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ABSTRACT

An algorithmfor the simultaneousfilling-in of texture andstruc-
ture in regionsof missingimageinformationis presentedin this
paper. The basic idea is to first decomposethe image into the
sumof two functionswith differentbasiccharacteristics,andthen
reconstructeachoneof thesefunctionsseparatelywith structure
and texture filling-in algorithms. The first function usedin the
decompositionis of boundedvariation,representingthe underly-
ing imagestructure,while the secondfunction capturesthe tex-
tureandpossiblenoise.Theregion of missinginformationin the
boundedvariationimageis reconstructedusingimageinpainting
algorithms,while the sameregion in the texture imageis filled-
in with texture synthesistechniques.The original imageis then
reconstructedaddingbackthesetwo sub-images.Thenovel con-
tribution of this paperis then in the combinationof thesethree
previously developedcomponents,imagedecompositionwith in-
paintingandtexturesynthesis,whichpermitsthesimultaneoususe
of filling-in algorithmsthataresuitedfor differentimagecharac-
teristics. Thenovelty in theapproachis to performfilling-in in a
domaindifferentfrom the original given imagespace.Examples
on realimagesshow theadvantagesof this proposedapproach.

1. INTRODUCTION AND ALGORITHM OVERVIEW

The filling-in of missinginformationis a very importanttopic in
imageprocessing,with applicationsincluding imagecodingand
wirelessimage transmission(e.g., recovering lost blocks), spe-
cial effects(e.g.,removal of objects),andimagerestoration(e.g.,
scratchremoval). Thebasicideabehindthealgorithmsthathave
beenproposedin theliteratureis to fill-in theseregionswith avail-
ableinformationfrom theirsurroundings.This informationcanbe
automaticallydetectedasin [3, 7], or hintedby theuserasin more
classicaltexturefilling techniques[6, 8, 14].

Thealgorithmsreportedin theliteraturebestperformfor pure
texture,[7, 8,14], or purestructure,[1, 2,3,5] (seealsoearlywork
in [12], which shows theuseof theBurt-Adelsonpyramidfor the
reconstructionof smoothregions). This meansthat for ordinary
imagessuchastheonein Figure1, differenttechniqueswork bet-
ter for differentparts.In [13], it wasshown how to automatically
switch betweenthe puretexture andpurestructurefilling-in pro-
cess. This is doneby analyzingthe areasurroundingthe region
to befilled-in (inspiredby [9]), andselectingeithera texturesyn-
thesisor a structureinpaintingtechnique.Sincemostimageareas
arenotpuretextureor purestructure,thisapproachprovidesjusta
first attemptin thedirectionof simultaneoustextureandstructure
filling-in (attemptwhichwasfoundsufficient for theparticularap-
plicationof transmissionandcodingpresentedin thepaper).It is
the goal of this paperto advancein this directionandproposea

new techniquethatwill performboth texturesynthesisandstruc-
tureinpaintingin all regionsto befilled-in.

Thebasicideaof ouralgorithmis presentedin Figure2,which
shows a real result from our approach.The original image(first
row) is first decomposedinto thesumof two images,onecapturing
the basicimagestructureandonecapturingthe texture (andran-
domnoise),secondrow. This followstherecentwork by Veseand
Osherreportedin [15] (which is inspiredby [11]). The first im-
ageis inpaintedfollowing thework by Bertalmio-Sapiro-Caselles-
Ballesterdescribedin [3], while the secondone is filled-in with
a texture synthesisalgorithm following the work by Efros and
Leung in [7], third row. The two reconstructedimagesare then
addedback togetherto obtain the reconstructionof the original
data,fourth row. In otherwords, the generalidea is to perform
structureinpaintingandtexture synthesisnot on the original im-
age,but on a setof imageswith very differentcharacteristicsthat
areobtainedfrom decomposingthegivendata.Thedecomposition
is suchthatit producesimagessuitedfor thesetwo reconstruction
algorithms.This approachoutperformsbothimageinpaintingand
texturesynthesiswhenappliedseparately.

Theproposedalgorithmhasthenthreemainbuilding blocks:
Image decomposition,image (structure)inpainting, and texture
synthesis.Thebasiccharacteristicsof thesecomponentsare:

1. The imagedecompositionis not a simple low-pass+high-
passdecomposition,sinceboth imagescontainhigh fre-
quencies,onein theform of edgesandtheotherin theform
of oscillations.

2. Theimageinpaintingpartperformsverygoodfor non-textured
images,as the BV oneobtainedfrom the decomposition.
This imageinpaintingis basedon high orderpartialdiffer-
entialequationsthatpropagateinformationsurroundingthe
holein thedirectionof theisophotes.

3. The texture synthesisalgorithmsperformsvery good for
textures,astheoscillatorypartobtainedfrom thedecompo-
sition. Moreover, thiscanbeenhancedwith theBV part[4].
This particularalgorithmworks by filling-in pixels inside
theholeoneata time,basedonmatchingtheirsurrounding
neighborhoodwith theavailableimageinformation.

The particularselectionsfor eachone of theseparts,which
have beenshown to producestate-of-the-artresultsin eachoneof
theirparticularapplications,outperformpreviouslyavailabletech-
niqueswhencombinedasproposedin thispaper. In theconcluding
remarkssectionwediscussthepossibleuseof otherapproachesto
addresseachoneof thesebuilding blocksin orderto further im-
proveon theresultsherereported.

Full detailsof thealgorithm,extensionsto color images,and
comparisonwith pureimageinpaintingandpureimagesynthesis
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canbefoundin [4] andatmountains.ece.umn.edu/� guille/inpainting.htm

2. CONCLUSIONS AND FUTURE DIRECTIONS

In this paperwe have shown the combinationof imagedecom-
positionwith imageinpaintingand texture synthesis.The basic
idea is to first decomposethe imageinto the sum of two func-
tions,onethat canbe efficiently reconstructedvia inpaintingand
onethatcanbeefficiently reconstructedvia texturesynthesis.This
permitsthesimultaneoususeof thesereconstructiontechniquesin
the imagedomainthey weredesignedfor. In contrastwith pre-
viousapproaches,bothimageinpaintingandtexturesynthesisare
appliedto the region of missinginformation, only that they are
appliednot to theoriginal imagerepresentationbut to the images
obtainedfrom thedecomposition.Theobtainedresultsoutperform
thoseobtainedwhenonly oneof the reconstructionalgorithmsis
appliedto eachimageregion.

Furtherexperimentsare to be carriedout to obtain the best
combinationof imagedecomposition,imageinpainting,andtex-
ture synthesis.Sincea numberof algorithmsexist for eachone
of thesethreekey components,thecombinationthatprovidesthe
bestvisual resultsis an interestingexperimentaland theoretical
researchtopic.
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Fig. 1. Exampleof imagewith bothtextureandstructure.



Fig. 2. Basicalgorithmproposedin this paper. Theoriginal imagein thefirst row (a sectionof Figure1) is decomposedinto a structure
imageandatextureimage,[15], secondrow. Notehow theimageontheleft mainlycontainstheunderlyingimagestructurewhile theimage
on the right mainly containsthe texture. Thesetwo imagesarereconstructedvia inpainting,[3], andtexture synthesis,[7], respectively,
third row. The imageon the left managedto reconstructthe structure(seefor examplethe chair vertical leg), while the imageon the
right managedto reconstructthebasictexture. Theresultingtwo imagesareaddedto obtainthereconstructedresult,lastrow, whereboth
structureandtexturearerecovered.
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