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ABSTRACT

An algorithmfor the simultaneousilling-in of texture andstruc-
turein regions of missingimageinformationis presentedn this

paper The basicideais to first decomposdhe imageinto the

sumof two functionswith differentbasiccharacteristicsandthen
reconstruceachone of thesefunctionsseparatelywith structure
and texture filling-in algorithms. The first function usedin the

decompositioris of boundedvariation, representinghe underly-
ing image structure,while the secondfunction capturesthe tex-

ture andpossiblenoise. The region of missinginformationin the

boundedvariationimageis reconstructedisingimageinpainting
algorithms,while the sameregion in the texture imageis filled-

in with texture synthesigechniques.The original imageis then
reconstructeéddingbackthesetwo sub-imagesThe novel con-
tribution of this paperis thenin the combinationof thesethree
previously developedcomponentsimagedecompositiorwith in-

paintingandtexturesynthesisyhich permitsthesimultaneousise
of filling-in algorithmsthat are suitedfor differentimagecharac-
teristics. The novelty in the approachs to performfilling-in in a

domaindifferentfrom the original givenimagespace.Examples
onrealimagesshav theadantage®f this proposedapproach.

1. INTRODUCTION AND ALGORITHM OVERVIEW

Thefilling-in of missinginformationis a very importanttopic in
imageprocessingwith applicationsincluding imagecodingand
wirelessimage transmission(e.g., recovering lost blocks), spe-
cial effects(e.g.,removal of objects),andimagerestoration(e.g.,
scratchremoval). The basicideabehindthe algorithmsthathave
beenproposedn theliteratureis tofill-in theseregionswith avail-
ableinformationfrom their surroundingsThis informationcanbe
automaticallydetectedasin [3, 7], or hintedby theuserasin more
classicatexturefilling techniqueg6, 8, 14).
Thealgorithmsreportedn theliteraturebestperformfor pure
texture,[7, 8, 14, or purestructure[1, 2, 3, 5] (seealsoearlywork
in [12], which shavs the useof the Burt-Adelsonpyramidfor the
reconstructiorof smoothregions). This meansthat for ordinary
imagessuchastheonein Figurel, differenttechniquesvork bet-
ter for differentparts. In [13], it wasshavn how to automatically
switch betweenthe puretexture and pure structurefilling-in pro-
cess. This is doneby analyzingthe areasurroundingthe region
to befilled-in (inspiredby [9]), andselectingeithera texture syn-
thesisor a structureinpaintingtechnique.Sincemostimageareas
arenot puretextureor purestructurethis approactprovidesjusta
first attemptin the directionof simultaneousexture andstructure
filling-in (attemptwhichwasfoundsufficientfor the particularap-
plication of transmissiorandcodingpresentedn the paper).It is
the goal of this paperto advancein this directionand proposea
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new techniquethatwill performbothtexture synthesisandstruc-
tureinpaintingin all regionsto befilled-in.

Thebasicideaof ouralgorithmis presenteéh Figure2, which
shaws a real resultfrom our approach.The original image (first
row) is first decomposeihto thesumof two imagespnecapturing
the basicimagestructureand one capturingthe texture (andran-
domnoise),secondow. Thisfollowstherecentwork by Veseand
Osherreportedin [15] (which is inspiredby [11]). The first im-
ageis inpaintedfollowing thework by Bertalmio-Sapiro-Caselles-
Ballesterdescribedn [3], while the secondoneis filled-in with
a texture synthesisalgorithm following the work by Efros and
Leungin [7], third row. The two reconstructedmagesare then
addedback togetherto obtain the reconstructiorof the original
data,fourth row. In otherwords, the generalideais to perform
structureinpainting and texture synthesisnot on the original im-
age,but on a setof imageswith very differentcharacteristic¢hat
areobtainedrom decomposinghegivendata. Thedecomposition
is suchthatit producesmagessuitedfor thesetwo reconstruction
algorithms.This approactoutperformshothimageinpaintingand
texture synthesisvhenappliedseparately

The proposedalgorithmhasthenthreemain building blocks:
Image decomposition,jmage (structure)inpainting, and texture
synthesisThebasiccharacteristicef thesecomponentsire:

1. The imagedecompositioris not a simple low-pass+high-
passdecomposition since both imagescontain high fre-
guenciespnein theform of edgesandtheotherin theform
of oscillations.

2. Theimageinpaintingpartperformsvery goodfor non-textured
images,asthe BV one obtainedfrom the decomposition.
Thisimageinpaintingis basedon high orderpartial differ-
entialequationghatpropagteinformationsurroundinghe
holein thedirectionof theisophotes.

3. The texture synthesisalgorithmsperformsvery good for
textures,astheoscillatorypartobtainedrom thedecompo-
sition. Moreover, thiscanbeenhanceavith theBV part[4].
This particularalgorithmworks by filling-in pixels inside
theholeoneatatime, basedon matchingtheir surrounding
neighborhoodvith the availableimageinformation.

The particularselectionsfor eachone of theseparts, which
have beenshavn to producestate-of-the-arntesultsin eachoneof
their particularapplicationsputperformpreviously availabletech-
nigueswhencombinedasproposedn this paper In theconcluding
remarkssectionwe discusshe possibleuseof otherapproacheto
addressachone of thesebuilding blocksin orderto furtherim-
prove ontheresultsherereported.

Full detailsof the algorithm, extensionsto colorimages,and
comparisorwith pureimageinpaintingand pureimagesynthesis
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canbefoundin [4] andatmountains.ece.umn.eduguille/inpainting.htrfy] A. A. Efros and T. K. Leung, “Texture synthesisby non-

2. CONCLUSIONSAND FUTURE DIRECTIONS

In this paperwe have shavn the combinationof image decom-
positionwith imageinpainting and texture synthesis. The basic
ideais to first decomposdhe imageinto the sum of two func-
tions, onethat canbe efficiently reconstructedia inpaintingand
onethatcanbeefficiently reconstructedia texturesynthesisThis
permitsthe simultaneousiseof thesereconstructioriechniquesn
the imagedomainthey were designedfor. In contrastwith pre-
vious approachedjothimageinpaintingandtexture synthesisare
appliedto the region of missinginformation, only that they are
appliednot to the original imagerepresentatiobut to theimages
obtainedrom thedecompositionTheobtainedesultsoutperform
thoseobtainedwhenonly oneof the reconstructioralgorithmsis
appliedto eachimageregion.

Furtherexperimentsare to be carriedout to obtain the best
combinationof imagedecompositionjmageinpainting, and tex-
ture synthesis. Sincea numberof algorithmsexist for eachone
of thesethreekey componentsthe combinationthat providesthe
bestvisual resultsis an interestingexperimentaland theoretical
researchopic.
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Fig. 1. Exampleof imagewith bothtextureandstructure.
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Fig. 2. Basicalgorithmproposedn this paper The original imagein thefirst row (a sectionof Figure 1) is decomposeihto a structure
imageandatextureimage[15], secondow. Notehow theimageontheleft mainly containgheunderlyingimagestructurewhile theimage
on the right mainly containsthe texture. Thesetwo imagesarereconstructedia inpainting, [3], andtexture synthesis[7], respectiely,

third row. The imageon the left managedo reconstructhe structure(seefor examplethe chair vertical leg), while the imageon the
right managedo reconstructhe basictexture. Theresultingtwo imagesareaddedto obtainthereconstructedesult,lastrow, whereboth
structureandtexture arerecovered.
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