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IMAGE DECOMPOSITION USING TOTAL VARIATION AND
div(BMO)∗

TRIET M. LE† AND LUMINITA A. VESE†

Abstract. This paper is devoted to the decomposition of an image f into u + v, with u a
piecewise-smooth or “cartoon” component, and v an oscillatory component (texture or noise), in
a variational approach. Meyer [Oscillating Patterns in Image Processing and Nonlinear Evolution
Equations, Univ. Lecture Ser. 22, AMS, Providence, RI, 2001] proposed refinements of the total
variation model (Rudin, Osher, and Fatemi [Phys. D, 60 (1992), pp. 259–268]) that better represent
the oscillatory part v: the spaces of generalized functions G = div(L∞) and F = div(BMO) (this
last space arises in the study of Navier–Stokes equations; see Koch and Tataru [Adv. Math., 157
(2001), pp. 22–35]) have been proposed to model v, instead of the standard L2 space, while keeping
u a function of bounded variation. Mumford and Gidas [Quart. Appl. Math., 59 (2001), pp. 85–111]
also show that natural images can be seen as samples of scale-invariant probability distributions that
are supported on distributions only and not on sets of functions. However, there is no simple solution
to obtain in practice such decompositions f = u+ v when working with G or F . In earlier works [L.
Vese and S. Osher, J. Sci. Comput., 19 (2003), pp. 553–572], [L. A. Vese and S. J. Osher, J. Math.
Imaging Vision, 20 (2004), pp. 7–18], [S. Osher, A. Solé, and L. Vese, Multiscale Model. Simul.,
1 (2003), pp. 349–370], the authors have proposed approximations to the (BV,G) decomposition
model, where the L∞ space has been substituted by Lp, 1 ≤ p < ∞. In the present paper, we
introduce energy minimization models to compute (BV, F ) decompositions, and as a by-product we
also introduce a simple model to realize the (BV,G) decomposition. In particular, we investigate
several methods for the computation of the BMO norm of a function in practice. Theoretical,
experimental results and comparisons to validate the proposed new methods are presented.
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1. Introduction and motivations. In what follows, we assume that a given
grayscale image can be represented by a function (or sometimes distribution) f , de-
fined on an open, bounded, and connected subset Ω of R

2, with Lipschitz boundary
∂Ω. In general, Ω is a rectangle in the plane. Sometimes, we may assume that the
image f is defined everywhere in the plane (obtained by extension). We limit our
presentation to the two-dimensional case, but our results hold in any dimension.

We are interested in decomposing f into u+v via an energy minimization problem

inf
(u,v)∈X1×X2

{K(u, v) = F1(u) + λF2(v) : f = u + v},

where F1, F2 ≥ 0 are functionals and X1, X2 are spaces of functions or distributions
such that X1 = {u : F1(u) < ∞}, X2 = {v : F2(v) < ∞}. It is assumed that
f ∈ X1 + X2. The constant λ > 0 is a tuning parameter. Usually, F1 and F2 are
norms or seminorms of functional spaces arising in image analysis (i.e., Fi(·) = ‖·‖Xi).
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An important problem in image analysis is to separate different features in images.
For instance, in image denoising, f is the observed noisy version of the true unknown
image u, while v represents additive Gaussian noise of zero mean. Often in this case,
X1 ⊂ X2, f ∈ X2, and X1 is a space of functions “smoother” or less oscillating than
those in X2. However, sharp edges or boundaries have to be represented in u. Another
related problem is the separation of the geometric (cartoon) component u of f from
the oscillatory component v, representing texture or noise, of zero mean. In other
cases, u can be seen as a geometric or structure component of f , while v is clutter;
see [47]. A good model for K is given by a choice of X1 and X2 so that with the above
given properties of u and v, the (semi-) norms F1(u) = ‖u‖X1 and F2(v) = ‖v‖X2

are small. We give here two examples of image decomposition models by variational
methods that are most related with our framework. However, many other previous
work (variational or nonvariational) can be seen as decompositions of f into u + v.
In the Mumford and Shah model for image segmentation [30], f ∈ L∞(Ω) ⊂ L2(Ω)
is split into u ∈ SBV (Ω) [28], [3] (a piecewise-smooth function with its discontinuity
set Ju composed of a union of curves of total finite length), and v = f − u ∈ L2(Ω)
represents noise or texture. The problem in the weak formulation is [30], [28]

inf
(u,v)∈SBV (Ω)×L2(Ω)

{∫
Ω\Ju

|∇u|2 + αH1(Ju) + β‖v‖2
L2(Ω), f = u + v

}
,(1)

where H1 denotes the one-dimensional Hausdorff measure, and α, β > 0 are tuning
parameters. With the above notation, the first two terms in the energy from (1) com-
pose F1(u), while the third term makes F2(v). A related decomposition is obtained
by the total variation minimization model of Rudin, Osher, and Fatemi [34] for im-
age denoising, where SBV (Ω) is substituted by the slightly larger space BV (Ω) of
functions of bounded variation that is defined by [18], [4], [5].

Definition 1.1. Let u ∈ L1(Ω); we say that u is a function of bounded variation
in Ω if the distributional derivative of u is representable by a finite Radon measure in
Ω, i.e., if ∫

Ω

u
∂φ

∂xi
dx = −

∫
Ω

φDiu ∀φ ∈ C1
c (Ω), i = 1, 2,

for some R
2-valued measure Du = (D1u,D2u) in Ω. The vector space of all functions

of bounded variation in Ω is denoted by BV (Ω).

Another equivalent definition of the space BV (Ω) (as a dual space) is obtained
by the following definition.

Definition 1.2. Let u ∈ L1(Ω). The variation of u in Ω is defined by

V (u,Ω) := sup

{∫
Ω

u(div�g)dx : �g ∈
[
C1

c (Ω)
]2
, ‖�g‖L∞(Ω) ≤ 1

}
.

Proposition 1.3. Let u ∈ L1(Ω). Then u ∈ BV (Ω) if and only if V (u,Ω) < ∞.
In addition, V (u,Ω) = |Du|(Ω) for any u ∈ BV (Ω).

Note that when u ∈ W 1,1(Ω), then Du = ∇udx, but the inclusion W 1,1(Ω) ⊂
BV (Ω) is strict. However, by slight abuse of notation, we will sometimes use |Du|(Ω) =∫
Ω
|∇u|dx = |u|BV (Ω) for u ∈ BV (Ω), where |u|BV (Ω) is the seminorm. Equipped with

‖u‖BV (Ω) := |Du|(Ω) + ‖u‖L1(Ω), BV (Ω) becomes a Banach space.
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The Rudin–Osher–Fatemi (ROF) decomposition model can be defined as [34]

inf
(u,v)∈BV (Ω)×L2(Ω)

{
J (u, v) = |u|BV (Ω) + λ‖v‖2

L2(Ω), f = u + v
}
,(2)

where λ > 0 is a tuning parameter. In the original total variation model, v represents
additive Gaussian noise of zero mean. This model provides a unique (BV (Ω), L2(Ω))
decomposition of f ∈ L2(Ω) for each λ > 0 (see [10] or [43] for a more general case).
The model is convex, easy to solve in practice, and denoises well piecewise-constant
images while preserving edges. However, it has some limitations. For instance, if f
is the characteristic function of a smooth set E of finite perimeter, the model should
produce u = f , v = 0. But this is not true for any finite value of λ [27], [39], [5].
Cartoon or BV pieces of f are sent to v, and the model does not always represent well
texture or oscillatory details, as we will see later. In [40], the authors have proposed a
hierarchical multiscale (BV (Ω), L2(Ω)) decomposition to reduce such artifacts. Also,
in [23], [2], it has been shown that natural images are not well represented by functions
of bounded variation.

We recall the following definition.
Definition 1.4. Let D(Ω) be the set of test functions in Ω, i.e., the set of

all functions φ on Ω that are infinitely differentiable and, together with all their
derivatives, are rapidly decreasing (i.e., remain bounded when multiplied by arbitrary
polynomials) near the boundary ∂Ω. The set of all distributions (linear continuous
functionals on D(Ω)) is denoted by D′(Ω).

Here we are interested in a better choice for the oscillatory component v or for
the space X2, which has to give small norms for oscillatory functions, while keeping
X1 = BV (Ω). Our discussion follows Meyer [27], together with the motivations
from Mumford and Gidas [29]. The idea is to use weaker norms for the oscillatory
component v, instead of the L2(Ω) norm, and this can be done by the use of generalized
functions. For instance, Meyer suggests the use of v ∈ (BV (Ω))′, the dual of the
BV (Ω) space, having the inclusions BV (Ω) ⊂ L2(Ω) ⊂ (BV (Ω))′. However, there is
no known integral representation of continuous linear functionals on BV (Ω). There is
a result that describes the dual of the SBV (Ω) space by De Pauw [17], but it leads to
a complicated representation. To overcome this, Meyer [27] suggests approximating
(BV (Ω))′ by another slightly larger space, the dual (W 1,1

0 (Ω))′ = W−1,∞(Ω). This is
equivalent with the following space of distributions [1], [27].

Definition 1.5. Let G = G(Ω) consist of distributions T in D′(Ω) which can be
written as

T = div(�g) in D′(Ω), �g = (g1, g2) ∈ (L∞(Ω))2;

i.e., T (φ) = −
∫
Ω
(g1

∂φ
∂x + g2

∂φ
∂y ) for any φ ∈ D(Ω).

Define ‖.‖G on G by

‖T‖G = inf
{
‖
√

(g1)2 + (g2)2‖L∞(Ω) : T = div(�g) in D′(Ω), �g ∈ L∞(Ω,R2)
}
.

We recall that W 1,1
0 (Ω) is the closure of C∞

0 (Ω) in the space W 1,1(Ω). Functions
in W 1,1

0 (Ω) have zero trace on ∂Ω. The space G is a Banach space, because it is
isometrically isomorphic with the dual space (equipped with the dual norm) of the
normed space W 1,1

0 (Ω) equipped with ‖u‖W 1,1
0 (Ω) =

∫
Ω
|∇u|. We denote this dual

space in the usual way by W−1,∞(Ω).
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Remark 1. When Ω is open, bounded, and connected in R
2 with Lipschitz bound-

ary, under the additional (technical) assumption f ∈ L2(Ω), we have the following:
if f is decomposed into u + v by a (BV,X2) model, with u ∈ BV (Ω) ⊂ L2(Ω) and
v = f − u ∈ X2(Ω), then we must have v ∈ L2(Ω). Since v corresponds to additive
noise and texture of zero mean

∫
Ω
v = 0, Aubert and Aujol [6], also following [27],

consider the subspace X2 = {v ∈ L2(Ω) :
∫
Ω
v = 0} of both L2(Ω) and G(Ω) which

coincides with the space {v = div(�g) : �g · �n = 0}. However, the minimizers given
by the (BV (Ω), G(Ω)) model will be different from the minimizers given by the ROF
model [34].

We would like now to introduce the space F (proposed earlier in [25] for the
Navier–Stokes equations and in [27] as a suitable space for modeling textures instead of
the space G). Let us work for a moment on the entire space R

2 (assuming, for instance,
that the data f is extended by zero or by reflection outside the open rectangle Ω).

Definition 1.6 (John–Nirenberg space of bounded mean oscillation). Let f ∈
L1
loc(R

2). We say that f belongs to BMO(R2) if the inequality

1

|Q|

∫
Q

|f − fQ| ≤ A

holds for all squares Q. (It is sufficient to consider squares with sides parallel with the
axis.) Here fQ = |Q|−1

∫
Q
f(x, y) denotes the mean value of f over the square Q. The

smallest such A is chosen to be the norm of f in BMO(R2), denoted by ‖f‖BMO(R2),
i.e.,

‖f‖BMO(R2) = sup
Q=square

1

|Q|

∫
Q

|f − fQ|.(3)

Often in harmonic analysis, the Hardy space H1(R2) [36] is preferred instead of
L1(R2) (with H1(R2) ⊂ L1(R2)), because H1(R2) has a predual which is the space
VMO(R2) (vanishing mean oscillation space [36]) while L1(R2) does not. When
this substitution is applied, L∞(R2) = (L1(R2))′ is substituted by BMO(R2) =
(H1(R2))′. Therefore, we are led to consider in a similar way the space F of generalized
functions defined as (Meyer [27] and Koch and Tataru [25]) follows.

Definition 1.7. Let F consist of generalized functions T which can be written
as

T = div(�g), �g = (g1, g2) ∈ BMO(R2,R2).

Define ‖.‖F on F by

‖T‖F = inf
{(

‖g1‖BMO(R2) + ‖g2‖BMO(R2)

)
: T = div(�g),

�g = (g1, g2) ∈ BMO(R2,R2)
}
.

Similar with the case of the space G, this space F can also be identified with the
dual of the H1(R2)-Sobolev space I1(H

1) (with I1 the Riesz potential) (see [37]) or
sometimes denoted by F 1

1,2(R
2) (see [42]). Meyer suggests that the space F can also

better model the oscillatory component v in the u+ v decomposition model than the
L2 space, and we will show this statement in this paper. In the rest of the paper, we
will work with local versions F (Ω), since BMO(Ω) is well defined also on bounded
domains (even if the Hardy space H1 is not well suited on bounded domains).
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Definition 1.8. Let F (Ω) consist of generalized functions T in D′(Ω) which can
be written

T = div(�g), �g = (g1, g2) ∈ BMO(Ω,R2),

equipped with the norm

‖T‖F (Ω) = inf
{(

‖g1‖BMO(Ω) + ‖g2‖BMO(Ω)

)
: T = div(�g),

�g = (g1, g2) ∈ BMO(Ω,R2)
}
.

The next two examples show why the choice of X2 = L2 or X2 = L1 does not
always model oscillatory functions very well, and the proposed models, obtained by
substituting ‖v‖2

L2 by ‖v‖F or ‖v‖G in the ROF model, give better decompositions.
Example 1. Let a > 0, n > 0 be fixed, and let ϕ be a smooth function defined

on R such that

ϕ(x) =

{
a if |x| < n,

0 if |x| > n + 1,

and ϕ is increasing on (−∞, 0] and decreasing on [0,∞). Let m > 0, f(x) =
1
mϕ′(x) sin(mx) + ϕ(x) cos(mx), and g(x) = ϕ(x)

m sin(mx) + c; then f = g′.
(i) We have ‖f‖G = a

m . Note that ‖f‖F < 2‖f‖G → 0 as m → ∞. (The
inequality ‖f‖F < 2‖f‖G will be seen later.)

(ii) ‖f‖2
L2 ≥ 2a2

∫ n

0
| cos(mx)|2 dx = a2(n + 1

2m sin(2mn)) → a2n > 0 as
m → ∞.

(iii) Let N = �mn
2π � be the number of complete periods of cos(mx) in the interval

[0, n]. We may assume N ≥ 1. Then

‖f‖L1 ≥ 2a

∫ n

0

| cos(mx)| dx ≥ 8aN

∫ π
2m

0

cos(mx) dx =
8aN

m
≈ 4an/π.

Therefore, an oscillatory function has small G and F norms which do not depend
on the domain Ω = (−n, n) and approach 0 as the frequency of oscillations increases
but with important, not so small, L2 and L1 norms.

Example 2. Let D = D(0, R) ⊂ R
2 be a disk centered at the origin with radius

R. For some α > ε > 0, consider f = αχD, uε = (α−ε)χD, and vε = f−uε = εχD. If
we evaluate and compare the ROF energy for two candidate solutions, (u = f, v = 0)
and (uε, vε = f − uε), we would like to have for this f , for any ε,

|f |BV = J (f, 0) ≤ |uε|BV + λ‖vε‖2
L2

or 2πRα ≤ 2πRα + επR(εRλ− 2)

if and only if λ ≥ 2
Rε for all ε, i.e., when λ = ∞. However, if ‖.‖2

L2 is replaced
by ‖.‖F , then we have, for any ε,

|f |BV = J (f, 0) ≤ |uε|BV + λ‖vε‖F ≤ |uε|BV + 2λ‖vε‖G
⇔ 2παR ≤ 2πRα + εR(λ− 2π)

if and only if λ > 2π which does not depend on ε and R. (To obtain ‖vε‖G = εR2 , we
use [27, Lemma 6, page 36].)
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This shows a limitation of the ROF model: if f = αχD (an image free of noise,
piecewise-constant, and with smooth discontinuity set of finite length), then the min-
imizer uλ cannot be f for any finite λ. Related remarks have been made in [27], [38],
[39], [5]. Moreover, suppose we decompose f by the energy minimization

inf
(u,v)

{K(u, v) = |u|BV + λ‖v‖pX2
: f = u + v, p > 0},

where ‖ · ‖X2
is a norm or a quasi norm, and such that ‖χD‖X2

�= 0. If we start with
f = αχD, then the recovered image should be f for some finite λ > C. We have the
following: K(f, 0) ≤ K(uε, vε) if and only if p ≤ 1. Therefore, for any p > 1, we cannot
obtain u = f for any finite value of λ. We refer the reader to Cheon et al. [15], Chan
and Esedoglu [11], and Chan, Esedoglu, and Nikolova [12] for the (BV (Ω), L1(Ω))
version of the ROF model in two dimensions in the continuous setting, which are also
improvements over the original ROF model. (In [15], the authors have also considered
the case when in the ROF model the fidelity term ‖f − u‖2

L2(Ω) has been replaced by

‖f − u‖L2(Ω); this choice gives very good reconstruction results in practice.)
From such motivations, Meyer [27] proposed a decomposition of f , with X1 =

BV (Ω), via

inf{K(u, v) = |u|BV (Ω) + λ‖v‖X2},

where the infimum is taken over u ∈ BV (Ω) and v ∈ X2, such that f = u + v. Here
(X2, ‖·‖X2) is either (G(Ω), ‖.‖G(Ω)) or (F (Ω), ‖.‖F (Ω)). However, these minimization
models cannot be directly solved in practice: there is no standard calculation of the
associated Euler–Lagrange equation, as it is for the ROF model which can be solved
easily by finite differences.

In [44], [45], Vese and Osher proposed a method to overcome the difficulty of
computing ‖.‖G. This has been done by the energy minimization problem

inf
u,g1,g2

{
Gp(u, g1, g2) = |u|BV (Ω) + μ‖f − u− ∂xg1 − ∂yg2‖2

L2(Ω)

+ λ‖
√

g2
1 + g2

2‖Lp(Ω)

}
.

(4)

By this model, f is decomposed into u+ v+w, and as μ → ∞ and p → ∞, the model
approaches Meyer’s (BV,G) model. The space G = W−1,∞(Ω) is approximated by
W−1,p(Ω), with p < ∞. (When p = 2, v belongs to the dual of the Sobolev space
H1

0 (Ω).)
In [33], Osher, Solé, and Vese proposed a simplified approximated method corre-

sponding to the case p = 2. Let �g = ∇P + �Q be the unique Hodge decomposition
of �g ∈ L∞(Ω,R2). Using f − u = v = div(�g) = �P , i.e., P = �−1(f − u), Meyer’s
(BV,G) model is then approximated by

inf
u

{
G2(u) =

∫
Ω

|∇u| + λ

∫
Ω

|∇(�−1(f − u))|2
}
.

This model gives an exact decomposition f = u + v, with u ∈ BV (Ω) and v ∈
W−1,2(Ω) = (H1

0 (Ω))′, and the minimization problem has been solved using a fourth-
order nonlinear PDE.

In the present paper, we propose a new method to approximate Meyer’s (BV,F )
model. We also introduce an equivalent definition of the BMO norm, using an open
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set formulation, which is easily formulated and computed using curve evolution tech-
nique. As a by-product, we also propose a new method for solving the (BV,G) model,
different from the one proposed in [7], [6].

As we have mentioned, Mumford and Gidas [29] show that natural images, as
samples from scale-invariant probability distributions, cannot be modeled by functions
but instead by generalized functions, i.e., distributions in D′(Ω).

Other related models for image decomposition into cartoon and texture have been
proposed recently. We mention Daubechies and Teschke [16] and Starck, Elad, and
Donoho [35] for variational and wavelets approaches.

In particular, we refer the reader to Aujol et al. [7] and Aubert and Aujol [6] for
more properties of the space G both in theory and practice and to another approxi-
mation of the Meyer’s (BV,G) model on bounded domains. We also refer the reader
to Aujol and Chambolle [8] for properties of norms that are dual to negative Sobolev
and Besov norms. Our theoretical framework extends some of the results presented
in Aubert and Aujol [6] for the space G(Ω) to the case of the space F (Ω).

Other related works are by Esedoglu and Osher [19], Osher and Scherzer [32],
Obereder, Osher, and Scherzer [31], and Goldfarb and Yin [22], among others.

We believe that the case (BV,F ) has not been considered in theory or in practice
previously in image analysis; therefore, our contribution is new also from this point
of view.

The theoretical work of Koch and Tataru [25] (mentioned by Meyer in [27]) uses
the space div(BMO(R2)) for solutions of the Navier–Stokes equations. Finally, in [9],
Bourgain and Brezis analyze the equation f = div(�y) in some limiting cases, and
applications of such results can be found in Aubert and Aujol [6] for the analysis of
the space G(Ω).

2. Definitions and properties of the BMO space. Here we would like to
review the definitions and some basic properties of the space BMO. We refer the
reader to “Harmonic Analysis” by Stein [36] and also to [41], [24], and [20].

Let Ω be an open and bounded subset of R
n. For planar images, we may assume

that Ω = (0, 1)× (0, 1) ⊂ R
2. To simplify the notation, we will often write BV , G, F ,

. . . , instead of BV (Ω), G(Ω), F (Ω), etc.

Definition 2.1. Let f ∈ L1
loc. We say that f belongs to BMOβ if the inequality

1

|O|

∫
O

|f − fO| dx ≤ A1

holds for the family Fβ of open sets O ⊂ Ω such that there exist cubes Q1, and

Q2 with Q1 ⊂ O ⊂ Q2 ⊂ Ω, and |Q2|
|Q1| ≤ β; here 1 ≤ β < ∞ is a constant, and

fO = |O|−1
∫
O
f dx. The smallest such A1 is chosen to be the norm of f in BMOβ,

denoted by ‖f‖BMOβ , i.e.,

‖f‖BMOβ = sup
O∈Fβ

1

|O|

∫
O

|f − fO| dx.(5)

Definition 2.2. Let f ∈ L1
loc. We say that f belongs to BMO if the inequality

1

|Q|

∫
Q

|f − fQ| dx ≤ A2
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holds for all cubes Q ⊂ Ω with sides parallel with the axes. The smallest such A2 is
chosen to be the norm of f in BMO, denoted by ‖f‖BMO, i.e.,

‖f‖BMO = sup
Q⊂Ω

1

|Q|

∫
Q

|f − fQ| dx.(6)

‖.‖BMO is a seminorm vanishing on constant functions. If we identify functions
in BMO which are different a.e. by a constant, then BMO becomes a Banach space.
We obtain an equivalent norm if the family of cubes is replaced by the family of balls.
Moreover, as mentioned in [36],

‖f‖BMOp =

[
sup
Q⊂Ω

1

|Q|

∫
Q

|f − fQ|p dx

] 1
p

(7)

gives an equivalent BMO norm for p ≥ 1. Here we will consider the cases p = 1 and
p = 2.

Definition 2.3. A dyadic cube is a cube of the special form

Q = {kj2−m < xj < (kj + 1)2−m; 1 ≤ j ≤ n},(8)

where m and kj, 1 ≤ j ≤ n, are integers. We say f has bounded dyadic mean
oscillation, f ∈ BMOd, if

‖f‖BMOd
= sup

Q⊂Ω dyadic

1

|Q|

∫
Q

|f − fQ| dx < ∞.

Let Tαf(x) = f(x− α). We say f ∈ BMOd,α if Tαf ∈ BMOd.
Let A =

{
α = (α1, . . . , αn) : αi ∈

{
0, 1

3

}}
. Note |A| = 2n.

Lemma 2.4 (see [21] and [26]). f ∈ BMO if and only if f ∈ BMOd,α for all
α ∈ A. In fact, ‖f‖BMO ≤ 12maxα∈A

{
‖f‖BMOd,α

}
.

Remark 2. Let BMOD = ∩α∈ABMOd,α with

‖.‖BMOD = maxα∈A{‖.‖BMOd,α
}.

Then the above lemma shows that BMO = BMOD with equivalent norms.
Lemma 2.5. Let f ∈ L1

loc, and let c ∈ R; then∫
O

|f − fO| dx ≤ 2

∫
O

|f − c| dx(9)

for all O ⊂ Ω.
Proof.

|f − fO| ≤ |f − c| + |c− fO| = |f − c| + |c− |O|−1

∫
O

f dx|

≤ |f − c| + |O|−1

∫
|c− f | dx.

Integrating both sides over O, we obtain (9). Moreover,

inf
c∈R

∫
O

|f − c| dx ≤
∫
O

|f − fO| dx ≤ 2 inf
c∈R

∫
O

|f − c| dx.
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Lemma 2.6. ‖.‖BMOβ and ‖.‖BMO are equivalent for any 1 ≤ β < ∞.
Proof. It suffices to show that there exist constants c1 and c2 greater than 0 such

that, for all f ∈ BMO,

c1‖f‖BMO ≤ ‖f‖BMOβ ≤ c2‖f‖BMO.(10)

It is clear that the first inequality in (10) holds with c1 = 1. It remains to show
‖f‖BMOβ ≤ c2‖f‖BMO for some c2 > 0.

Let O ∈ Fβ . There exist Q1 and Q2 in Ω such that Q1 ⊂ O ⊂ Q2, and |Q2|
|Q1| ≤ β.

We have

1

|O|

∫
O

|f − fO| dx ≤ 2 inf
c∈R

1

|O|

∫
O

|f − c| dx ≤ 2 inf
c∈R

1

|Q1|

∫
Q2

|f − c| dx

≤ 2β inf
c∈R

1

|Q2|

∫
Q2

|f − c| dx ≤ 2β

(
1

|Q2|

∫
Q2

|f − fQ2 | dx
)

≤ 2β sup
Q⊂Ω

1

|Q|

∫
Q

|f − fQ| dx = ‖f‖BMO.

Taking the supremum over all O ∈ Fβ , we have ‖f‖BMOβ ≤ c2‖f‖BMO with c2 =
2β.

The next simple property shows that functions in BMO are scale invariant. For
simplicity, assume here that Ω = R

n.
Lemma 2.7. f(x) and f(αx) have the same norm in BMO for all α > 0.
Proof. Using a change of variable by letting y = αx, we have

1

|Q|

∫
Q

∣∣∣∣∣f(αx) −
∫
Q
f(αx) dx

|Q|

∣∣∣∣∣ dx =
1

|Q|

∫
αQ

∣∣∣∣∣f(y) −
∫
αQ

f(y) 1
αn dy

|Q|

∣∣∣∣∣ 1

αn
dy

=
1

|αQ|

∫
αQ

∣∣∣∣∣f(y) −
∫
αQ

f(y)dy

|αQ|

∣∣∣∣∣ dy
=

1

|Q′|

∫
Q′

∣∣∣∣∣f(y) −
∫
Q′ f(y)dy

|Q′|

∣∣∣∣∣ dy,
(11)

where Q′ = αQ = {αx : x ∈ Q}; it is clear that

sup
Q⊂Rn

1

|Q|

∫
Q

∣∣∣∣∣f(x) −
∫
Q
f(x) dx

|Q|

∣∣∣∣∣ dx = sup
Q′⊂Rn

1

|Q′|

∫
Q′

∣∣∣∣∣f(y) −
∫
Q′ f(y)dy

|Q′|

∣∣∣∣∣ dy.
Note that the norms on G and F are not scale invariant but satisfy the scaling

relation ‖f(α·)‖F,G = 1
α‖f(·)‖F,G.

Remark 3. L∞ ⊂ BMOβ = BMO, for 1 ≤ β < ∞, with ‖f‖BMO ≤ 2‖f‖∞.
Note that if in the definition of BMOβ we do not impose any bound on β, i.e., we
allow β = ∞, then BMOβ approaches the space L∞: the norm is attained at a
union of very small regions, such that f has largest or smallest values inside these
regions. BMO also contains unbounded functions; indeed, ln(|P |) ∈ BMO for any
polynomial P .

Some additional properties are as follows. |f | is in BMO whenever f is, since
‖f | − |f |Q| ≤ |f − fQ|. However, if |f | is in BMO, then f is not necessarily in BMO.
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For example in R, f(x) = sign(x)ln(|x|) is not in BMO(R), while |f(x)| = ln(|x|) is.
Indeed, for α > 0, f(αx) = sign(x)ln(α) + sign(x)ln(|x|), and if I = [−1, 1], then

1

|αI|

∫
αI

∣∣∣∣f(y) −
∫
αI

f(y)dy

|αI|

∣∣∣∣ dy → ∞ as α → ∞.

3. Numerical computation of the BMO norm. In this section, we intro-
duce and discuss several new methods for computing or approximating the BMO
norm of a given function f in two dimensions, using the equivalent definitions intro-
duced in the previous section.

3.1. Computing the BMO norm using the open set formulation. Let
φ be a Lipschitz-continuous function that defines ∂O implicitly, i.e., O = {x ∈ Ω :
φ(x) > 0}, and denote by H(φ) the Heaviside function

H(r) =

{
1 if r ≥ 0,

0 otherwise.

Using the variational level set formulation, as in [46], [13], [14], we define

G(φ) =
1∫

Ω
H(φ) dx

∫
Ω

∣∣∣∣g −
∫
Ω
gH(φ) dx∫

Ω
H(φ) dx

∣∣∣∣H(φ) dx.(12)

Similarly, we also have an equivalent ‖.‖BMOβ norm using p = 2:

F(φ) =

[
1∫

Ω
H(φ) dx

∫
Ω

∣∣∣∣g −
∫
Ω
gH(φ) dx∫

Ω
H(φ) dx

∣∣∣∣
2

H(φ) dx

] 1
2

.(13)

Remark 4. We will incorporate in (12) the perimeter of the unknown open set
O as given by

∫
Ω
|∇H(φ)| in order to ensure that O remains “bulky”; i.e., we do not

allow O to break into very small pieces. We do not exactly impose in this way the
required constraint from Definition 2.1, but it is a way of keeping the ratio between
|O| and ∂O bounded. This was kindly suggested to us by Jean-Michel Morel.

If φ solves supφ{Gnew(φ) = G(φ) − λ
∫
Ω
|∇H(φ)| dx} for some parameter λ > 0,

then ‖g‖BMOβ is well approximated by G(φ).
Let Hε(φ) be a smoother function approximating H(φ) as ε → 0. Using the

notation |O| =
∫
Ω
Hε(φ) dx, we obtain

∂Gnew

∂φ
=

[
− 1

|O|2 (g − gO)

∫
Ω

g − gO
|g − gO|

Hε(φ) dx +
1

|O| |g − gO| −
G(φ)

|O|

+ λdiv

(
∇φ

|∇φ|

)]
δε(φ),

where δε = H ′
ε. By introducing an artificial time, we then solve

φt =
∂Gnew

∂φ
in Ω and

∇u

|∇u| · �n on ∂Ω.

However, in practice, since our approximation δε(φ) > 0 for any φ as in [13], we
neglect this factor δε(φ), and we solve the equation (to obtain faster results)

φt = − 1

|O|2 (g − gO)

∫
Ω

g − gO
|g − gO|

H(φ) dx +
1

|O| |g − gO| −
G(φ)

|O|

+ λdiv

(
∇φ

|∇φ|

)
.



400 TRIET M. LE AND LUMINITA A. VESE

In our numerical calculations, we always have that Q2(O) = Ω (therefore, |Q2| is
bounded independent of O), while the existence of Q1(O), with size that does not
become too small, is ensured by the additional length term.

We do not guarantee that we compute a global maximum of the energy. However,
the numerical experiments (using piecewise-constant images) show that we obtain
good and stable approximations to the exact solution, as illustrated in the section of
experimental results.

3.2. Computing the BMO norm using the square formulation. Note
that, in two dimensions, the set Q′ = {|x|+ |y| < r} is a square centered at the origin,
with side length l(Q′) =

√
2r. The corners of Q′ are at the vertices (r, 0), (0, r),

(−r, 0), (0,−r). Therefore, to have the sides of Q′ of length r and parallel to the axis,
we need to rotate 1√

2
Q′ by an angle of π

4 , i.e., by applying the matrix[
1 −1
1 1

]

to Q′. In other words, Q = {|(x − x0) − (y − y0)| + |(x − x0) + (y − y0)| < r} is the
square centered at (x0, y0), with sides parallel to the axis and l(Q) = r.

Let φ(x, y) = r−(|(x−x0)−(y−y0)|+ |(x−x0)+(y−y0)|) be the signed distance
function to ∂Q, and let H(φ) be the Heaviside function. Define

G(Q) = G(r, x0, y0) =
1∫

Ω
H(φ)

∫
Ω

∣∣∣∣g −
∫
Ω
gH(φ)∫

Ω
H(φ)

∣∣∣∣H(φ).(14)

Then

‖g‖BMO = sup
(r,x0,y0)

G(r, x0, y0).

We also have an equivalent ‖.‖BMO norm with p = 2:

F(Q) = F(r, x0, y0) =

[
1∫

Ω
H(φ)

∫
Ω

∣∣∣∣g −
∫
Ω
gH(φ)∫

Ω
H(φ)

∣∣∣∣
2

H(φ)

] 1
2

.(15)

Let Hε be a smooth approximation of H, and let δε = H ′
ε. We have

∂G
∂r

=
1∫

Ω
Hε(φ)

[
− G

∫
Ω

∂Hε(φ)

∂r
+

∫
Ω

|g − gQ|
∂Hε(φ)

∂r

− 1∫
Ω
Hε(φ)

∫
Ω

g − gQ
|g − gQ|

Hε(φ)

∫
Ω

(g − gQ)
∂Hε(φ)

∂r

]
,

∂G
∂x0

=
1∫

Ω
Hε(φ)

[
− G

∫
Ω

∂Hε(φ)

∂x0
+

∫
Ω

|g − gQ|
∂Hε(φ)

∂x0

− 1∫
Ω
Hε(φ)

∫
Ω

g − gQ
|g − gQ|

Hε(φ)

∫
Ω

(g − gQ)
∂Hε(φ)

∂x0

]
,

where ∂Hε(φ)
∂r = δε(φ), and ∂Hε(φ)

∂x0
=

[ (x−x0)−(y−y0)
|(x−x0)−(y−y0)|+

(x−x0)+(y−y0)
|(x−x0)+(y−y0)|

]
δε(φ). Similarly,

∂G
∂y0

=
1∫

Ω
Hε(φ)

[
− G

∫
Ω

∂Hε(φ)

∂y0
+

∫
Ω

|g − gQ|
∂Hε(φ)

∂y0

− 1∫
Ω
Hε(φ)

∫
Ω

g − gQ
|g − gQ|

Hε(φ)

∫
Ω

(g − gQ)
∂Hε(φ)

∂y0

]
,

where ∂Hε(φ)
∂y0

=
[
− (x−x0)−(y−y0)

|(x−x0)−(y−y0)| + (x−x0)+(y−y0)
|(x−x0)+(y−y0)|

]
δε(φ).



IMAGE DECOMPOSITION USING TV AND div(BMO) 401

By introducing an artificial time, we will solve the equations

∂r

∂t
=

∂G
∂r

,
∂x0

∂t
=

∂G
∂x0

,
∂y0

∂t
=

∂G
∂y0

.

Again, we do not show that this method converges to a global maximum of the
energy. However, in the experimental results (using piecewise-constant images), we
have obtained the correct answer when we know the exact solution.

If we would work with disks instead of squares, then we could have

φ(x, y) = r2 − (x− x0)
2 − (y − y0)

2,

which is differentiable everywhere.

3.3. Exact computation of the BMO norm. As kindly suggested by Jean-
Michel Morel, we have also implemented an exact evaluation of the BMO norm using
the square formulation. This is computationally more expensive but still can be
made relatively fast by using FFT. In addition, it produces very accurate results.
The procedure is as follows.

1. Fix a list of growing scales σ = 2, 4, 8, 16, . . . .
2. For each σ, consider the function kσ,(x,y) = 1

σ2χQσ,(x,y)
, where Qσ,(x,y) is the

square centered at (x, y) having length σ.
3. Convolve f with kσ,(0,0), called fσ.
4. For each (x, y), compute osc(x, y) =

∫
|f − fσ|kσ,(x,y).

5. Take the sup of osc(x, y) which yields a value of ‖f‖BMO at scale σ, denoted
‖f‖BMO,σ.

6. Compute the maximal value of ‖f‖BMO,σ for all σ’s.
If one takes σ = 2, 3, 4, 5, . . . , N , where N is the size of the image f , one is ensured to
get the exact value of ‖f‖BMO in a discrete framework. In this way, one obtains the
global maximum and the square(s) where it is attained. This allows one to compare
with the maximization procedure and see whether or not it yields the same value.

Finally, we have used the above procedure to evaluate the necessary expression
over the dyadic squares and the additional translations. This gives an accurate method
too, and it is faster since we have fewer squares to consider.

4. A (BV, F ) image decomposition model. Recall Meyer’s model, which
decomposes f into u + v, by the variational problem

inf{E(u, v) = |u|BV + λ‖v‖F },(16)

where the infimum is taken over u ∈ BV and v ∈ F , such that f = u + v.
The space F is defined as

F = {v = div(�g) in D′ : �g ∈ BMO(Ω,R2)}.

Remark 5. Given f ∈ L2, there exists u ∈ BV , and v ∈ L2 ⊂ G ⊂ F , such that
E(u, v) < ∞, f = u + v, and

∫
f =

∫
u.

Indeed, recall the ROF model, which minimizes the functional

J (u, v) = |u|BV + λ′‖v‖L2(17)

over the set of u ∈ BV , v ∈ L2, such that f = u+v. Pick λ′ so that ‖f‖G > 1
2λ′ . The

existence of a minimizer, denoted (u, v), for the ROF model has been proved in [10]
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and characterized in [27] as being u ∈ BV , v ∈ G ⊂ F , with ‖v‖G = 1
2λ′ . Therefore,

E(u, v) < ∞.

The next theorem shows the existence of minimizers for Meyer’s (BV,F ) model.
We refer the reader to Aubert and Aujol [6] for a similar proof when ‖.‖∗ = ‖.‖G.

Theorem 4.1. Let f ∈ L2. The minimization problem

inf
(u,v)

{
E(u, v) = |u|BV + λ‖v‖F ,

∫
Ω

u =

∫
Ω

f, f = u + v

}
(18)

has at least one solution u ∈ BV , v = f − u ∈ F ∩ L2.

Proof. We use the standard tool in calculus of variations. Let {(un, vn)} be a
minimizing sequence. (From the previous remark, we know that the infimum of the
energy is finite.) Then f = un + vn and

∫
Ω
un =

∫
Ω
f for all n ≥ 0. In addition, there

is a constant C (that may change from line to line) such that

|un|BV ≤ C,

‖vn‖F ≤ C

uniformly.

By Poincare–Wirtinger inequality,

∥∥∥∥∥un −
∫

Ω

un

∥∥∥∥∥
L2

≤ C|u|BV ,

and since
∫
Ω
un =

∫
Ω
f , for all n,

⇒ ‖un‖L2 ≤ C

⇒ |un|BV ≤ C.

Then ‖un‖L1 ≤ C since Ω is bounded; furthermore, ‖un‖BV = ‖un‖L1 + |un|BV ≤ C.
Therefore, there exists u ∈ BV and a subsequence (still denoted by un), such that un

converges to u in the BV -weak* topology. In particular, un converges to u strongly in
L1, and by the lower semicontinuity of the total variation, |u|BV ≤ lim infn→∞ |un|BV .

As for the subsequence vn, we have vn = div(�gn) in D′ and ‖vn‖F = ‖g1,n‖BMO+
‖g2,n‖BMO ≤ C, and we obtain that gi,n → gi in BMO-weak∗. We also have, for all
φ ∈ D,

∫
Ω
vnφ = −

∫
Ω
�gi,n · ∇φ → −

∫
Ω
�gi · ∇φ. Therefore, v = div(�g) in D′.

Since ‖vn‖L2 ≤ C, up to a subsequence, vn → v weakly in L2, and we have
v = div(�g) a.e. As vn = f − un and un converges to u weakly in L2, we also obtain
v = f − u a.e.

By weak* lower semicontinuity, it follows that

‖v‖F ≤ ‖g1‖BMO + ‖g2‖BMO ≤ ‖g1,n‖BMO + ‖g2,n‖BMO = ‖vn‖F ,
|u|BV ≤ lim inf |un|BV ,

‖v‖F ≤ lim inf ‖vn‖F .

Therefore, E(u, v) ≤ lim infn→∞ E(un, vn), and we obtain existence of mini-
mizers.
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5. Approximating the (BV, F ) decomposition model. Here we do not
solve (16) directly, but we adapt the model [44] by adding a fidelity term into the
energy. In this decomposition, f ∈ L2 is decomposed into u + v + w, with u ∈ BV ,
v ∈ F , and a small residual w ∈ L2.

The variational problem can be written as

inf

{
Eμ(u, v) = |u|BV + μ

∫
Ω

|f − u− v|2 + λ‖v‖F

: u ∈ BV, v ∈ F,

∫
Ω

u =

∫
Ω

f

}
.

(19)

Taking v = div(�g), we obtain an equivalent formulation in terms of u, g1, and g2:

inf

{
Eμ(u, g1, g2) = |u|BV + μ

∫
Ω

|f − u− div(�g)|2

+ λ[‖g1‖BMO + ‖g2‖BMO]

}
,

(20)

where the infimum is taken over gi ∈ BMO and u ∈ BV with∫
Ω

u =

∫
Ω

f .(21)

The existence and uniqueness of a minimizer can be shown for the new model.
Theorem 5.1. Let f ∈ L2. Then there exist u ∈ BV , and v ∈ F ∩L2, such that

(u, v) solves (19) or (20). If, in addition,
∫
Ω
f �= 0, then the minimizer is unique.

Proof. Existence of minimizers: let (un, vn) be a minimizing sequence of (19)
or (20). We have

|un|BV ≤ C,(22)

‖f − un − vn‖L2 ≤ C,(23)

‖vn‖F ≤ C.(24)

From the Poincaré inequality,∥∥∥∥∥un −
∫

Ω

un

∥∥∥∥∥
L2

≤ C|un|BV .

Since
∫
Ω
un =

∫
Ω
f , for all n, un is uniformly bounded in L2. Since Ω is bounded, un

is also uniformly bounded in L1. Therefore,

‖un‖BV ≤ C.(25)

Then there exists u ∈ BV , such that, up to a subsequence, un converges to u weak*
in BV . By (23) and uniform boundedness of un in L2, vn is also uniformly bounded
in L2. Therefore, there exists v ∈ L2 such that, up to a subsequence, vn converges to
v weakly in L2.

As ‖vn‖F ≤ C, there exists �gn = (g1,n, g2,n) ∈ BMO(Ω,R2), such that vn =
div(�gn) in D′, and ‖gi,n‖BMO ≤ C. Therefore, there exists gi ∈ BMO, such that gi,n
converges to gi weak* in BMO, for i = 1, 2. Let �g = (g1, g2).
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To show v = div(�g) ∈ F , let ϕ ∈ D,∫
Ω

vnϕ =

∫
Ω

div(�gn)ϕ = −
∫

Ω

�gn · ∇ϕ.

Taking n → ∞ (using weak L2 topology and weak* BMO(Ω,R2) topology), we obtain∫
Ω

vϕ = −
∫

Ω

�g · ∇ϕ =

∫
Ω

div(�g)ϕ.

This implies v = div(�g) in D′ as a distribution. But since v ∈ L2, v = div(�g) a.e.
Therefore, v ∈ F ∩ L2.

By weak and weak* lower semicontinuity, it follows that

|u|BV ≤ lim inf |un|BV ,

‖f − u− v‖L2 ≤ lim inf ‖f − un − vn‖L2 , and

‖v‖F ≤ lim inf ‖vn‖F .

Therefore, Eμ(u, v) ≤ Eμ(un, vn), and (u, v) is a minimizer for (19).
Uniqueness of minimizers: denote by (û, v̂) a minimizer of the energy. Then∫

Ω
û =

∫
Ω
f .

The energy to be minimized is strictly convex, as the sum of two convex functions
(|u|BV + ‖v‖F ) and of a strictly convex function ‖f − (u + v)‖2

L2 , except in the
direction (u,−u) (as in [7], [6]). Therefore, it suffices to check that if (û, v̂) is a
minimizer, then (û + tû, v̂ − tû) is not a minimizer for t �= 0. Since (û, v̂) is a
minimizer, then

∫
Ω
û =

∫
Ω
f . Therefore, if (û + tû, v̂ − tû) is a minimizer too, then∫

Ω
(1 + t)û = (1 + t)

∫
Ω
û =

∫
Ω
f . This is possible only if t = 0; therefore, we conclude

the uniqueness.
Again as in [7], [6], we can show that the approximated model (19) approaches

Meyer’s model (18) as μ → ∞. In other words, we have the following theorem.
Theorem 5.2. Assume f ∈ L2 with

∫
Ω
f �= 0, and let us assume that prob-

lem (18) has a unique solution (û, v̂). Let us denote by (uμ, vμ) the unique solution
of (19). Then, as μ → ∞, uμ+vμ → f strongly in L2, and (uμ, vμ) converges to some
(u0, v0), up to a subsequence. Moreover, (u0, v0) = (û, v̂) is the solution of (18).

Proof. First, we need to show that there is u ∈ BV and v ∈ F such that
Eμ(u, v) ≤ C, where C does not depend on μ.

From Remark 5, the ROF model with some appropriate λ′ ensures such a u ∈ BV
and a v ∈ G ⊂ F such that f = u + v, and

∫
Ω
u =

∫
Ω
f . Therefore,

Eμ(u, v) = |u|BV + λ‖v‖F ≤ C,

and C does not depend on μ. Another pair that satisfies this property is in fact
provided by (û, v̂).

Then we obtain that

Eμ(uμ, vμ) ≤ Eμ(u, v) ≤ C

⇒ μ‖f − uμ − vμ‖L2 ≤ C

⇒ ‖f − uμ − vμ‖L2 ≤ C

μ
;

therefore, ‖f − uμ − vμ‖L2 → 0 as μ → ∞.
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Now, as before, we can deduce that ‖uμ‖BV ≤ C and ‖vμ‖F ≤ C. Then again,
similarly, we deduce that there is (u0, v0) such that, up to a subsequence, uμ → u0

in BV -weak* and weakly in L2, and vμ → v0 weakly in L2. Moreover, and as before,
we will have that

E(u0, v0) = |u0|BV + λ‖v0‖F ≤ |uμ|BV + λ‖vμ‖F
≤ μ‖f − (uμ + vμ)‖2

L2 + |uμ|BV + λ‖vμ‖F ≤ Eμ(û, v̂) = E(û, v̂);

i.e., (u0, v0) = (û, v̂) is the minimizer of (18), and (u0, v0) is the limit of (uμ, vμ) (up
to a subsequence), with u0 + v0 = f a.e. in Ω.

5.1. Characterization of minimizers. Here we would like to show some prop-
erties of minimizers of problem (19) as a generalization of Theorem 3, page 32 in [27].

We recall the variational problem of decomposing f via

inf

{
Eμ(u, v) = |u|BV + μ

∫
Ω

|f − u− v|2 + λ‖v‖F : u ∈ BV, v ∈ F

}
.(26)

(Note that here we consider a larger space of possible minimizers (u, v), because we
do not impose that the mean value of u is equal with the mean value of f a priori;
another way would have been to work with the corresponding quotient spaces.)

Definition 5.3. Given a function w ∈ L2(Ω) and λ > 0, define

‖w‖∗,λ = sup
g∈BV (Ω),h∈F (Ω)∩L2(Ω)

(w, g + h)

|g|BV + λ‖h‖F
, |g|BV + λ‖h‖F �= 0,(27)

where (·, ·) is the L2 inner product.
Remark 6. If

∫
Ω
w �= 0, then ‖w‖∗,λ = ∞; indeed, we can replace g by g + c,

with c ∈ R, and then the supremum will no longer be finite as |c| → ∞.
We have the following characterizations of an optimal decomposition of f us-

ing (26), which will be called the (BV,F ) model.
Theorem 5.4. Let (u, v) be an optimal (BV,F ) decomposition of f , and denote

w = f − u− v. Then we have the following:
(1) ‖f‖∗,λ ≤ 1

2μ ⇔ u = 0, v = 0, and w = f .

(2) Suppose ‖f‖∗,λ > 1
2μ ; then (u, v) is characterized by the two conditions

‖w‖∗,λ =
1

2μ
and (w, u + v) =

1

2μ
(|u|BV + λ‖v‖F ).(28)

Proof. The (BV,F ) model (26) yields u = 0 and v = 0 if and only if for any
g ∈ BV (Ω), h ∈ F (Ω) ∩ L2(Ω),

μ‖f‖2
L2 ≤ |g|BV + μ‖f − g − h‖2

L2 + λ‖h‖F .(29)

Equation (29) holds if and only if (by substituting in (29) g by εg and h by εh, and
taking ε → 0)

|(f, g + h)| ≤ 1

2μ
(|g|BV + λ‖h‖F ).(30)

By the definition of ‖.‖∗,λ, we have ‖f‖∗,λ ≤ 1
2μ .
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For the converse property in (1), assume that ‖f‖∗,λ ≤ 1
2μ . Then, for any g ∈

BV (Ω) and h ∈ F (Ω) ∩ L2(Ω), with |g|BV + λ‖h‖F �= 0, we have

(f, g + h) ≤ (|g|BV + λ‖h‖F )‖f‖∗,λ ≤ 1

2μ
(|g|BV + λ‖h‖F ).

We also have

|g|BV + μ‖f − (g + h)‖2
L2 + λ‖h‖F

= |g|BV + μ‖f‖2
L2 − 2μ(f, g + h) + μ‖g + h‖2

L2 + λ‖h‖F
≥ |g|BV + μ‖f‖2

L2 − (|g|BV + λ‖h‖F ) + μ‖g + h‖2
L2 + λ‖h‖F

= μ‖f‖2
L2 + μ‖g + h‖2

L2 ≥ μ‖f‖2
L2 = Eμ(0, 0).

Therefore, u = 0 and v = 0 give the optimal decomposition in this case.

Now suppose ‖f‖∗,λ > 1
2μ . Let (u, v) be an optimal (BV,F ) decomposition. We

have u �≡ 0 or v �≡ 0. For g ∈ BV (Ω), h ∈ F (Ω) ∩ L2(Ω), and ε ∈ R,

|u + εg|BV + μ‖w − ε(g + h)‖2
L2 + λ‖v + εh‖F ≥ |u|BV + μ‖w‖2

L2 + λ‖v‖F

(31)

⇒ |u|BV + |ε||g|BV + μ‖w − ε(g + h)‖2
L2 + λ (‖v‖F + |ε|‖h‖F )

≥ |u|BV + μ‖w‖2
L2 + λ‖v‖F

⇒ |ε||g|BV + μ‖w − ε(g + h)‖2
L2 + λ|ε|‖h‖F ≥ μ‖w‖2

L2

⇒ |ε||g|BV + μ
(
‖w‖2

L2 − 2ε(w, g + h) + ε2‖g + h‖2
L2

)
+ λ|ε‖|h‖F ≥ μ‖w‖2

L2 .

Dividing both sides of the last equation by ε > 0, we obtain

−2μ(w, g + h) + εμ‖g + h‖2
L2 + |g|BV + λ‖h‖F ≥ 0.(32)

Taking ε → 0, we obtain

2μ(w, g + h) ≤ |g|BV + λ‖h‖F ∀g ∈ BV (Ω), h ∈ F (Ω) ∩ L2(Ω).

Therefore,

‖w‖∗,λ ≤ 1

2μ
.(33)

If we take ε ∈ (−1, 1) and replace (g, h) with (u, v) in (31), then (31) implies

2με(w, u + v) ≤ ε (|u|BV + λ‖v‖F ) + ε2μ‖u + v‖2
L2 .(34)

If ε > 0, 2μ(w, u+v) ≤ (|u|BV + λ‖v‖F ), and if ε < 0, 2μ(w, u+v) ≥ (|u|BV + λ‖v‖F ).
Therefore, equality holds that

(w, u + v) =
1

2μ
(|u|BV + λ‖v‖F ),(35)

and (35) together with (33) implies ‖w‖∗,λ = 1
2μ .
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Conversely, if (35) holds for some (u, v) and ‖w‖∗,λ = 1
2μ , then for any g ∈ BV (Ω),

h ∈ F (Ω) ∩ L2(Ω),

|u + εh|BV + μ‖w − ε(g + h)‖2
L2 + λ‖v + εh‖F

≥ 2μ(w, u + εg + v + εh) + μ‖w‖2
L2 − 2με(w, g + h) + με2‖g + h‖2

L2

= 2μ(w, u + v) + μ‖w‖2
L2 + με2‖g + h‖2

L2

= |u|BV + λ‖v‖F + μ‖w‖2
L2 + με2‖g + h‖2

L2

≥ |u|BV + λ‖v‖F + μ‖w‖2
L2 .

Therefore, (u, v) is an optimal (BV,F ) decomposition of f .
Remark 7. Similar results also hold for the optimal (BV,G) decomposition of

f , with G replacing F in (26).
Remark 8. Note that if a given image f does not have zero mean, i.e.,

∫
Ω
f �= 0,

then the first property in Theorem 5.4 will not hold since ‖f‖∗,λ = ∞. Therefore,
if (uμ, vμ) is a minimizer of (26), then ‖wμ‖∗,λ → 0 as μ → ∞, as expected. Here
wμ = f − uμ − vμ. This is in agreement with the result from Theorem 5.2.

5.2. Minimization of (20). For numerical computations, we use BMOβ ,
BMOD, and BMO to represent the functions gi, i = 1, 2. From now on we de-
note BMO to mean either BMOβ , BMOD, or BMO, and B is either an open set,
an α translated dyadic square, or a square in Ω.

Equation (20) can be further simplified as

inf

{
E(u, g1, g2) =

∫
Ω

|∇u| + μ

∫
Ω

|f − u− ∂xg1 − ∂yg2|2

+ λ

[
1

|B1|

∫
Ω

|g1 − g1,B1
|H(φ1)

+
1

|B2|

∫
Ω

|g2 − g2,B2 |H(φ2)

]}
,

(36)

where gi,Bi =
∫
Ω
giH(φi)∫

Ω
H(φi)

, φi is the level set of Bi, and Bi maximizes ‖gi‖BMO. The

infimum in (36) is taken over all u ∈ BV , and �g = (g1, g2) with gi ∈ BMO.
Keeping B1 and B2 fixed for one iteration, and minimizing E(u, g1, g2) with re-

spect to its variables, we obtain

−div

(
∇u

|∇u|

)
− 2μ(f − u− ∂xg1 − ∂yg2) = 0,(37)

2μ∂x(f − u− ∂xg1 − ∂yg2)

+
λH(φ1)

|B1|

[
g1 − g1,B1

|g1 − g1,B1 |
− 1

|B1|

∫
Ω

g1 − g1,B1

|g1 − g1,B1 |
H(φ1)

]
= 0,

2μ∂y(f − u− ∂xg1 − ∂yg2)

+
λH(φ2)

|B2|

[
g2 − g2,B2

|g2 − g2,B2 |
− 1

|B2|

∫
Ω

g2 − g2,B2

|g2 − g2,B2 |
H(φ2)

]
= 0,
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with the boundary conditions on ∂Ω,

∇u

|∇u| · �n = 0,

(f − u− ∂xg1 − ∂yg2)nx = 0,

(f − u− ∂xg1 − ∂yg2)ny = 0,

where �n = (nx, ny) is the exterior unit normal to ∂Ω. At each iteration, for g1 and
g2 fixed or previously estimated, the unknown sets Bi are numerically computed and
updated by the methods introduced in the previous sections.

Note that by integrating both sides of (37) over Ω, the constraint in (21) is
automatically satisfied.

6. Approximating the (BV, G) decomposition model. For comparison
with the (BV,F ) model, we approximate the (BV,G) model

inf
(u,v)∈BV×G

{E(u, v) = |u|BV + λ‖v‖G}

by the model

inf
(u,�g)∈BV×L∞(Ω,R2)

{
E(u,�g) = |u|BV + μ

∫
Ω

|f − u− div(�g)|2

+ λ

∫
Ω

√
g1(x, y)2 + g2(x, y)2δ(x− x0, y − y0) :

∫
Ω

u =

∫
Ω

f

}
.

(38)

Here v = div�g, δ is the Dirac function (an impulse function) in two dimensions
concentrated at the origin, and√

g1(x0, y0)2 + g2(x0, y0)2 = ‖|�g|‖L∞ .

For numerical computation, we approximate δ by a smooth version δε such that δε → δ
as ε → 0.

For (x0, y0) fixed but updated at each iteration, and minimizing E(u,�g) with
respect to u, g1, and g2, we obtain the Euler–Lagrange equations

−div

(
∇u

|∇u|

)
− 2μ(f − u− ∂xg1 − ∂yg2) = 0,

2μ∂x(f − u− ∂xg1 − ∂yg2) + λ
g1√

g2
1 + g2

2

δε(x0, y0) = 0,

2μ∂y(f − u− ∂xg1 − ∂yg2) + λ
g2√

g2
1 + g2

2

δε(x0, y0) = 0,

with the boundary conditions

∇u

|∇u| · �n = 0,

(f − u− ∂xg1 − ∂yg2)nx = 0,

(f − u− ∂xg1 − ∂yg2)ny = 0.

For approximating the Dirac delta function, we use [13]

δε(z) =
ε

π(ε2 + z2)
.(39)
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7. A more isotropic (BV, F ) decomposition.
Remark 9. v = div(�g) is not isotropic. Also on the rectangular grid, div( ∇u

|∇u| )

is zero at horizontal and vertical edges, and nonzero at other edges numerically. More
specifically, the vertical and horizontal oscillations are not so well captured in v if
we represent v as div(�g) but are captured in the u component (as will be seen in our
numerical results).

To overcome these effects, we consider a more isotropic decomposition. As in the
Osher–Solé–Vese model [33], we impose v = div(�g) = ΔP , for some scalar function
P , to allow stronger smoothing on u. Therefore, the model (36) can be rewritten as

inf

{
E(u, P ) =

∫
|∇u| + μ

∫
Ω

|f − u− ΔP |2

+ λ

[
1

|B1|

∫
Ω

|Px − Px,B1 |Hε(φ1)

+
1

|B2|

∫
Ω

|Py − Py,B2
|Hε(φ2)

]}
,

(40)

where Hε is a smooth approximation of the Heaviside function H, and the unknown
sets B1 and B2 maximize the BMO norms of g1 = Px and of g2 = Py. For fixed B1

and B2 but updated after each iteration, minimizing E(u, P ) in (40) with respect to
u and P , we obtain the Euler–Lagrange equations

− div

(
∇u

|∇u|

)
− 2μ (f − u− ΔP ) = 0

− 2μΔ(f − u− ΔP ) − λ

|B1|

[
∂x

(
Px − Px,B1

|Px − Px,B1
|Hε(φ1)

)]

+
λ

|B1|2

(∫
Px − Px,B1

|Px − Px,B1
|H(φ1)

)
∂xHε(φ1)

− λ

|B2|

[
∂y

(
Py − Py,B2

|Py − Py,B2
|Hε(φ2)

)]

+
λ

|B2|2

(∫
Py − Py,B2

|Py − Py,B2
|Hε(φ2)

)
∂yHε(φ2) = 0,

with the boundary conditions

∇u

|∇u| · �n = 0,

(f − u− ΔP )nx = 0, (f − u− ΔP )ny = 0,

(∇(f − u− ΔP )) · �n = 0.

8. Numerical results. In this section, we present numerical results for image
denoising and texture decomposition obtained from the proposed models. We also
show comparisons with the Vese–Osher (VO) model (4) and the ROF model (2).

Let f be the noisy version of the true image ū of size M × N , and let u be the
denoised image. Denote

RMSE =

√∑M,N
i=1,j=1(u(i, j) − ū(i, j))2

MN
.
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Fig. 8.1. The union of the squares within the given percentage of the BMO norm.

We use RMSE to quantify how good a denoised image is.

Our numerical results obtained use (39) with ε = 0.01 to approximate the Dirac
delta function. We also normalize the image domain Ω, so that Ω = [0, 1] × [0, 1].

In Figure 8.1, we compute the square that maximizes the BMO norm (6) and
then show the contour of the union of the squares (of the same length) such that
the right-hand side of (6) is within the given percentage of the BMO norm. We
see that the union of the squares captures the most oscillatory regions in the given
image.

Figures 8.2 and 8.3 show the contours of open sets that optimize the energies
(12) and (13), respectively, using the algorithm described in section 3.1, and the plots
showing the evolution of the energies versus the number of iterations.
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Fig. 8.2. Left: An optimal set which gives ‖.‖BMOβ . Right: The evolution of the energy (12)
versus iterations.
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Fig. 8.3. Left: An optimal set which gives ‖.‖BMOβ . Right: The evolution of the square of the
energy (13) versus iterations.

Figures 8.4 and 8.5 show the contours of squares that optimize the energies (14)
and (15), respectively, using the algorithm described in section 3.2, and the plots
showing the evolution of the energies versus the number of iterations.

Figure 8.6 shows the testing images that we use for our experiments.
Figure 8.7 shows two image denoisings, using the standard ROF model (2) and

the VO model (4). The RMSE for the ROF model is 0.00879536, and the RMSE
for the VO model is 0.00767165 in 2000 iterations.

Figure 8.8 shows an image denoising using the (BV,F ) decomposition model (36)
and the plot showing the evolution of the energy (36) with respect to the number
of iterations. We use the dyadic BMO norm in this case. We also obtain similar
results with the method described in section 3.3. The RMSE for this decomposition
is 0.0076569 in 2000 iterations.

Figure 8.9 shows an image denoising using the (BV,G) decomposition model (38)
and the plot showing the evolution of the energy (38) with respect to the num-
ber of iterations. We use ‖|�g‖|L∞ to compute the energy (38). The RMSE for
this decomposition is 0.0077463 in 10000 iterations. This shows that the (BV,G)
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Fig. 8.4. Left: An optimal square which gives ‖.‖BMO. Right: The evolution of the energy (14)
versus iterations.
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Fig. 8.5. Left: An optimal square which gives ‖.‖BMO. Right: The evolution of the square of
the energy (15) versus iterations.

decomposition has a slower rate of convergence to the steady state in comparison
with the (BV,F ) decomposition. Notice that we see more of the square in the noise
component f − u in the ROF model than we see it in the (BV,F ) and (BV,G)
models.

In Figures 8.10–8.15, we show the decomposition of a given image into cartoon
and texture components using (BV,F ) and (BV,G) models. We remark that both
models give very similar results. For the computation of the BMO norm, we use the
dyadic BMO with a 1

3 -translations in Figure 8.10 and 8.12, and in Figure 8.14 we use
the algorithm described in section 3.2 to obtain the optimal square.

Figures 8.16–8.18 show a decomposition using the standard ROF model and the
proposed models. We remark that the texture parts are better captured in the os-
cillatory component v in Figure 8.18 using the model (40). Here we use the dyadic
BMO with a 1

3 -translations.
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Fig. 8.6. The data images to be decomposed.
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u f−u+100

u f−u+100

Fig. 8.7. Top: A decomposition using the ROF model (2). RMSE = 0.008795368. Bottom: A
decomposition using the VO model (4) with p = 2, RMSE = 0.00767165.



IMAGE DECOMPOSITION USING TV AND div(BMO) 415

u f−u+100

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5 Plot of the energy.

Fig. 8.8. A decomposition using the (BV, F ) model, with v = div(�g), and the plot showing the
energy (36) versus iterations. RMSE = 0.0076569.
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Fig. 8.9. A decomposition using the (BV,G) model, with v = div(�g), and the plot showing the
evolution of the energy (38) (using ‖�g|‖L∞) versus iterations. RMSE = 0.00775965.
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u f−u+100

Fig. 8.10. A decomposition using the (BV, F ) model, with v = div(�g) with translated dyadic BMO.

u f−u+100

Fig. 8.11. A decomposition using the (BV,G) model, with v = div(�g).
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u f−u+100

Fig. 8.12. A decomposition using the (BV, F ) model, with v = div(�g) with translated dyadic BMO.

u f−u+100

Fig. 8.13. A decomposition using the (BV,G) model, with v = div(�g).
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u f−u+100

Fig. 8.14. A decomposition using the (BV, F ) model, with v = div(�g).

u f−u+100

Fig. 8.15. A decomposition using the (BV,G) model, with v = div(�g).
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u f−u+100

Fig. 8.16. An ROF decomposition.

u f−u+100

Fig. 8.17. A (BV,G) decomposition, with v = div(�g).
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u f−u+100

Fig. 8.18. A decomposition using the (BV, F ) model (40), with v = ΔP .
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