f : Ω → IR, where Ω is an open and bounded
domain in IRn. In particular, n = 1 corresponds to signals, n = 2 corresponds
to planar images, while n = 3 corresponds to volumetric images, such as MRI
data.

An important problem in image analysis is the segmentation or the partition
of an image f into regions and their boundaries, such that the regions correspond
to objects in the scene. Here, we deal with the case where we look for an optimal
piecewise-constant approximation of the function f , our starting point being the
minimal partition problem, as formulated by D. Mumford and J. Shah [20]. The
general problem is, given a function f in L∞(Ω) (induced by the L2-topology),
find a set of disjoint open regions Ωi, such that u = ci in each Ωi is a minimizer
of [20]

F (u, Γ ) =
∑

i

∫

Ωi

|f − ci|2dx + µHn−1(Γ ), (1)
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where Γ = ∪i(∂Ωi), Ω = (∪iΩi) ∪ Γ , µ > 0 is a scale parameter, and Hn−1 is
the Hausdorff (n − 1)-dimensional measure in IRn. In one dimension H0(Γ ) is
the counting measure, in two dimensions H1(Γ ) is the length of the curve Γ ,
while in three dimensions H2(Γ ) is the surface area.

The existence of minimizers has been proved by Mumford-Shah for continu-
ous data f [20], and later by Morel-Solimini [19], for data f ∈ L∞(Ω). Elliptic
convergent approximations of the minimal partition problem in the weak formu-
lation (and also of the full Mumford and Shah model) have been proposed by
Ambrosio-Tortorelli [1], [2], where the minimizer u is approximated by smoother
functions, and the unknown set of discontinuities is also approximated by a
smooth function v, essentially supported outside Γ . A constructive convergent
algorithm for solving (1) has been proposed by Koepfler-Lopez-Morel [16], based
on region growing and merging (a piecewise-constant minimizer u is obtained,
and not only a smooth approximation, by contrast with [1], [2]). Also, it has been
proved by Mumford-Shah [20] that a minimizer u of (1) has a finite number of
regions Ωi and of constant intensities ci.

Curve evolution techniques and implicit representations for global segmen-
tation have been proposed, that can be seen as particular cases of the minimal
partition problem, where the number of regions Ωi or an upper bound are as-
sumed to be known. Thus, in [9], [10], [8], [27], [28], restrictions of the energy (1)
to piecewise-constant functions taking a finite number of regions and intensities,
in a variational level set approach [29], have been introduced. The energy has
been minimized for restrictions to {u(x) = c1H(φ(x))+c2H(−φ(x))}, or {u(x) =
c11H(φ1(x))H(φ2(x)) + c10H(φ1(x))H(−φ2(x)) + c01H(−φ1(x))H(φ2(x)) + c00
H(−φ1(x))H(−φ2(x))}, and so on, where φ, φi : Ω → IR are Lipschitz continu-
ous functions, and H denotes the Heaviside function. The variational level set
approach from Zhao, Chan, Merriman, and Osher [29] has been used, and the
boundaries were represented by zero level lines of φi.

The multiphase formulation from [29] has been used in [24], [25] for comput-
ing the boundaries ∂Ωi in the case of a finite and known number of regions, and
where the corresponding intensity averages ci where given.

The advantage of the multiphase method in [27] is that triple junctions can
be represented, as in [29], [24], [25], but the regions Ωi are disjoint and covering
of Ω by definition. In addition, a smaller number of level set functions φi was
needed to represent the partition, for the same number of distinct intensities ci.

In the above mentioned work, together with other related work, the unknown
boundaries ∂Ωi are represented by the zero level line of a Lipschitz continuous
function φ. In general, such function φ : Ω → IR, as used for active contours
[5], [18], [6], [15] partitions the domain Ω in at most two open regions {x ∈ Ω :
φ(x) > 0} and {x ∈ Ω : φ(x) < 0}, with a common boundary given by the zero
level line of φ, {x ∈ Ω : φ(x) = 0}. For image partition, active contours, and
image segmentation, such functions φ are thus used to represent boundaries of
regions of different characteristics. In order to represent more than two regions,
several functions φi can be combined and used, as we have mentioned in [29],
[24], [25], [27]. For instance, in [11], [27], only two functions φi, i = 1, 2 were used
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to represent up to four disjoint regions making up Ω, and only three functions
φi, i = 1, 2, 3 were used to represent up to eight disjoint regions.

Here, we continue the approaches from [9], [10], [27], and we show that we
can use even fewer level set functions to represent disjoint regions making up
Ω. The applications illustrated in this paper include active contours for object
detection, image segmentation and partition, image denoising. The main idea
is to use more than one level-line of the Lipschitz continuous function φ to
represent the discontinuity set of u, and the computational cost is decreased. The
idea is inspired from a different application of implicit curve evolution and free
boundaries, introduced in [14], [4], where island dynamics for epitaxial growth
is modeled. A first layer of islands is represented by {x : φ(x) = 0}, then a
second layer of islands, growing on the top of the previous one is represented as
{x : φ(x) = 1}, etc.

In summary, here we combine the techniques from [9], [10], [27] for image
partition, with the multilayer technique for modeling epitaxial growth from [14],
[4], to obtain new and improved curve evolution models for image segmentation.
Another recent independent work for image segmentation is Lie, Lysaker and Tai
[17], where the authors propose an interesting and efficient multi-phase image
segmentation model using a polynomial approach, but different than the methods
proposed in the present work.

The proposed minimization methods are non-convex, and with no unique-
ness for global minimizers (these theoretical properties are inherited from the
Mumford and Shah model). Moreover, we do not guarantee that our multilayer
formulation computes a global minimizer of the energy. It is possible sometime
to obtain only a local minimizer by the computational algorithm. Also, the final
result may depend on the choice of the initialization. However, in practice, we
have obtained very satisfactory results; the numerical algorithm is stable and the
computed energy is decreasing function of iterations, to a local or global min-
imizer. The method is computationally more efficient than the one introduced
in [27]. Related prior work for region based segmentation using curve evolution
implementation is by L. Cohen [12], [13], Paragios-Deriche [21], [22], [23], Tsai,
Yezzi and Willsky [26], among other work mentioned in [27]. We also mention
the segmentation model by Zhu-Yuille, in a probabilistic energy minimization
approach [30].

2 Description of the Proposed Models

2.1 The Case of One Function

We consider in this subsection the case when the contours in the image f can
be represented by level lines of the same level set function φ.

Two Levels. Let us consider a Lipschitz continuous function φ : Ω → IR. Using
for instance two levels l1 = 0 and l2 = l > 0, the function φ partitions the domain
into three disjoint open regions, making up Ω, together with their boundaries:
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R1 = {x : φ(x) < 0}, R2 = {x : 0 < φ(x) < l}, R3 = {x : φ(x) > l}.

We can thus extend the binary piecewise-constant level set segmentation
model from [9], [10], to the following model, again as an energy minimization
algorithm, in a level set form:

inf
c1,c2,c3,φ

F (c1, c2, c3, φ) =
∫

Ω

|f(x) − c1|2H(−φ(x))dx (2)

+
∫

Ω

|f(x) − c2|2H(φ(x))H(l − φ(x))dx +
∫

Ω

|f(x) − c3|2H(φ(x) − l)dx

+ µ
[ ∫

Ω

|∇H(φ)| +
∫

Ω

|∇H(φ − l)|
]
,

where H is the one-dimensional Heaviside function, and µ > 0 is a weight pa-
rameter. The terms

∫
Ω

|∇H(φ)| and
∫

Ω
|∇H(φ − l)| correspond to the length of

the boundary between R1, R2 and R2, R3, respectively. The segmented image
in this case will be given by

u(x) = c1H(−φ(x)) + c2H(φ(x))H(l − φ(x)) + c3H(φ(x) − l).

To minimize the above energy, we approximate the Heaviside function by
a regularized version Hε, as ε → 0, such that Hε → H pointwise and Hε ∈
C1(IR). We denote by δε := H ′

ε. Examples of such approximations, that we use
in practice, are [9], [10]:

Hε(z) =
1
2

(
1 +

2
π

arctan(
z

ε
)
)
, δε(z) = H ′

ε(z) =
1
π

· ε

ε2 + z2 .

Minimizing the corresponding approximate energy Fε alternately with re-
spect to the unknowns, yields the associated Euler-Lagrange equations, param-
eterizing the descent direction by an artificial time t ≥ 0:

φ(0, x) = φ0(x), (3)

c1(t) =

∫
Ω f(x)H(−φ(t, x))dx∫

Ω
H(−φ(t, x))dx

, (4)

c2(t) =

∫
Ω f(x)H(φ(t, x))H(l − φ(t, x))dx∫

Ω
H(φ(t, x))H(l − φ(t, x))dx

, (5)

c3(t) =

∫
Ω

f(x)H(φ(t, x) − l)dx∫
Ω H(φ(t, x) − l)dx

, (6)

∂φ

∂t
= δε(φ)

[
|f − c1|2 − |f − c2|2H(l − φ) + µdiv

( ∇φ

|∇φ|

)]
(7)

+δε(φ − l)
[
H(φ)|f − c2|2 − |f − c3|2 + µdiv

( ∇φ

|∇φ|

)]
,

(δε(φ) + δε(φ − l))∇φ

|∇φ| · n = 0 on ∂Ω, t > 0, (8)
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where n is the exterior unit normal to ∂Ω. At steady state, a local or global
minimizer of the energy (2) will be obtained. Note that the energy (2) is non-
convex and it may have more than one global minimizer, these being properties
inherited from the Mumford and Shah model [20]. In practice, we do not guar-
antee that our computational algorithm converges to a global minimizer. There-
fore, sometime only a local minimizer may be obtained, but close to a global
minimizer, and this may also depend on the choice of the initialization of the
algorithm.

m Levels. More levels {l1 < l2 < ... < lm} can be considered, instead of only
two {l1 = 0 < l2 = l}. The energy in this more general case will be:

inf
c1,c2,...,cm+1,φ

F (c1, c2, ..., cm+1, φ) =
∫

Ω

|f(x) − c1|2H(l1 − φ(x))dx

+
m∑

i=2

∫

Ω

|f(x) − ci|2H(φ(x) − li−1)H(li − φ(x))dx

+
∫

Ω

|f(x) − cm+1|2H(φ(x) − lm)dx + µ

m∑

i=1

∫

Ω

|∇H(φ − li)|.

The associated Euler-Lagrange equations in this more general case, can be
expressed in a similar way, as follows: in a dynamical scheme, starting with
φ(0, x) = φ0(x), solve for t > 0

c1(t) =

∫
Ω

f(x)H(l1 − φ(t, x))dx∫
Ω

H(l1 − φ(t, x))dx
,

ci(t) =

∫
Ω f(x)H(φ(t, x) − li−1)H(li − φ(t, x))dx∫

Ω
H(φ(t, x) − li−1)H(li − φ(t, x))dx

,

cm+1(t) =

∫
Ω f(x)H(φ(t, x) − lm)dx∫

Ω H(φ(t, x) − lm)dx
,

for i = 2, ..., m, and

∂φ

∂t
= δε(l1 − φ)|f − c1|2 +

m∑

i=2

[
− δε(φ − li−1)H(li − φ)|f − ci|2

+ δε(li − φ)H(φ − li−1)|f − ci|2
]

− δε(φ − lm)|f − cm+1|2

+ µ

m∑

i=1

[
δε(φ − li)div

( ∇φ

|∇φ|

)]
,

together with the corresponding boundary conditions on ∂Ω, for t > 0.
We show in Fig. 1 examples of partitions of the domain Ω, using two and

three level lines of a Lipschitz continuous function φ.
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φ<0

0<φ<10

φ>10

φ<0

0<φ<10

10<φ<20

φ>20

φ>20

Fig. 1. Left: the level lines {x ∈ Ω : φ(x) = 0}, {x ∈ Ω : φ(x) = 10} partition
the domain Ω into 3 disjoint regions. Right: the level lines {x ∈ Ω : φ(x) = 0},
{x ∈ Ω : φ(x) = 10}, {x ∈ Ω : φ(x) = 20} partition the domain Ω into 4 disjoint
regions.

We present next experimental results applied to synthetic and real images
obtained with the models with one level set function and multiple layers just
introduced. In each figure, we show the evolution over time of the segmented
image u of averages (left column), and the evolving set of curves superposed
over the initial image f (right column). We also give the main parameters used
in the calculations and the CPU times.

In Fig. 2 we illustrate how the model works on a noisy synthetic image, in the
case m = 3, where m is the number of the nested level lines of the function φ used
to partition the domain Ω. In Fig. 3-4, we illustrate how the models work on real
noisy images of poor resolution, representing blood cells. Here, the model with
two level lines of the function φ has been applied, producing very satisfactory
results. In Fig. 5, application to brain data segmentation is illustrated.

We note that in all these cases, in the piecewise-constant segmentation mod-
els from [24], [25], and [27], we would have needed more than one function φ for
the segmentation, therefore more computational storage is required. In practice,
we do not impose that φ is Lipschitz continuous (this aspect will be discussed
again at the end). The parameter levels l1, l2, ... are here kept constant and
fixed for all our different experimental calculations. These can also be specified
by the user. We have not implemented an automatic procedure of selection of
these parameter levels. Sometimes, these could be estimated if a statistical prior
exists about the contours or level lines of the data. We note that the algorithm
is not sensitive with respect to the change of these parameter levels li. As in the
model from [27], only an upper bound of the phases is needed. For instance we
can segment an image into 2 regions, using the model with one level set func-
tion and 2 levels (therefore with 3 regions in theory, but only two regions will
appear in practice). Note that in all cases, the energy reaches a minimum (local
or global) very fast, only after a small number of iterations. The only varying
parameter in this set of results is the coefficient of the length term, which has a
scaling role.
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Fig. 2. Segmentation and denoising of a noisy synthetic image using one level set
function φ and 3 levels. Parameters: l1 = 0, l2 = 25, l3 = 35, �t = 0.1, µ = 0.0217·2552 ,
30 iterations, cpu time 0.41 sec.
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Fig. 3. Segmentation and denoising of a real noisy blood cells image using one level
set function and two levels. Parameters: l1 = 0, l2 = 25, �t = 0.1, µ = 0.03 · 2552, 200
iterations, cpu time 2.51 sec.
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Fig. 4. Segmentation and denoising of a real noisy blood cells image using one level
set function and two levels. Parameters: l1 = 0, l2 = 25, �t = 0.1, µ = 0.043 · 2552,
200 iterations, cpu time 2.493 sec.
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Fig. 5. Segmentation of a brain image using one level set function with two levels.
Parameters: l1 = 0, l2 = 25, �t = 0.1, µ = 0.1 · 2552, 1500 iterations, cpu time 183.544
sec.
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2.2 The Case of Two Functions

As in [11], [27], we can extend the multilayer model from the previous section
to the case of more than one level set function. This may be needed for instance
for images with triple junctions. Here, we will use only two level set functions,
to represent up to nine distinct regions of different intensities, making up Ω. We
will work with the functions φ1 and φ2, and with two levels {0, l}, with l > 0.

The nine regions defined by the two level set functions and two levels are:

R11 = {x : φ1 < 0, φ2 < 0}, R21 = {x : 0 < φ1 < l, φ2 < 0},

R31 = {x : φ1 > l, φ2 < 0},

R12 = {x : φ1 < 0, 0 < φ2 < l}, R22 = {x : 0 < φ1 < l, 0 < φ2 < l},

R32 = {x : φ1 > l, 0 < φ2 < l},

R13 = {x : φ1 < 0, φ2 > l}, R23 = {x : 0 < φ1 < l, φ2 > l},

R33 = {x : φ1 > l, φ2 > l}.

Following the previous section and [27], the associated energy for image seg-
mentation is:

infc,Φ F (c, Φ) =
∫

Ω

[
|f(x) − c11|2H(−φ1(x))H(−φ2(x))

+|f(x) − c21|2H(φ1(x))H(l − φ1(x))H(−φ2(x))
+|f(x) − c31|2H(φ1(x) − l)H(−φ2(x))

+|f(x) − c12|2H(−φ1(x))H(φ2(x))H(l − φ2(x))
+|f(x) − c22|2H(φ1(x))H(l − φ1(x))H(φ2(x))H(l − φ2(x))

+|f(x) − c32|2H(φ1(x) − l)H(φ2(x))H(l − φ2(x))
+|f(x) − c13|2H(−φ1(x))H(φ2(x) − l)

+|f(x) − c23|2H(φ1(x))H(l − φ1(x))H(φ2(x) − l)

+|f(x) − c33|2H(φ1(x) − l)H(φ2(x) − l)
]
dx

+µ
[ ∫

Ω
|∇H(φ1)| +

∫
Ω

|∇H(φ1 − l)| +
∫

Ω
|∇H(φ2)| +

∫
Ω

|∇H(φ2 − l)|
]
,

where c = (c11, c21, c31, c12, c22, c32, c13, c23, c33) is the unknown vector of aver-
ages, and Φ = (φ1, φ2) is a vector-valued unknown function.

Embedding the minimization in a dynamical scheme, starting with φ1(0, x) =
φ1,0(x), φ2(0, x) = φ2,0(x), we have that the unknown constants c11, c21, ... are
given by the averages of the data f on their corresponding regions R11, R21, ...,
as follows:

c11(t) =
∫

Ω
fH(−φ1)H(−φ2)dx∫

Ω
H(−φ1)H(−φ2)dx

, c21(t) =
∫

Ω
fH(φ1)H(l−φ1)H(−φ2)dx∫

Ω
H(φ1)H(l−φ1)H(−φ2)dx

,

c31(t) =
∫

Ω
fH(φ1−l)H(−φ2)dx∫

Ω
H(φ1−l)H(−φ2)dx

, c12(t) =
∫

Ω
fH(−φ1)H(φ2)H(l−φ2)dx∫

Ω
H(−φ1)H(φ2)H(l−φ2)dx

,

c22(t) =
∫

Ω
fH(φ1)H(φ2)H(l−φ1)H(l−φ2)dx∫

Ω
H(φ1)H(φ2)H(l−φ1)H(l−φ2)dx

,
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c32(t) =
∫

Ω
f(x)H(φ1−l)H(φ2)H(l−φ2)dx∫
Ω

H(φ1−l)H(φ2)H(l−φ2)dx
,

c13(t) =
∫

Ω
fH(−φ1)H(φ2−l)dx∫

Ω
H(−φ1)H(φ2−l)dx

,

c23(t) =
∫

Ω
fH(φ1)H(l−φ1)H(φ2−l)dx∫

Ω
H(φ1)H(l−φ1)H(φ2−l)dx

,

c33(t) =
∫

Ω
fH(φ1−l)H(φ2−l)dx∫

Ω
H(φ1−l)H(φ2−l)dx

.

The unknown functions φ1 and φ2 are solutions of the following equations:

φ1(0, x) = φ1,0(x), φ2(0, x) = φ2,0(x),
∂φ1
∂t = δε(φ1)

[
|f − c11|2H(−φ2) − |f − c21|2H(l − φ1)H(−φ2)

+|f − c12|2H(φ2)H(l − φ2) − |f − c22|2H(l − φ1)H(φ2)H(l − φ2)

+|f − c13|2H(φ2 − l) − |f − c23|2H(l − φ1)H(φ2 − l) + µdiv
(

∇φ1
|∇φ1|

)]

+δε(φ1 − l)
[
|f − c21|2H(φ1)H(−φ2) − |f − c31|2H(−φ2)

+|f − c22|2H(φ1)H(φ2)H(l − φ2) − |f − c32|2H(φ2)H(l − φ2)

+|f − c23|2H(φ1)H(φ2 − l) − |f − c33|2H(φ2 − l) + µdiv
(

∇φ1
|∇φ1|

)]
,

∂φ2
∂t = δε(φ2)

[
|f − c11|2H(−φ1) − |f − c12|2H(−φ1)H(l − φ2)

+|f − c21|2H(φ1)H(l − φ1) − |f − c22|2H(φ1)H(l − φ1)H(l − φ2)

+|f − c31|2H(φ1 − l) − |f − c32|2H(φ1 − l)H(l − φ2) + µdiv
(

∇φ2
|∇φ2|

)]

+δε(φ2 − l)
[
|f − c12|2H(−φ1)H(φ2) − |f − c13|2H(−φ1)

+|f − c22|2H(φ1)H(l − φ1)H(φ2) − |f − c23|2H(φ1)H(l − φ1)

+|f − c32|2H(φ1 − l)H(φ2) − |f − c33|2H(φ1 − l) + µdiv
(

∇φ2
|∇φ2|

)]
.

We show in Fig. 6 an example of partition of the domain Ω, using two level
lines corresponding to l1 = 0, l2 = 10, and two continuous functions φ1, φ2.

Note that, as in the multi-phase models from [27] and [28], when two distinct
level set functions are used to represent the contours, as in this subsection, then
it is possible that two level lines of the different functions φ1 and φ2 may par-
tially overlap, and therefore by the above formulation the length of the common
contour will be counted more than once and will have a different weight. This
is different from the Mumford and Shah energy [20]. This is not a problem in
practice, as seen in the numerical approximations. Moreover, this can also be
simply avoided, as explained in [28].

We show next experimental results on images with triple junctions, where
only two level set functions φ1, φ2 with two levels are used to represent up to
nine disjoint regions, making up Ω.
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φ1<0

φ1<0

φ1<0

0<φ1<10

0<φ1<10

0<φ1<10

φ1>10

φ1>10

φ1>10
φ2>10

φ2<0 φ2<0 φ2<0

0<φ2<10 0<φ2<10 0<φ2<10

φ2>10 φ2>10

Fig. 6. The level lines {x ∈ Ω : φi(x) = 0} and {x ∈ Ω : φi(x) = 10}, i = 1, 2,
partition the domain Ω into 9 disjoint regions

We present in Fig. 7 a numerical result of segmentation and partition of a
noisy synthetic image, composed of 5 regions of distinct intensities. All regions
and corresponding intensities are correctly detected and represented. The model
uses 9 phases in theory, but at steady state only 5 appear. The proposed model
performs faster than the one in [27]; both multi-phase models give similar qual-
itative results. In Fig. 8 we have a numerical result for a noisy synthetic color
image consisting of 9 regions of distinct intensities, in a vector-valued fashion,
as in [8].

We note that in all the above numerical results, we do not use the reini-
tialization to the distance function of the level set functions φ, φi. Also, using
the length regularization only of the level lines {φ = li}, the function φ may
become discontinuous away from these levels. This is true in practice, however,
it does not appear to be an inconvenient. If, however, we would need to keep
the function φ more regular, we can use different regularizations that act on all
level lines of φ. We have tested and compared in practice several regularizations
for φ, instead of the length of the levels li: these are

∫
Ω

|∇φ|dx (total variation
regularization, still decreases the perimeter of each level line independently, and
produces a function φ that tends to be piecewise-constant, with jumps near the
detected contours),

∫
Ω

|∇φ|2dx (which will guarantee a smooth function φ, but
may smooth corners also); ‖|∇φ|‖L∞(Ω), that leads to the infinity-Laplacian, or
the second order derivative in the normal direction to the level lines of φ (this
regularization formally keeps the function φ Lipschitz, in W 1,∞(Ω), and the gra-
dient magnitude is strictly positive near the contours, therefore preventing the
surface to become too flat). All these regularizations give satisfactory and similar
results. We conclude the paper by showing in Fig. 9 the iso-contours of the final
function φ for the real image used in Fig. 4, obtained with length regularization,
and with the sup-norm of the gradient regularization. We see that in the last
case, the function φ is closer to a “distance” function, in the sense that distinct
level lines stay at constant distance of each other, and do not become too close.
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Fig. 7. Segmentation and denoising of a synthetic noisy image with triple junctions,
using two functions φ1, φ2 and two levels. Parameters: l1 = 0, l2 = 25, �t = 0.4,
µ = 0.023 · 2552, 200 iterations, cpu time 13.985 sec.
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(a) (b)

(c) (d)

(e) (f)

Fig. 8. Segmentation and denoising of a synthetic noisy color image with junctions,
using two functions φ1, φ2 and two levels. Parameters: l1 = 0, l2 = 25, �t = 0.01,
µ = 0.335 ·2552 , 160 iterations, cpu time 10.975 sec. Note that the image contains nine
different regions, all correctly detected and segmented in an efficient approach.
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Fig. 9. Left: iso-contours of final φ using length regularization only, µδε(φ)div
(

∇φ
|∇φ|

)
+

µδε(φ − l)div
(

∇φ
|∇φ|

)
. Right: iso-contours of final φ using the sup-norm of the gradi-

ent ‖|∇φ|‖L∞(Ω) as regularization, minimized using the infinity Laplacian µ�∞φ =
φxx(φx)2+2φxφyφxy+φyy(φy)2

|∇φ|2 , therefore ensuring that φ remains Lipschitz (see Aronsson
[3], Caselles, Morel, Sbert [7], among others).
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