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Self-Repelling Snakes for Topology-Preserving
Segmentation Models

Carole Le Guyader and Luminita A. Vese, Member, IEEE

Abstract—The implicit framework of the level-set method has
several advantages when tracking propagating fronts. Indeed, the
evolving contour is embedded in a higher dimensional level-set
function and its evolution can be phrased in terms of a Eulerian
formulation. The ability of this intrinsic method to handle topo-
logical changes (merging and breaking) makes it useful in a wide
range of applications (fluid mechanics, computer vision) and
particularly in image segmentation, the main subject of this paper.
Nevertheless, in some applications, this topological flexibility
turns out to be undesirable: for instance, when the shape to be
detected has a known topology, or when the resulting shape must
be homeomorphic to the initial one. The necessity of designing
topology-preserving processes arises in medical imaging, for
example, in the human cortex reconstruction. It is known that
the human cortex has a spherical topology so throughout the
reconstruction process this topological feature must be preserved.
Therefore, we propose in this paper a segmentation model based
on an implicit level-set formulation and on the geodesic active
contours, in which a topological constraint is enforced.

Index Terms—Additive operator splitting (AOS) scheme,
geodesic active contours, level-set method, segmentation, topology
preservation.

I. INTRODUCTION

SEGMENTATION processing mainly consists of detecting
and visualizing the boundaries of the objects contained in

a given image. One of the well-known tools to perform this
partition of the image is the active contour model (also called
snake model, or deformable model), as proposed in the work by
Kass et al.[17]. Starting with a contour that encloses the object
to be detected, deformable models aim at making this contour
evolve so that it matches the edge of the considered object.

The shape taken by the contour throughout the process is re-
lated to an energy-minimization problem. The energy functional
that is minimized is a weighted combination of internal forces
(describing properties of elasticity and rigidity of the contour)
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and external forces (that guide the curve towards the boundary
of the object).

In this parametric model [17], the introduced functional is
nonintrinsic since it depends on the parameterization and is not
related to the geometry of the object to be detected. Besides,
in this framework, topology is maintained by the Lagrangian
formulation.

Extensive work has been done in a similar way by other
contributors, such as Cohen et al. [9], Cohen et al. [8], or
McInerney et al. [20], to improve the overall accuracy of the
modeling.

In Caselles et al. [5] and Kichenassamy et al. [29], the authors
focus on a particular active contour model (called “geodesic
active contours”) and prove that it is equivalent to finding a
geodesic curve in a Riemann space whose metrics is linked to
the image content.

To establish the evolution equation of the contour, a family
of curves depending on a parameter representing time
is defined. The derivative of the functional with respect to is
computed and one seeks the direction for which the energy de-
creases the most rapidly.

The level-set formulation can be straightforwardly derived
using the theory of curve evolution (see [21], [23], and [34], for
instance). The implicit representation of the curve via a level-set
function avoids parameterization issues. The discretization of
the problem is made on a fixed rectangular grid. The model
is intrinsic (if we define a new parameterization, the energy is
unchanged), allows for corners, and the initial condition does
not necessarily have the same topology as the resulting contour.
The geometric properties of the contour (curvature, unit normal
vector) are easily deduced from the level-set function.

The topological flexibility is a great benefit since it allows the
simultaneous detection of several objects in the image, which
was not possible in the case of parametric deformable models
without additional modifications or additional work. However,
in some applications, this flexibility is undesirable. For instance,
when the final shape must be homeomorphic to the initial one,
or when the topology of the final contour must be consistent
with the known topology of the object. In brain imaging, for
example, when located near a lobe, parts of the contour may fold
up and finally have a contact point (without merging), which
is not consistent with the spherical topology of the brain. The
contrast of the image can also be impaired and the number of
components of the object can thus be increased.

These remarks motivated the work presented next: to keep the
benefits of the level-set framework (parameter-free, intrinsic,
easily deduced geometrical properties of the front, etc.), we pro-
pose a new nonparametric topology-constrained segmentation
model based on the geodesic active contours [5], [29].

1057-7149/$25.00 © 2008 IEEE
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A. Prior Related Work

1) Work of Han et al.: Our work is much motivated by the
works [14]–[16], in which Han et al. propose a first approach
to preserve the topology of the implicit contour while the em-
bedding level-set function is evolving. The key idea of the model
lies in the concept of simple point from digital topology. The au-
thors assume that the topology of the zero level set is equivalent
to the topology of the boundary of the digital object it defines.
The topology-preservation problem is, therefore, simplified in
the following way. The topology of the implicit contour can
change only if the level-set function changes sign at a grid point.
This is only a necessary condition: not every change of sign of
the level-set function implies a topology change of the zero level
set and consequently of the digital object boundary. One needs
to introduce the concept of simple point to identify grid points
for which, when removed or added, topology is no longer pre-
served: a grid point is said to be simple if it can be added or
removed without changing the topology of the object. The com-
putation of two topological numbers is sufficient to characterize
simple points. Thus, Han et al. introduce an algorithm that at
each iteration monitors the changes of sign of the level-set func-
tion and prevents the level-set function from changing sign on
grid points which are not simple. The procedure is, therefore,
pixel based. The authors also stress the arbitrariness of the re-
sult produced by the algorithm, depending on the order in which
points are treated in the narrow band. Their method has been
applied to the geodesic active contour model [5]. Here, we pro-
pose to define, in the continuum case, a geodesic-active-con-
tour-based segmentation model that globally integrates a topo-
logical constraint emerging from a geometrical remark.

2) Work of Alexandrov and Santosa: Our work is also much
motivated by the interesting work [1], which is a curve evolu-
tion method based on level sets for shape optimization problems
arising in material science. The signed-distance function is used,
and their proposed method avoids overlaps of the narrow band
of the evolving contour. Their method, like ours, is a variational
one, but it has not been proposed for image segmentation. Only
artificial tests of shape optimization illustrate their point in [1].
In the case of a shape optimization problem, their model mini-
mizes , with , where is a
general shape optimization functional and is the topology
constraint term defined by

where and , are given
parameters. The unknown level-set function must be a signed-
distance function.

3) Work of Sundaramoorthi and Yezzi: Another related and
very interesting approach based on the knot energy is presented
in [36] and [37]. This also includes a penalty in the segmentation
functional in the form of a double integral that could prevent
a curve from changing topology. The relevant term that is
minimized inspired from the knot energy is

where is the usual Euclidean norm and . The topology
depends on the choice of the parameter . This term is also
coupled with the method from [15] and [16] to insure that the
topology is always preserved. Experimental results similar to
ours are presented in [36] and [37].

4) Work of Rochery et al.: This related work [25]–[27], al-
though devoted to a different problem, uses a similar idea to
ours to avoid that pieces of the same curve come in contact
to merge or break. The goal is to track thin long objects that
evolve, with applications to the automatic extraction of road
networks in remote sensing images. In [25]–[27], the authors
have proposed interesting non local regularization terms on a
curve parameterized by . In [25], these are of the
form ,
where , are the tangent vectors to the curve at points

, , and is again the Euclidean dis-
tance between the curve points and . The function

is chosen to be , thus
decreasing on . Other nonlocal forms are considered as
well, and geometric motions of thin long objects are obtained.
As in our case, the implicit representation by level sets is used
for implementation in [25] and [27]. In [26], the authors carry
on their ideas, but this time in a phase-field approach for the
representation of the motion. The work [25] is continued with
more details in [27]. However, although related, our proposed
approach is different in several aspects, as will be seen later.

5) Work of Cecil et al.: In a preliminary work, the Ph.D.
dissertation of Cecil [6] (in collaboration with Osher and the
second author), is also devoted to this problem, with satisfactory
partial results based on the active contour model without edges
[7]. The penalty is defined in a completely different way, but for
more details we refer the reader to [6].

Finally, for completeness, we also refer the reader to other
segmentation methods using variational approaches and active
contours using coupled curve evolution equations, even if
these are not directly related to the main ingredients of the
proposed approach. These include the work of Zhao et al. [43],
Samson et al. [30], [31], Chan and the second author [40],
Paragios and Deriche [24], Yezzi et al. [39], [42], and Dufour
et al. [13], among others.

The outline of the paper is as follows. Section II is devoted
to the depiction of the model. Section III presents the associ-
ated evolution problem (with its derivation details given in Ap-
pendix A, and its numerical discretization in Appendix B). We
conclude the paper with experimental results on various syn-
thetic and real images, in 2-D or 3-D, in Section IV.

II. DEPICTION OF THE MODEL

Let be a bounded open subset of , its boundary and
let be a given bounded image function defined by .
For the purpose of illustration, we consider .

1) Review of the Geodesic Active Contour Model: We first
recall one of the main ingredients of the proposed model, the
geodesic active contour model [5], [29] for boundary detection
using the gradient of the image data as an edge detector. Let us
denote by the set of closed parameterized curves such that

piecewise (these
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curves are parameterized by ). In [5] and [29], the
authors introduce the following minimization problem:

(1)

where is an edge-detector function sat-
isfying , strictly decreasing and .
This can be minimized using a gradient descent method by con-
structing a family of curves for , such that is
an initial curve, and as increases, decreases in time
towards a local minimizer.

The modeling is then cast in the level-set setting [11], [12],
[23]. The evolving contour is embedded in a higher dimensional
Lipschitz continuous function defined by

, with such that
and

on the interior of
on

The function is preferred to be a signed-distance function
for the stability of numerical computations (over time, one may
periodically reinitialize the level-set function as the signed-
distance function to the set ; see [28] and
[38], for instance).

Denoting by the 1-D Dirac measure, the length of the zero
level set is given by [43]: . We could have
straightforwardly phrased the segmentation problem (1) in the
level-set framework by minimizing the functional defined by

(2)

Computing the Euler–Lagrange equation and using a gra-
dient-descent method (similar to [7] and [43]), we would have
then obtained the following evolution equation:

(3)

being a regularization of the Dirac measure. As in [43],
the scale factor is replaced by , to extend the motion
uniformly to all level sets of .

2) Description of the Proposed Topology-Constrained
Problem: The segmentation method we propose is based on
the geodesic active contour model and includes a topological

Fig. 1. Geometrical characterization of points in a zone where the curve is to
split, merge, or have a contact point.

constraint based on a geometrical observation. In the following,
we assume that is a signed-distance function to :

if
if

(4)

In that case, satisfies . The gradient is per-
pendicular to the isocontours of . It points in the direction of
increasing , so the unit outward normal vector to the zero level
line at point is merely (more generally, the unit out-
ward normal vector to the level line at point is ).
Also, denoting a real number, the set is
obtained by shifting the points from the zero level line by a
quantity in the outward normal to , that is

Let us now consider two points belonging to
the zero level line of , close enough to each other, and let
and be the unit outward normal vectors to the contour
at these points. As shown in Fig. 1, when the contour is about to
merge, split or have a contact point (that is when the topology
of the evolving contour is to change), then

, denoting the Euclidean scalar product in .
Instead of working with only the points of the zero level line,

we propose to focus on the points contained in a narrow band
around the zero level line, more precisely, on the set of points

, being a level parameter. We plan
to minimize the following functional:

(5)

being the functional of the geodesic active contour model
(2) and the functional defined by (6), shown at the bottom
of the page. The potential such that

(6)
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measures the nearness of the two
points and . Here, denotes the 1-D Heaviside function,
and, therefore,

. In the calculations, the Heavi-
side function being not differentiable, it is replaced by
a smooth approximation denoted by . At last, setting

, if the unit outward
normal vectors to the level lines passing through and have
opposite directions, then the functional is not minimal. In
the following, we will use the notations
and we will denote by and by

. Here, is a tuning parameter
[note that we use the same notation for the edge
function in (1), and also for the function in (6),
but we think that there will be no confusion].

III. EVOLUTION PROBLEM

We give in Appendix A the details of the derivation of the
Euler–Lagrange equation associated with the minimization
problem , . Parameterizing the gra-
dient descent direction by an artificial time , the Euler–La-
grange equation in with (signed-dis-
tance function to the initial contour) and ,

is

We replace by (rescaling stage, see Zhao et al. [44]
and Alvarez et al. [2]) and consider Neumann homogeneous
boundary conditions: on with denoting the
unit outward normal to the boundary of . The speed of conver-
gence can be increased by adding the component
in the evolution equation, being a constant. Thus, we consider
the following evolution problem, shown at the bottom of the
page.

Details of the numerical implementation are given in Ap-
pendix B.

Fig. 2. Case where x belongs to C and y belongs to the l level line, x and y

close enough.

Fig. 3. Case where the two points are close enough and both belong to C.

Remark: Let us consider the zero level line . A calculation
gives that moves according to

being the unit inward normal vector, the curvature and
a constant. Consider now two points and close enough to

each other, belonging to and belonging to the narrow band
of width . In Fig. 2, the contour is about to merge or to have
a contact point. If we compute , we get a positive
quantity.

If we now take two points and close enough to each other
that both belong to (Fig. 3), the contribution
is almost zero. Last, in the case of Fig. 4,
is positive while is negative. Globally, the
contribution is zero in this part of the narrow band. Thus, in
critical cases (when the curve is about to change topology), we
can expect to have a positive quantity of the component

and then

on
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Fig. 4. Case where the two points are close enough, x belonging to C and y
belonging to the l level line or �l level line.

Fig. 5. Segmentation of the synthetic image with two disks when topological
constraints are applied. The parameters are: h = 1, � = 0:5, l = 1, size of the
window: 5, k = 0:3, � = 0:4. Iterations 0, 50, 100, 150, 180, 210.

the following term

can be interpreted as a repelling force,

which ensures topology preservation.
Remark: We continue here the comparison discussion be-

tween our approach and the one proposed by Rochery et al.
[25]–[27]. The main difference lies in the formulation and in
the implementation. In our approach, the energy is straightfor-
wardly formulated in the level-set framework and the gradient
descent PDE in the unknown is directly obtained from the
Euler–Lagrange equation. In Rochery et al.’s approach, the en-
ergy is first formulated in terms of curves, then the gradient de-
scent for the curve evolution is obtained with a speed . Only
after this step is the model cast in the level-set setting to imple-
ment the evolution. The speed must be accurately computed
and extended to all level lines. This is done in a two-step al-
gorithm: the speed is first evaluated in several steps by ex-
plicitly extracting the curve points from the zero-level line of

, (interpolation is also needed). Finally, the speed on the
contour is extended to all level lines by solving an additional
PDE, reinitialization to the distance function being needed as in
our approach. Note that in all variational relevant approaches in
[1], [25]–[27], [36], and [37], the penalty term is a line integral
(more difficult to handle in practice), unlike our case where we
have a region integral. To conclude this remark, in Rochery’s
work, the application is different, devoted to the detection of
long and thin objects, such as roads in satellite images and also
the function is different in our model.

IV. EXPERIMENTAL RESULTS

We conclude the paper by presenting several numerical re-
sults and comparisons on both synthetic and real images in 2–D
and 3-D. Our experimental tests and images are similar to those

Fig. 6. Segmentation of the synthetic image with two disks when no topolog-
ical constraint is enforced with the same parameters as above: the contour has
split into two components. Iterations 0, 50, 100, 140, 190, 210.

from the related prior work by Han et al. [15], [16] and by Sun-
daramoorthi and Yezzi [36], [37] and can, thus, be considered
as comparisons as well. In addition, we also show comparisons
with images used in these prior works, and we can conclude that
our proposed method qualitatively performs in a similar way, but
by a different approach. The experiments have been performed
on a 2.21-GHz Athlon with 1.00 GB of RAM. Parameters are
given together with a verification of the topology of the final
contours (surfaces), as suggested by one of the unknown ref-
erees. We also show comparisons with the geodesic active con-
tour model (without topology constraint), and we will see that
the use of the penalty term improves the accuracy of the seg-
mentation. Many of our numerical results are applied to medical
images; however, we do not really use any anatomical or phys-
iological information. By the illustrated results, we only wish
to demonstrate how the method performs in practice; for more
accurate segmentations in specialized medical applications, the
methods and the parameters must be modified and adapted to
such applications. For any of the tests, the parameter can be
simply set to zero in order not to constrain the topology.

We start with a synthetic image representing two discs
in Fig. 5 (similar to tests performed in related prior works
by Han et al. [15], [16] and by Sundaramoorthi and Yezzi
[36], [37]). We aim at segmenting these two discs while
maintaining the same topology throughout the process, which
means that we expect to get one path-connected component.
The initialization is made with a signed-distance function
that encloses the two balls and which is the cone defined by:

. A comparison
is made (Fig. 6) with the results obtained in the case where no
topological constraint is enforced.

The second example in Fig. 7 was taken from [16]. We can
thus compare our method with the result obtained in [16] on the
same image (and shown in the last image from Fig. 7, courtesy
of Han and Prince). One can observe that for our test, the two
middle fingers touch so with the use of classical geodesic active
contours, the evolving contour is going to merge and a hole will
then appear (see Fig. 8), which is undesirable. With our method,
the repelling forces prevent the curve from merging, as in [16]
and [15].

The method has been tested on complex slices of the brain.
We can see that the method enables us to get the details of the
brain envelope as in Fig. 9 without merges. In Fig. 10, this is
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Fig. 7. Segmentation of the hand image taken from [16] by the proposed
method with the topology constraint. The result is obtained with the following
parameters: h = 1, � = 0:5, l = 1, size of the window: 7, k = �0:2,
� = 0:2. Iterations 0, 150, 250, 500, 600 and result obtained in [14]–[16] by
Han et al.

Fig. 8. Steps of the process when no topological constraint is enforced, with
the same parameters.

Fig. 9. Obtained evolution when topological constraints are enforced. Itera-
tions 0, 100, 250, 450, 720, 800.

Fig. 10. Results obtained with topological constraints. Iterations 0, 50, 200,
400, 480, 700.

even more complicated since the slice shows two disconnected
parts that are very close to each other.

Fig. 11 illustrates the case where the initial condition is
made of two disjoint closed curves. We expect to have both
curves evolving without merging. This test is similar to tests
presented in related prior work by Han et al. [15], [16] and
Sundaramoorthi and Yezzi [36], [37].

We also show in Figs. 12–15 additional segmentation results
together with comparisons with the geodesic active contour
model. These visually show that the use of the topological
penalty term improves the accuracy of the segmentation results.
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Fig. 11. Segmentation of two blood cells that are very close to each other. It-
erations 0, 50, 100, and 360.

Fig. 12. Segmentation with topology constraint. Iterations 0, 100, 150, 200,
250, and 300.

A last and more extreme 2-D synthetic example (again in-
cluded only for the purpose of illustration) is given in Fig. 16.
The considered synthetic image is a black crown in a white back-
ground. The process is initialized with a curve inside the crown.
The topological constraints are applied so that the contour does
not split into two contours.

We conclude the paper by presenting 3-D experiments.
We first consider two black spheres in a white background
as depicted in Fig. 17, top. The process is initialized with a
larger sphere that encloses the two small spheres. We apply our
topology-preserving method and get the final result shown in
Fig. 17, bottom.

The second 3-D image consists of some slices of the brain. We
start with an initial condition such that the zero level set encloses
the brain. We apply both the topology-preserving model and the
classical geodesic active contour model. Owing to data noise/
quality impairment of the image, there exists handles in the gray

Fig. 13. Segmentation without topology constraint. Iterations 0, 100, 150, 200,
250, 300.

Fig. 14. Segmentation with topology constraint. Iterations 0, 100, 200, and 400.

Fig. 15. Segmentation without topology constraint. Iterations 0, 100, 200, and
400.

matter segmentation, which is not consistent with the known
spherical topology. When no topological constraint is enforced,
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Fig. 16. Segmentation of a torus with topology constraint (equivalent to the
disk) with the following parameters: h = 1, � = 0:5, l = 1, size of the
window: 5, k = �0:3, � = 0:4. Iterations 0, 50, 300, and 500.

Fig. 17. Initialization by the function � (x; y; z) =
(x� 25h) + (y � 25h) + (z � 25h) � 18. Top, in light blue, the zero

level set. Bottom, in light blue, the final result.

the handle appears on the top right corner in Fig. 19, which is not
the case when the constraint is integrated in the model, Fig. 18.

We end this section with a 3-D image representing an entire
brain, in Figs. 20 and 21. We expect to get a shape topologically
equivalent to the sphere. The details of the lobes are clearly ex-
tracted without contact points, there is no handle or anatomically
incorrect structures. The spherical topology is kept throughout
the process.

A. Numerical Verification and Validation of the Topology
Constraint

For our 2-D experiments, by visual inspection only we can see
that the topology constraint has been correctly imposed. How-
ever, for the 3-D results, visual inspection alone is not sufficient
to verify that the correct desired topology has been achieved.

To make sure of the algorithm efficiency, we have computed,
for each 3-D example, the Euler characteristic of the ob-
tained closed surface (extracted using the ’isosurface’ function
of Matlab). The Euler characteristic is a topological invariant
which, with the knowledge of the orientation of the considered
closed surface, allows to (uniquely) topologically classify this
surface.

Fig. 18. Two views of the final result when the topology constraint is enforced.

Fig. 19. Two views of the final result when no topology constraint is applied.

In the case of polyhedra, it is classically defined as follows:

with the number of vertices, the number of edges and
the number of faces.

It is known that for any polyhedron homeomorphic to a
sphere, the Euler characteristic is equal to 2. Thus, as we
aim at getting surfaces topologically equivalent to a sphere,
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Fig. 20. Top view of the final result.

Fig. 21. Front view of the final result.

we can expect to get a Euler characteristic equal to 2 in our
experiments.

In the example of the two spheres, we have obtained

, which gives

In the example related to Fig. 18, we have obtained

, which gives again

In comparison, the computation of the Euler characteristic in
the example related to Fig. 19 gives

, that is

This result is consistent with the theory. The Klein bottle and
the torus are the only closed surfaces with a Euler characteristic
equal to 0. Due to the hole in the top right part of the gray matter,
the obtained surface is topologically equivalent to a torus.

We conclude with the image of the whole brain corresponding
to Figs. 20 and 21. We have obtained

, that is

B. Discussion on the Choice and the Dependence of the
Parameters

The window size in the Gaussian function is small due to
computational cost and is related to the parameter (kept equal
to 1 in all our calculations). We choose the window size to
be 5 5 or 7 7, while the parameter is always defined as

. The values for are chosen small, inside the interval
, so that we do not have the penalty as the dominant

term. Still, with such small values, the topological constraint

is satisfied. The value of is chosen function of the CFL
condition of the numerical scheme, and, finally, the parameter
has the same meaning as in other deformable balloon models (to
speed up the evolution, and to force the motion inward or out-
ward). The distance between two close curves is thus dependent
on the values of , and of the Gaussian window size. With mesh
refinement near the contour, it would be possible to use smaller
such values, so that the curves can touch each other but without
changing the topology. This may be desirable for more accurate
segmentations of the cortical surface.

V. CONCLUSION

In this paper, we have addressed the issue of topology preser-
vation in segmentation problems. We have proposed a geodesic-
active-contour-based model that globally integrates a topolog-
ical constraint. This topological constraint is based on a geo-
metrical observation and can be seen as a repelling force in the
evolution problem. In terms of computational cost, the use of
an additive operator splitting (AOS) scheme leads to solve two
(three) decoupled tridiagonal linear subsystems. The computa-
tion time could be reduced by parallelizing the code even if in
most 2-D cases, computation time is of the order of a minute.
The topological constraint is easy to compute since we have re-
stricted the integration domain to a small window centered on
the current point. Regarding the parameters, the CFL conditions
enable us to have an estimate of parameters , , and . The
level parameter has been chosen equal to 1 in all the tests in
order not to constrain too much the model and to preserve the
fine details of the boundaries. It may be interesting and useful
to apply the proposed penalty term to other segmentation ap-
proaches, including region-based methods.

APPENDIX A
DERIVATION OF THE EULER-LAGRANGE EQUATIONS

In the sequel, the Euler–Lagrange equation associated to
problem (5) is computed. It can be formally obtained as follows.
Let us set , with
and , being a small parameter
and a function like . The minimizer will satisfy

for all functions . One has

and a simple calculus gives
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Then see the equation shown at the bottom of the page.
We can switch and in the first integral and we get as first

component

Assuming that we can interchange the order of integration,
we get as first component

For the second component, the same reasoning is applied. We
switch and in the second part of the component. Assuming

once again that we can interchange the order of integration, we
have

Integrating by parts with respect to , interchanging the order
of integration and setting the necessary boundary conditions to
zero, we obtain

for all .
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Using (3), we deduce that the obtained Euler–Lagrange equa-
tion formally is

with associated boundary conditions.
After some intermediate computations, we eventually obtain

APPENDIX B
DESCRIPTION OF THE NUMERICAL ALGORITHM

For the discretization stage, we use an AOS scheme, and we
follow Weickert et al. (see [41] for more details), which allows
the decomposition of the initial 2-D problem into two 1-D sub-
problems. This splitting-based scheme is easy to implement and
requires a linear computational cost at each step.

To simplify the notation, we use a vectorial representation
of the function via a concatenation of the rows (respectively
columns) of the associated matrix. Thus, where
is the number of lines and the number of columns. The center
of gravity of a pixel coincides with the node of the mesh of
coordinates . Let us denote by the space step (assumed to
be equal to 1) and the time step. Let be an approximation
of . The considered discretization of the
problem is as follows:

with the entries of defined by

if

if ,

otherwise

and where represents the neighboring pixels of with re-
spect to direction .

The AOS scheme can be rewritten by means of the matrices
, . We obtain two discon-

nected linear systems that are both tridiagonal if one reorders
the nodes of the mesh in a different way for the second system.
The matrices are tridiagonal, strictly diagonally dominant
(which ensures uniqueness of the solution of both linear sys-
tems thanks to Gershgorin’s theorem for instance) and lead to
systems that can be solved computing Thomas algorithm with
linear complexity.

Weickert et al. [41] prove that all the coefficients of matrices
are non-negative and that the sum of the elements

of each row of is equal to one. Thus, if we neglect
the topological constraints and the component ,
it implies that each element of is computed from a convex
combination of components of . The discrete minimum-max-
imum principle applies and stability is, therefore, guaranteed for
any time step.

Regarding the constant motion , the function
controls this term and annihilates the action of the force

when the curve is approaching edge points. A classical dis-
cretization of the gradient can lead to the creation of loops.
The entropy condition [34] prevents the curve from propagating
where it has already been and thus avoids loop formation. The
resulting discretization of the gradient comes from the hyper-
bolic conservation laws and can be found in [34]

if

if

using the classical finite-difference operators
and in 1-D.

As for the topological constraint, we have used a regular-
ization of the Heaviside function (see [7]) defined by
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The partial derivatives are approximated using central finite dif-
ference schemes. While the topological constraint introduced in
the modeling enables us to use the level-set framework to track
interfaces whose topology must be preserved, the main draw-
back is computational cost due to the nonlocal term appearing
in the evolution equation. This limitation can be overcome by
slightly simplifying the issue: instead of computing the nonlocal
term over the whole grid, we compute it over a square centered
on the current point. The window size depends on the level pa-
rameter . This simplification looks realistic since we are mainly
interested in the behavior of in a neighborhood of the current
point.

Last, we have assumed that is a signed-distance function.
Thus, we need to periodically apply a reinitialization process.
We have used the scheme obtained by Russo and Smereka in
[28], defined by the first equation at the bottom of the page with

, the distance of node from the interface and where (see
the second equation shown at the bottom of the page).

In the 3-D case, the numerical scheme is defined in a same
manner as in the 2-D case, and thus avoids loop formation
(see the third equation shown at the bottom of the page) with

defined as previously done and the Euclidean
scalar product in .
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