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Abstract

In this paper, we propose numerical methods for minimization problems constrained to S1 and S2. By our technique

based on the angle formulation, standard numerical difficulties are easily overcome. Applications to computations of

harmonic maps, denoising of directional data and of color images are presented, in two and three dimensions.

� 2004 Elsevier Inc. All rights reserved.

1. Introduction

When solving constrained minimization problems using partial differential equations one encounters the
problem of finding a solution that minimizes some defined energy, E, and also satisfies the constraint

condition, C. When a numerical solution must be computed then we are often in a predicament where we

can only approximately satisfy both C and E. Sometimes numerical schemes can be designed which im-

plicitly enforce C, but these are not always easy to find, and they can restrict us from using the most ad-

vanced numerical methods. Other times we can analytically derive energies for variables / that satisfy C
exactly, and then we can numerically minimize these energies in terms of /, not having to worry about

trading off the accuracy of solving E for the requirement of satisfying C. While this second method is more

ideal in that we have one less problem to solve, minimizing the energies involving / may lead to new
difficulties.

In this paper, we will introduce numerical methods for minimization problems where the constraint, C, is
that the solution U lie on either S1 or S2 (the unit circle in two dimensions and the unit sphere in three

dimensions). These types of problems arise more recently in computer vision where one studies gradient

directions, optical flow directions, surface normals, principle directions and colors [5,11,13,16,18,19]. In the

field of liquid crystals one studies p-harmonic maps with the above constraints [1,6], and the general topic of

harmonic maps between manifolds is well studied [2,7,9,15,17].
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There are several approaches to minimize the energy E under the constraint C. If we compute the Euler–

Lagrange equations associated with the minimization of E, as oE=oU ¼ 0, then a gradient descent method

can be applied in order to iteratively minimize E. To enforce C one technique is to normalize the solution
after each iteration, i.e. given a computed solution Un

� at time n, we then replace it by Un=jUn
� j [1,8,12,18].

Another method leaves this normalization until after convergence has been reached [20]. In either case the

theoretical analysis of convergence is not complete. A second option is to minimize a related unconstrained

energy

E þ 1

�

Z
ð1� jU j2Þ2 dx;

as � ! 0, which will asymptotically approach the desired solution [3,4]. Both of these methods are of the

first type mentioned in the initial paragraph: approximately solving C while minimizing E.
Here we will approach the solution using the second idea mentioned in the first paragraph, that of

finding variables / that solve C exactly, writing E in terms of /, and minimizing E with respect to /. The
PDE formulation of the problem constrained to S1 or S2 is not new. However, as the parameterizations of
S1 and S2 involve multivalued and highly singular variables, previous numerical solutions have avoided

these parameterizations or tried to resolve them by slightly changing the formulation of the problem, see

[13] for example. The techniques presented here aim to handle the numerical difficulties of these parame-

terizations, allowing oE=o/ to be minimized using straightforward finite differences or any other local

evolution procedure.

Thus, our method is advantageous because there is no error at all in the constraint condition. The

complexity of our method will be shown to be of the same order as straightforward discretizations of the

PDEs resulting from taking the Euler–Lagrange equations of E, C, requiring only a fixed number of extra
operations per gridpoint. In fact, since we advance the PDEs in parameter space we reduce the number of

PDEs to be solved by one.

Related work in the context of image analysis and computer vision is [5,11,13,16,18–20], for directional

diffusion, color image denoising, and other applications.
2. The S1 case

Consider an open and bounded domain X 2 R2 and an energy to be minimized defined by

EðUÞ ¼
Z
X
gðUÞdx; U ¼ ðu; vÞ 2 R2; ð1Þ

along with the constraint jU j ¼ 1, where g may contain differential operators. We change to the orientation

formulation by letting U ¼ ðcos h; sin hÞ and by the method of gradient descent we derive the associated

time-dependent partial differential equation

oh
ot

¼ � oE
oh

; ð2Þ

for an artificial time, t. For example

inf
U ;jU j¼1

Z
X
jrU j2 dx ¼ inf

h

Z
X
jrhj2 dx; ð3Þ
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yields

ht ¼ Dh: ð4Þ

We then solve (2) to steady state starting from initial conditions given by

h0 ¼ tan�1 v0
u0

� �
; h 2 ½0; 2pÞ; ð5Þ

using techniques to be described below. We then use U ¼ ðcos h; sin hÞ to recover our final solution. Note

that the constraint, jU j ¼ 1, is automatically satisfied as we only evolve h.

2.1. Adaptive Riemann surface method

As noted in [13], the numerical solution of (2) using a straightforward finite difference scheme to ap-

proximate derivatives of h would have difficulties because of the discontinuity at 0 (and any integer multiple

of 2p). In that work the author circumvented this problem by approximating the two point finite difference,

Dh, by sinðDhÞ. As the Taylor series of sin x � xþOðx3Þ, we can see that this method loses accuracy when

jDhj is large. For example, if two-point finite differences are used and h is always 0 or p, then all derivatives
vanish and the surface will not be processed.

In order that we do not smear the discontinuity or create spurious oscillations, when taking finite dif-

ferences we use the value of hðsÞ þ 2kp, where k 2 Z, hðsÞ � tan�1ðU2ðsÞ=U1ðsÞÞ, at a stencil point s which
minimizes jhðsÞ � hðs0Þj, where s0 is a chosen point of the stencil.

For example, in a discrete formulation in two dimensions, if we would like to approximate hx using

hxðxi; yjÞ �
hiþ1;j � hi�1;j

2Dx
;

then we would instead find k0 2 Z that minimizes

jðhiþ1;j þ 2pk0Þ � hi�1;jj;

and then take

hxðxi; yjÞ �
ðhiþ1;j þ 2pk0Þ � hi�1;j

2Dx
:

Of course for a surface with only one discontinuity we do not need to search over all values in Z, just in the

set f�1; 0; 1g. Using this method the discontinuity has no effect on the approximation of the derivative.

We then evolve the solution to ht ¼ LðhÞ, equivalent with (2), using

hnþ1 ¼ hn þ DtðLðhÞÞ;

at each point and then repeat the evolution process after setting hn ¼ hnþ1 in X.
We can also say that this method is analogous to the essentially nonoscillatory (ENO) interpolation

methods used for conservation laws [10], except that instead of having an adaptive stencil we have an

adaptive Riemann surface.

2.2. Multiple parameterization method

Another formulation that is similar (and in most cases equivalent), is the method of choosing a pa-

rameterization of S1 such that the discontinuity in h is moved away from the region where finite differences
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are being applied. If we are advancing the solution at a point xi;j this could mean creating a parameteri-

zation where hi;j ¼ p, assuming U is sufficently smooth and the values of U near xi;j are similar to those at

xi;j. If the values of U near xi;j are not similar to those at xi;j then we can choose a different parameterization
such as one that sets the mean of hk;l ¼ p, where the xk;l range over all the nodes of the finite difference

stencil being applied.

This procedure means that for each gridpoint xi;j we are creating a unique parameterization of S1, and

thus when we derive an equivalence similar to the one in (3), we will have a unique formulation

E ¼ inf
h

Z
X
Fi;jðhÞdx; ð6Þ

for each xi;j, where Fi;j may involve differential operations. The subsequent minimization by finding the
Euler–Lagrange equations and applying gradient descent will then give the PDE in h

oh
ot

¼ � oE
oh

; ð7Þ

to be solved at each xi;j. Also note that at each time tn the Ui;j are changed, so the parameterization at xi;j will
be different at time tnþ1.

This use of many parameterizations may seem like a difficulty, but fortunately the PDEs (7) are all very
similar, as will be shown below.

Advancing the solution to (7) for one timestep using a forward-Euler discretization in time is as follows:

1. Assume that ðu; vÞ ¼ Un 2 S1 is given at time t ¼ tn on a two-dimensional discrete grid fxi;jg of X.
2. When calculating spatial derivatives needed in (7) at the point xi;j, find all points that will be used in the

stencils, and call this set Si;j.
3. Choose a particular vector w that will uniquely determine the parameterization of S1 when we set the

hðwÞ ¼ 0, where hðwÞ is the h corresponding to the vector w (note that there is a difference in the meaning

of hð�Þ from Section 2.1). Again, this can be chosen as w ¼ �Ui;j, or as w ¼ �averageSi;jðUk;lÞ, or in other
ways. In practice we have found that w ¼ �Ui;j works well, although hypothetically it may encounter

problems when the vector field U is highly oscillatory. We then have a perpendicular vector

w? � ð�w2;w1Þ, such that w;w? form the axes of the parameterization where h ¼ 0; p=2, respectively.
4. Create the parameter values hk;l for all points xk;l 2 Si;j by finding

hk;l � tan�1 uk;lw?
1 þ vk;lw?

2

uk;lw1 þ vk;lw2

� �
: ð8Þ

Note that this is equivalent to finding h using the relationship in (5) after a change of basis by multiplying
Uk;l by

M ¼ w1 w?
1

w2 w?
2

� ��1

¼ w1 w2

w?
1 w?

2

� �
;

which is also a rotation of by Uk;l by h0 by multiplying by the matrix

Rh0 ¼
cos h0 � sin h0
sin h0 cos h0

� �
;

where h0 ¼ p� hð�wÞ.
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5. Derive the energy functional EðhÞ by inverting the relationship

cos h
sin h

� �
¼ M

u
v

� �
;

which yields

u
v

� �
¼ M�1

1;1 cos hþM�1
1;2 sin h

M�1
2;1 cos hþM�1

2;2 sin h

� �
¼ f1ðhÞ

f2ðhÞ

� �
; ð9Þ

and then substituting ðf1ðhÞ; f2ðhÞÞ into (1) in place of ðu; vÞ to get EðhÞ.
6. Find the Euler–Lagrange equation for EðhÞ when minimizing with respect to h, and apply gradient de-

scent to arrive at the PDE (2) to be solved. Note that for a given energy functional (1) the PDEs that are

derived from the different parameterizations of S1 differ only in the coefficients of cos h and sin h, which
are determined exactly by the entries of the matrix M�1.

7. Advance the solution to ht ¼ LðhÞ using

hnþ1 ¼ hn þ DtðLðhÞÞ;

where all spatial derivatives of h in LðhÞ are approximated by finite differences using the hk;l where
xk;l 2 Si;j.

8. Recover the updated Unþ1
i;j using the relationship (9) with hnþ1.

Note that steps 5 and 6 are done prior to implementing the timestepping routine, so that once we have

found M�1 we can immediately use its entries to determine LðhÞ in step 7.

Example. Here we show two examples of the energies found in step 5. The first example is a p-harmonic

flow

inf
U ;jU j¼1

Z
X
jrU jp dx; ð10Þ

where

jrU j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2
i¼1

X2
j¼1

oUi

oxj

� �vuut : ð11Þ

If we know that at a given grid point we have chosen w;w? such that

M ¼ c �s
s c

� �
; and M�1 ¼ c s

�s c

� �
; ð12Þ

then

u
v

� �
¼ c cos hþ s sin h

�s cos hþ c sin h

� �
: ð13Þ

Substituting into (11), we get

jrU jp ¼ sin2 h
� �

c2
�h

þ ð � sÞ2
	

h2x

�
þ h2y

	
þ cos2 h
� �

s2
�

þ c2
�

h2x

�
þ h2y

	
� 2 cos h sin hðcs� scÞ h2x

�
þ h2y

	ip=2
¼ h2x

�
þ h2y

	p=2
; ð14Þ
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as s2 þ c2 ¼ 1. So we see that the energy functional is independent of the parameterization of S1 that we are

using.

A second example is

inf
U ;jU j¼1

Z
X
u2x þ v2y dx: ð15Þ

Given that we have the same M ;M�1 as in (12) we can derive

u2x þ v2y ¼ ½ � c sinðhÞhx þ s cosðhÞhx�2 þ


� s sinðhÞhy þ c cosðhÞhy

�2
¼ sin2 h c2h2x

�
þ s2h2y

	
þ cos2 h s2h2x

�
þ c2h2y

	
� 2 sin h cos h csh2x

�
� csh2y

	
: ð16Þ

In this case the functional depends on the parameterization of S1 that we choose.
Again we reiterate that the derivation of the PDE from the Euler–Lagrange equation of the energy

functional need only be done once for a general matrix M of the form (12), and then the values of s; c are

substituted in the discretization of the PDE when it is advanced at each gridpoint.
3. The S2 case

In three dimensions, we have the constrained minimization problem

EðUÞ ¼
Z
X
gðUÞdx; U ¼ ðu; v;wÞ 2 R3; ð17Þ

along with the constraint jU j ¼ 1. On S2 we have the parameterization

U � ðcos/ cos h; cos/ sin h; sin/Þ: ð18Þ

After substituting the functions of h;/ from (18) into (17), applying the gradient descent method yields a

system of equations:

oh
ot

¼ � oE
oh

; ð19Þ
o/
ot

¼ � oE
o/

: ð20Þ

Now we have not only the discontinuity in h, but also a singularity at / ¼ �p=2. We treat the singularity
in / by rotating our coordinate system so that when taking finite differences we are as far away from it

as possible. Thus our method in 3d is a generalization of the multiple parameterization method given in

2d.
3.1. Multiple parameterization method

Advancing the solution to (19) and (20) for one timestep using a forward-Euler discretization in time is

as follows:
1. Assume that ðu; v;wÞ ¼ Un 2 S2 is given at time t ¼ tn on a three-dimensional discrete grid fxi;j;kg of X.
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2. When calculating spatial derivatives needed in (19) and (20) at the point xi;j;k, find all points that will be

used in the stencils, and call this set Si;j;k.
3. Choose a particular vector a that will uniquely determine the parameterization of S2. This can be chosen

as a ¼ Ui;j;k, or in other ways such as the mean of the Ul;m;n 2 Si;j;k. In the parameterization this vector
will have values ðh;/Þ ¼ ðp; 0Þ.

4. Create the parameter values hl;m;n;/l;m;n for all points xl;m;n 2 Si;j;k by first projecting onto a new basis by

multiplying Ul;m;n by M :

W ¼ MU t
l;m;n ¼

cos/0 cos h0 � cos/0 sin h0 � sin/0

sin h0 cos h0 0

sin/0 cos h0 � sin/0 sin h0 cos/0

2
4

3
5U t

l;m;n;

where

h0 ¼ p� hðaÞ and /0 ¼ /ðaÞ:

The matrix M is a rotation matrix that is the composition R/0
Rh0 of the two matrices:

Rh0 ¼
cos h0 � sin h0 0

sin h0 cos h0 0

0 0 1

2
4

3
5;
R/0
¼

cos/0 0 � sin/0

0 1 0

sin/0 0 cos/0

2
4

3
5:

The columns of M�1 ¼ M t give us the basis of vectors onto which we are projecting U , and which act as

the x; y; z vectors do in the standard basis ðe1; e2; e3Þ. Note that the first column of M�1 is

cosð/ðaÞÞ cosðp� hðaÞÞ
� cosð/ðaÞÞ sinðp� hðaÞÞ

� sinð/ðaÞÞ

0
@

1
A ¼

� cosð/ðaÞÞ cosðhðaÞÞ
� cosð/ðaÞÞ sinðhðaÞÞ

� sinð/ðaÞÞ

0
@

1
A ¼ �at;

so that the discontinuity in h and the singularity in / have been moved away from the region of com-

putation. We then use the relationships

/ ¼ tan�1 W3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W 2

1 þ W 2
2

p
 !

; h ¼ tan�1 W2

W1

� �
; ð21Þ

to determine the values of hl;m;n;/l;m;n in our new parameterization.

5. Derive the energy functional Eðh;/Þ by inverting the relationship

cos/ cos h
cos/ sin h

sin/

0
@

1
A ¼ M

u
v
w

0
@

1
A;

which yields

u
v
w

0
@

1
A ¼ M�1

cos/ cos h
cos/ sin h

sin/

0
@

1
A ¼

f1ðh;/Þ
f2ðh;/Þ
f3ðh;/Þ

0
@

1
A; ð22Þ

and then substituting ðf1ðh;/Þ; f2ðh;/Þ; f3ðh;/ÞÞ into (17) in place of ðu; v;wÞ to get Eðh;/Þ.
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6. Find the Euler–Lagrange equations for Eðh;/Þ when minimizing with respect to h;/, and apply gradient

descent to arrive at the PDEs (19) and (20) to be solved. Note that as in the 2d case, for a given energy

functional (17) the PDEs that are derived from the different parameterizations of S2 differ only in the

coefficients of cos/ cos h; cos/ sin h; and sin/, which are determined exactly by the entries of the matrix
M�1.

7. Advance the solution to ht ¼ Lðh;/Þ;/t ¼ Jðh;/Þ using

hnþ1 ¼ hn þ DtðLðh;/ÞÞ;
/nþ1 ¼ /n þ DtðJðh;/ÞÞ;

where all spatial derivatives of h;/ in L; J are approximated by finite differences using the hl;m;n;/l;m;n

where xl;m;n 2 Si;j;k.
8. Recover the updated Unþ1

i;j;k using the relationship (22) with hnþ1;/nþ1.
Note that M and M�1 ¼ M t in both the S1 and S2 cases can be applied quickly by using a lookup table or

any other fast trigonometric evaluator, so the complexity of the algorithm is about the same as if the change

in parameterization was not applied.

Example. Here we show an example of the energy found in step 5. As we did for S1 we examine the p-
harmonic flow

inf
U ;jU j¼1

Z
X
jrU jp dx; ð23Þ

where

jrU j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

X3
j¼1

oUi

oxj

� �vuut : ð24Þ

If we know that at a given grid point we have chosen M such that

M�1 ¼ M t ¼
cĉ s cŝ
�sĉ c �sŝ
�ŝ 0 ĉ

2
4

3
5;

then

u
v
w

0
@

1
A ¼

cĉ cos/ cos hþ s cos/ sin hþ cŝ sin/
�sĉ cos/ cos hþ c cos/ sin h� ŝs sin/

�ŝ cos/ cos hþ ĉ sin/

0
@

1
A: ð25Þ

Substituting into (24), we get (omitting the intermediate calculations)

rUp ¼ h2x

�
þ h2y þ h2z þ cos2 / /2

x

�
þ /2

y þ /2
z

		p=2
; ð26Þ

as s2 þ c2 ¼ 1; ŝ2 þ ĉ2 ¼ 1. So we see that the energy functional is independent of the parameterization of S2

that we are using, like it was for p-harmonic flows in S1.
As is the case for S1, the derivation of the PDE from the Euler–Lagrange equation of the energy

functional need only be done once for a general matrix M , and then the values of s; c; ŝ; ĉ are substituted in

the discretization of the PDE when it is advanced at each gridpoint.
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4. Numerical examples

For the S1 case, we first perform the p-harmonic flow with p ¼ 2. This is the problem described in (3) and
(4). U ¼ ðu; vÞ is initialized as

uðx; yÞ ¼ x
jðx; yÞj þ 0:1gþ 0:6ð1þ ððxþ 1Þ=2Þ2 � ððy þ 1Þ=2Þ2Þ;
vðx; yÞ ¼ y
jðx; yÞj þ 0:1gþ 0:6ððxþ 1Þ=2� 2ðy þ 1Þ=2Þ;

where g is uniform random noise on ½�1; 1� for ðx; yÞ 2 ½�1; 1�2.
We prescribe Dirichlet boundary conditions of the minimal solution x=jxj. Vector plots of the initial and

final values of U are shown in Fig. 1, and h plots are shown in Fig. 2.

If the Neumann boundary conditions, oU=on ¼ 0, are used for the same problem, we obtain the results

shown in Figs. 3 and 4.

For the p-harmonic flow with p ¼ 1 in Fig. 5, we impose Neumann boundary conditions and run the
evolution on a set of vectors consisting of 4 distinct homogeneous regions with added noise. Note how the

‘‘edges’’ are preserved while the noise is removed.

For the S2 case we first perform the p-harmonic flow with p ¼ 1 for ðx; y; zÞ 2 ½�1; 1�3. The energy to be

minimized is

inf
U ;jU j¼1

Z
X
jrU jdx ¼ inf

h;/

Z
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jr/j2 þ cos2 /jrhj2

q
dx; ð27Þ

which, by gradient descent, gives the time-dependent partial differential equations:

/t ¼ r � r/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jr/j2 þ cos2 /jrhj2

q
0
B@

1
CAþ sin/ cos/jrhj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jr/j2 þ cos2 /jrhj2
q ; ð28Þ
Fig. 1. U of p-harmonic flow with p ¼ 2, Dirichlet BCs.



Fig. 2. h of p-harmonic flow with p ¼ 2, Dirichlet BCs.

Fig. 3. U of p-harmonic flow with p ¼ 2, Neumann BCs.
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ht ¼ r � cos2 /
rhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jr/j2 þ cos2 /jrhj2
q

0
B@

1
CA: ð29Þ

Following [1,20], U is initialized as Uð�xÞ ¼ �x� �x0=j�x� �x0j, where �x0 ¼ ð0:6; 0:6; 0:6Þ. Dirichlet boundary

conditions of the minimal solution �x=j�xj are used. Vector plots are shown at initialization and at steady state

in Fig. 6.
In the above examples second-order central finite differences are used in conjunction with the methods

described in Sections 2 and 3. Time evolution is done using forward Euler advancement.

We also show an application to red, green and blue (RGB) color image denoising. A color image I is

decomposed into RGB channels, I ¼ ðIR; IG; IBÞ 2 R3, from which we can extract the brightness

jI j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2R þ I2G þ I2B

p
, and the chromaticity I=jI j ¼ ðIR; IG; IBÞ=jI j 2 S2. In Fig. 7, we add noise to the chro-



Fig. 4. h of p-harmonic flow with p ¼ 2, Neumann BCs.

Fig. 5. U of p-harmonic flow with p ¼ 1, Neumann BCs.

Fig. 6. U of p-harmonic flow with p ¼ 1, Dirichlet BCs.
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Fig. 7. Color denoising, p-harmonic flow with p ¼ 1, Neumann BCs. Left–right: original, noisy, denoised. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article.)
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maticity vectors only, leaving the brightness unchanged. Gaussian noise is added to 50% of the vectors, and
then they are denoised by running a p-harmonic flow with p ¼ 1 solving the PDEs given in (28) and (29) for

a two-dimensional domain. If noise had been added to the brightness as a grayscale image, then this could

have been denoised separately, see [5,11,14–16,18].
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