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1. Introduction

In this paper we study, in the space of functionsof bounded variation, avariational model
of image reconstruction introduced in [3], which now becomes more and more classical
in the context of image analysis.

The general problem isto reconstruct a piecewise-smooth original image u from an
observed and degraded initial image uo.

Let ug, u be two real functions defined on a bounded and open subset  of RN
(generally, Q isarectanglein R?). Weassume herethat ug istheresult of atransformation
or degradation, applied to the original image u, of the form

Up = Ku+n,

where K isalinear operator (for instance, the blur) and » is arandom noise.

The problem isto find u, knowing uo. To do this, we assume some knowledges on
K (and/or on 1) and we add some a priori constraints on the solution.

The model presented in [3] for image reconstruction allows usto search theimage-
function u among the minimizers of the following functional:

Fo(u) = /(Ku—uo)zdx+a/ ¢(|Du)) dx. (@D}
Q Q

Here, o« > 0isaweight parameter and ¢: R — R™ is an even function. The a priori
constraint on the solution is represented by the regularizing term ¢ (| Duy).

The Euler-Lagrange equation associated to the minimization problem can be for-
mally written as

¢'(|Dul)
|Dul
where K* denotes the adjoint operator of K. If o = 0, the equation becomes
2K*Ku = 2K*ug.

Unfortunately, thisis an ill-posed problem, because K*K is not aways invertible and
the problem is often unstable. Then we choose @ > 0 to regularize the problem. Thisis
also necessary to remove the noise.

Asin[28], [11], or [3], it is clear that, to denoise an image by preserving its edges,
we need to work with functions ¢ with at most alinear growth at infinity. To ensure the
existence and the uniqueness of a solution u, we need in addition to assume that ¢ isa
convex function, nondecreasing on R* (sometimes ¢ hasto be strictly convex). Then ¢
will be with “linear growth” and we will search the solution u in the space BV (22) of
functions of bounded variation, well adapted to model images.

In order to diffuse the image in regions where variations of gray levels are weak
(where |Du| « ¢, with ¢ > 0 athreshold parameter) and to preserve the contours of
these regions (where |Du| > ¢), we have many possible choices for ¢ in this class of
functions, for instance,

1

() =42 e

Z_E if z>e.

2K*Ku — a div ( Du) = 2K™*up, (2
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Indeed, for this function, in a neighborhood of apoint x €  where |Du(x)| < e,
(2) formally becomes

2 1
—(K*Ku — K*up) = - A u, ©)]
[07 &

which isadiffusion equation, with strong regularizing propertiesin al directions, which
will remove the noise.
On acontour, where | Du(x)| > ¢, (2) locally becomes

2 Du 1
—(K*Ku — K*ug) = div | — ) = —— U,
a' ? <|Du|> Duj

where £ isthe unit orthogonal vector to Du and ug¢ denotes the second-order derivative
of uinthe&-direction. We note that div(Du(x)/|Du(x)|) representsthe curvature of the
level curve of u passing by x (the edge). In this case the diffusion will be weak, because
1/|Du| is small and thiswill be only in the &-direction, i.e., in the parallel direction to
the contour. In this way, the edges will be preserved.

We can also use, instead of ¢4, other functions ¢ with the same behavior but more
regular: for example, 92(z) = +/1 + 22— 1 (thefunction of minimal surfaces) or g3(z) =
log cosh z.

For more details on the choice of the function ¢, we refer the reader to [3].

In the context of image analysis, Rudin and Osher [28] have introduced Total Vari-
ation minimization (for ¢(z) = |z|), and Chambolle and Lions[11] and Acart and VVogel
[1] have carried out the theoretical study in this particular case. In [1] the authors have
also considered the function of minimal surfaces ¢, but only to approach and regularize
the total variation.

In this paper we study the general problem in the convex case, in the space of func-
tions of bounded variation. We give in addition a characterization of the subdifferential
of F. We also introduce the evolution equation associated to the minimization problem,
using techniques from the theory of time-dependent minimal surfaces [17]. We show
that, as the time tends to infinity, the solution of the evolution problem converges to the
solution of the variational problem. We also approximate the BV solution by Sobolev
functions, using the notion of I"-convergence [14].

The outline of the paper isasfollows. In Section 2 we review the basic properties of
functionsof bounded variation and of lower semi continuousfunctional sof measures, and
wegivetheassumptionsonugp, ¢, and K . The existence and the uniqueness of the solution
u of theminimization problem onthe space BV (2) ispresented in Section 3. In Section 4
we give a characterization of the subdifferential 9F of F and therefore of the Euler—
Lagrange equation associated to the minimization problem, written in BV (2), while
in Section 5 we study the associated evolution problem, using the theory of maximal
monotone operators. In Section 6 we approximate by I'-convergence the problem in
continuous variables. In Section 7, we present finite differences schemes for both the
Euler—Lagrange and evolution equations, and, finaly in Section 8 we show numerical
results for signal and image reconstruction.



134 L. Vese
2. Notations, Assumptions, and Preliminary Results

Let Q be an open, bounded, and connected subset of RN, with Lipschitz boundary I'. We
use standard notations for the Sobolev and L ebesgue spaces WP (2) and LP(). For
thetheoretical study of the problem, we consider « = 1 for simplicity, and thefunctional
F, will be denoted by F.

To ensure the existence and the uniqueness of a minimizer for (1) in BV (R2), we
make the following assumptions on ¢ and K:

H1. ¢: R — RT isan even and convex function, nondecreasing in R, such that:
(i) ¢(0) = 0 (without loss of generality).
(i) Thereexistc > Oandb > Osuchthatcz—b < ¢(z) <cz+b, Vze R*.

H2. K: LP(Q) — L2(Q) is alinear and continuous operator, where p = N/
(N=1DifN>2andp=2if N=1.

H3. KXQ 75 0.

H4. K isinjective or ¢ isstrictly convex.

Remark 2.1. Sinceg: R — RT isconvex, thenit iscontinuous. Moreover, its asymp-
tote (recession) function ¢ exists (see, for instance, [21]) and it isfinite (from HA(ii)):

0> (2) = tILnowo@ € [0; +00).

Infact, c = limy_, o (p(t)/t) and ¢>°(2) = cz- sign z

Remark 2.2. Thanksto H1(ii), the functional j (u) := fQ ¢(|Du|) dx iswell-defined
and finite on the space W*1(2). However, asiswell known, W1(Q) is a nonreflexive
Banach space and then the minimization problem (1) may not have the solution in this
space. For these reasons, we work with functions of bounded variation and we use the
notions of convex function of measures and relaxed functionals on measures to obtain
the existence of a minimum. Moreover, the space of BV -functions is the proper class
for many basic image processing tasks, because it allows discontinuities along curves or
edges, while W1-functions may not.

Example2.3. For E c © with C? boundary, we consider the characteristic function
Xe, defined by

if xeQ,

X) =
XE =10 it xe\E.
Then xe € BV(R), because TV (xg) := [, |Dxel = HN1OE) < oo, but xg ¢
WL1(Q), according, for instance, to Evans and Gariepy [19, Theorem 2 (characteriza-
tion of Sobolev functions), Section 4.9.2]. In particular, the boundary of E, 9E, could
represent an edge in an image. We note that HN-1(3E) is called the perimeter of E in
Q[20].
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Remark 2.4. Examplesof linear and continuous operators K from LP($) into L2(Q)
include the identity operator (K = ) if N = 1, 2 and convolutions with a positive
kernel. Inimage analysis, for K = k * u, the kernel k must satisfy k(x) > 0, k(x) — 0
rapidly as |x| — oo, and fRN k(x) = 1. Generdly, k is the heat kernel or a function
which satisfiesin addition the following properties: k(x) = k(|x]), k(|x]) = 0if |x| > 1
andk € C(RN) (see, for instance, [26]). In these particular cases, k belongsto L%(Q),
and then, for u € LP(Q), Ku := k *x u is well-defined, linear, and continuous from
LP(RQ) into L?(R), even if N > 2. Assumption H3 means that K does not annihilate
constant functions. This will guarantee the BV -coerciveness of the functiona and it is
always true for the convolution operator.

We now introduce the basic notations and preliminary results on the space BV (2),
and we recall the notion of lower semicontinuity of functionals defined on this space.

We denote by £y (or sometimes by dx) the Lebesgue N-dimensional measure in
RN and by H® the a-dimensional Hausdorff measure. We also set |E| = £y (E), the
L ebesgue measure of ameasurableset E ¢ RN. We usethe notation B(£2) for thefamily
of the Borel subsetsof Q. If x, y € RN, then x - y will denote their scalar product.

Given avector-valued measure i.: B($2) — RM, weusethenotation || for itstotal
variation. We recall that

M
[l (A) = sup{Z/ vj it v = (v1,...,om) € Co(A RM), v]leo < 1} ,
j=17%

where Co(A; RM) denotes the closure, in the sup norm, of continuous functions with
compact support in A. We denote by M (£2) the set of al signed measures on Q with
bounded total variation.

The usual weak * topology on M (£2) is defined as the weakest topology on M(£2)
for which the maps © — fQ ¥ du are continuous for every continuous function v
vanishing on 9 €2.

We say that u € L1(2) isafunction of bounded variation (u € BV (R)) if its distri-
butional derivative Du = (DU, ..., Dyu) belongsto M (£2). For ageneral exposition
of the theory of functions of bounded variation, we refer, for instance, to [34].

The space BV (2) endowed with the norm

[ullev @) = lIUllLz@) + [Dul(£2)

is a Banach space.

The product topology of the strong topology of L1(Q) for u and of the weaksx
topology of measures for Du will be called the weak x topology of BV, and will be
denoted by BV-w=. We recall that every bounded sequence in BV (2) admits a sub-
sequence converging in BV-wx. This sequence is also relatively compact in LP(Q)
forl < p < N/(N—1)and N > 1, and relatively weakly compact in LP(2) for
p=N/(N—-1)andN > 2[20], [1].

We also have an extension to BV -functions of the Poincaré-Wirtinger inequality
[9], [1]: foru € BV (L), let

—_—
0:= 1] /Qu(x)dx.
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Then there exists M > 0 such that
lu—UGllLr < M|DuU|(£),

forevery p < oo if N =21andfor p=N/(N —1)if N > 1. Then, for N = 1, wecan
take p = 2. We deduce that if u € BV (R2), thenu € LP(2) (BV (L) is continuously
embedded in LP()).

For any function u e L(£2), we denote by S, the complement of the L ebesgue set
of u,i.e, x ¢ §, if and only if there exists (i(x) € R such that

lim p*”f lu(y) — G(x)| dy = 0.
B, (x)

p—0F

The limit G(x) denotesthe approximate limit of u at x and G isaBorel function equal to
u amost everywhere. The set S, is of zero Lebesgue measure.

Ifu e BV (RQ),thenuisdifferentiablea most everywhereon 2\ S, and Vu coincides
with the Radon—Nikodym derivative of Du with respect to £y . Moreover, the Hausdorff
dimension of S, isat most (N — 1) andfor HN-1-ae. x € S, itispossibleto find unique
ut(x), u=(x) € R, withut(x) > u=(x) and v € S"1, such that

lim p*”/ u(y) — Ut (0l dy = lim p*Nf lu(y) — u= (0| dy = 0,
BL(X) p—0* B;" (X)

p—0t

where B,(X) ={y € B,(X): (y—x)-v > 0} and B,"(X) ={y € B,(X): (y—x)-v < 0}
(we assume that the normal v “pointstoward the larger value” of u; we have denoted by
B, (x) the ball centered in x of radius p).

We have the L ebesgue decomposition

Du=Vu- Ly + Dgu,

where Vu e (L1())N is the Radon-Nikodym derivative of Du and Dsu is singular,
with respect to £y . We aso have the decomposition for Dgu:

Dsu=Cy + J,
where
o=t —uw HE?

is the Hausdorff part or jump part and C, is the Cantor part of Du. We recall that the
measure C, is singular with respect to £y and it is“diffuse,” i.e., Cy(S) = 0O for every
set Sof Hausdorff dimension N — 1. Hence, we have, for every B € B(R2), that

Dsu(B\§) = Cy(B\S) and Dsu(BN ) = (BN ).
Finally, we can write Du and itstotal variation on €2, |Du|(2), as

Du=Vu-Ly+Cu+ Wt —uv- H‘N&‘l,
|Du|(2) =/ |Vu|dx+/ |Cu|+/ (ut —u)drN-?
Q Q\S S

(werecdl that ut > u™).
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It isthen possibleto define the convex function of measures ¢ (| - |) on M (£2), which
is, for Du,

@(IDu)) = @(IVu) - Ln + ¢>(1)|Dsul,

and the functional
J(u) = p(|DUN(R) = / <p(|Vu|)dx+<p°°(1)/ [Dsul
Q Q

(see[21], whereit is proved that the functional ¢(| - |) (£2) isweaklyx lower semicontin-
uous on M(2), or [17]). It isaso easy to see that J(-) is convex on BV (2) (for this,
we use the fact that ¢ is convex and increasing on R, ).

By the decomposition of Dsu, the properties of C, J,, and the definition of the
constant ¢, the functional J can be written as

J(u)=/¢(|Vu|)dx+c/ |cu|+cf (U — um) dHNL.
Q QS S

Now, thefunctional J: BV (2) — [0, +00) islower semicontinuous with respect to the
BV -wx topology and less than or equal to j, where j is defined by
_ / e(Vupdx  if ue WL(Q),
1w =3 Ja
+o0 if ueBV(Q)\WM(Q).

We note that the functional j is not lower semicontinuous on BV (2) (or on LP(L2),
L1(2)) with respect to BV-ws (or the LP, L* topologies, respectively). However, for
each u € BV (Q), there exists (see p. 692 of [17]) a sequence {Up}n>1 € C®(R) N
WL1(Q) such that u, — uasn — oo in BV-ws and

J(U) = ¢(IDuh(E) = |im / ¢(IVun))dx = lim j(Un).
— 00 Q —> 00
In thisway, we deduce that J istherelaxation of j on BV-wx, that is,
J(u) = j(u) :=inf {Iinminf jUp): up € BV(R),u, — uin BV—w*} ,
(j isthe greatest BV -w* lower semicontinuous functional less than or equal to j).
For more general lower semicontinuity results for functionals defined on measures,
we refer the reader to [5]-{ 7] and [4].

Itisthen natural to consider, instead of j (u), J(u) for the second term of F (u) in (1)
and we denote the new functional on BV (2) by F (thiswill be equal to F in W1(Q)):

ﬁ(u):/ |Ku—uo|2dx+/<p(|Vu|)dx+c/ | Dsu.
Q Q Q

Remark 2.5. J is the lower semicontinuous envelope of j with respect to the LP
topology [5]-7], [4], with p = N/(N — 1). Then, because K islinear and continuous



138 L. Vese

from LP() into L2(RQ), if ug € L2(£2), the functional
F(u) = / IKu — ug)?dx + J(u)
Q

isthe lower semicontinuous envelope of F on LP(Q2). Infact, if u € BV (R2), then there
exists a sequence u, € WH1(Q) such that u, — u (asn — oo) in LP(R), and

F(u) = lim F(up) = lim F (un).

3. TheMinimization Problem

In this section we study the existence and the uniqueness of the solution of the mini-
mization problem

inf{lf(u):/(Ku—uo)zdx+/<p(|Vu|)dx+c/ |Dsu|}, (@]
u Q Q Q

for u € BV(Q2) (werecdl tha BV(2) c LP(Q),withp =2ifN=1and p =
N/(N —1)if N >2), Du= Vu- Ly + Dsu, Ku € L%(Q), and up € L%(RQ).
To do this, we essentially follow Acart and Vogel [1] to show that

@(IDUN(L) + [[Ku — UollL2(e)

is coercive in BV (£2), and Chambolle and Lions [11] for passing to the limit in the
minimizing sequences.

Proposition 3.1. Let up € L?(RQ). Under assumptions H1-H4, there exists a unique
solution u € BV (R) of (4), satisfying Ku € L%(R).

Proof. Sepl:Existence. Inwhatfollows, wedenoteby M astrictly positive constant,
which can be different from line to line.

Let {un}n>1 beaminimizing sequencefor (4). Thenu, € BV (Q2) thanksto assump-
tion H1(ii) and we have

|Dun|(fz):/ VunldX + [Delin (@) < M, ¥n=1,
Q

where Du, = Vu, dx + Dsu,, isthe Lebesgue decomposition of Duy,.
Now, we provethat | [, un| < M,Vn > 1.
Let

_ JqUn

BUARNTOTR

Q and Un = Un — Wn.



A Study in the BV Space of a Denoising-Deblurring Variational Problem 139

Then fQ vp = 0and Dv, = Dup. Hence, | Dvp | (2) < M. Using the Poincaré-Wirtinger
inequality, we obtain that

lvnllLe@) < M.

We aso have
M > [[Kup — Uoll3 = [[Kvn + Kwn — Uol3

> ([ Kvn — Uoll2 — [IKwnll2)?

> || Kwnll2(l K wnll2 — 2| K vn — Uoll2)

> [[Kwnll2[[IKwallz = 201Kl - [[vnllp + Uoll2)]-
Let X, = [Kwnll2 and a, = [IK || - lvnllp + lUoll2- Then

Xn(Xn — 280) < M, with 0<ay < [[K|[-M + |lugllLz@y = M, vn=>1

Hence, we obtain

0<X)<a,+,a+M=<M,

which implies
/ Up dx
Q

and thanks to assumption H3, we obtain that | fQ Up dx| is uniformly bounded.
Again, by the Poincaré-Wirtinger inequality, we have

‘u
withp=2if N=21and p= N/(N — 1) if N > 2. Finally, we obtain

fQ Un fQ Un fQUn
+ Up —
12| ] Q|

1K xall2

<M, vn > 1,
19]

[Kwnllz =

u
n—@ < C|Dup|(2) <C - M,
|Q| LP()

S M/H.

+
LP(Q)

Un —

lunllLe) =

Q

Therefore, uy, isbounded in LP(2) and, in particular, in L(£2). Then u,, is also bounded
in BV (), and there is a subsequence, still denoted up,, and u € BV (R2), such that
Up — uweakly in LP(2) and in BV-wx*, Du, — Du weakly* in M(£2). Moreover,
K uy, converges weakly to Ku in L2(£2), from assumption H2.

Finally, we have (from the above lower semicontinuity resultsin BV -wx)

LP@) ‘

/(Ku — Up)?dx < Iiminf/(Kun — Ug)? dx
Q n—o00 Q
and

/¢<|Du|) < liminff ¢ (/D).
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that isto say
F(u) < liminf F(uy,)
n—oo

and u isaminimum of F.

Sep 2: Uniqueness. Let u,v € BV () be two solutions of the minimization
problem (4).
We first show that Ku = Ku: if, on the contrary, Ku £ K, then

F(3u+3v) < 3F(W + 3F(v) = infF,

because F is the sum of two convex functions with independent variables, K u and Du,
thefirst one being strictly convex. However, thisinequality cannot be trueif u and v are
minimizers F. Then Ku = K.

If K isinjective, wewill haveu = v. Otherwise, if K isnotinjective, but ¢ isstrictly
convex, then Du = Dv, which impliesthat u = v + C and K - C = 0. Therefore, from
assumption H3, we obtainthat C = 0, i.e., u = v. O

4, Characterization of Solutions

In this section we characterize the solution of the minimization problem by computing
the subdifferential of F (u). We use the techniques of Temam for the problem of minimal
surfaces [17] and duality results from [18].

We assume assumptions H1-H4 and that up € L?(Q).

We first extend F to LP(2): for u € LP(Q)\BV (), F(u) = 400 and for u €
BV (), with Du = Vudx + C, + Jy, F(u) isgiven by

ﬁ(u)=/<Ku—uo>2dx+f¢<|Vu|)dx+c/ |cu|+c/ 13l
Q Q Q\S S

The definition of the subdifferential 9F at u isthe following (see[18]): let u € LP(2)
and& € LP (). Then

EcdFu) iff {lf(u) € R and
lf(u)—/su < lf(v)—/gu,w € LP(Q)}.
Q Q
We have that F (u) = inf,eipq) F(v) if and only if 0 € 9F (u) and for this reason it is
natural to provide a characterization of 9 F.

Tr)esubdifferentiaj of FiLetu e BV(Q) C LP(Q) and & € LP(Q) . We say that
& € 0F (u) if u achieves the minimum on BV (R2) of the following variational problem:

(P1) vdigl;l/f(ﬂ) {F(v) — /Qév dx}.
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By Remark 2.5, we can replace in (P;) the infimum on BV (Q2) by the infimum on
WL(Q) (WHL(Q) ¢ BV(RQ) c LP(R)). Usingthefollowing property: if v € WH1(Q),
then Dsv = O, the problem becomes

(P2) inf {/(Ku—uo)zdx+/ cp(|Vv|)dx—/$v dx}.
veWll(Q) Q Q Q

Now, problems (1) and (P2) have the same infimum, which belongs to R, because we
have assumed that £ € 9F (u), that is, u is asolution of (Py).
We now write (P3), the dual of (P»), in the sense of Ekeland and Temam [18].
We first recall the definition of the Legendre transform (or polar) of a function: let
V and V* be two vector spaces in duality by a bilinear pairing denoted by (-, -). Let
®: V — R beafunction. Then the Legendre transform ®*: V* — R of & is defined
by

®*(u*) = supf(u, u*) — e (W)}.

ueV

Let 7: WI(Q) - R, G: L4Q) x LYV — R, Gi: L3Q) —» R, and
Go: LY ()N — R, such that

F) = —/Qvif dX = —(v, &) Lpurvs

G (wo) = /Q (wo— Up2dX,  Galid) = /Q (1)) dx,
G(w) = Ga(wo) + Ga(h),

with w = (wo, @) = (wo, w1, ..., wn) € L2(Q) x LY @)N.
Then (P3) isgiven by
(P3) sup {=F(A"P") = G* (=P},
prel2(Q)x L ()N

where the operator A: WH1(Q) — L2(Q) x LY(2)N isdefined by
Av = (Kv, Dyv, Dov, ..., Dyv)

and A* isthe adjoint.
We compute F* and G* using the definition of the Legendre transform: if V. =
WL1(Q) with V* the dual, then

FYA*P) = sup (A*P 4§, v)yevr =

0 if A*v*4+&=0 onV,
veWLL(Q)

400 elsawhere.
Itiseasy to seethat
g (p") = G1(py) + G5(P"),

where p* = (pg, P*) = (Pg» P1»---» PN)-
We have that

*\ 2
G100 = (%2 + piu) o
Q
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Sincep: R — R™T isconvex, lower semicontinuous, and even, we also have [18]
G,(p") = / @*(1p*]) dx,
Q

if |p*(-)| € Dom(¢™).
In this way, we can also write (P3) in the following form:

* (pé)z * * 01 R%
(P;) sup \— 4~ Polo dx — [ ¢*(Ip*hdx¢,
prek Q Q

where
K ={p* € LAQ) x L¥(@)N: |p*(x)| € Dom(p*), A*p* + & = 0inD'(Q)}.

We can simply seefrom assumption H1(ii) that if m € R, thenm € Dom(¢*) if and only
if Im| < ¢ =¢>(1) (seeadso[17]).
From A*p* +& =0inD'(Q2), we get
(A"p", w) + (§, w) = (p*, Aw) + (w, §)
= (py, Kw) + (p*, Dw) + (w, &) =0, Yw € D(Q2).

Then we have
K*pg —divp*+&=0 inD'(Q).

For p* satisfying this relation, we obtain that div p* € LP (€2), and then we can define
(by a theorem of Lions and Magenes [24]) the trace of p*- v on " = 3R, where v
represents the unit normal to I, and integrating by parts, we get, for v € WH1(Q)

N N
f p*-vvdl = / Z(Di f)i*v)dx+/ Z(ﬁi*Div)dX
r Qi1 Q=1
= (K" pg, v) + (v, §) — (pg, Kv) — (v, ) = 0.
In this way, we deduce, for p* € K, that p* - v =0dl'-ae. onT.

Finally, we rewrite K in the following way:

K ={p* e L) x L*)N:

Ip*(X)| <c, K*py—divp +&=0inD'(Q), p*-v=0o0nT}.

We now apply the duality Theorem 111.4.1 from [18], since the functiona in (P5)
is convex, continuous with respect to Av in L2(2) x L1(Q)N, and inf P, isfinite. Then
inf(P,) = sup(P3) € R and (P;) hasasolution M € K [18]. This solution is unique if
¢* isstrictly convex, which is equivalent to saying that ¢ € C*(R), according to aresult
of Rockafellar [27].

Now we write that u is a solution of (Py), that M is a solution of (P}), and that
inf(Py) = inf(P2) = sup(P;) (the extremality relations):

/(Ku—uo)zdx+/<p(|Du|)—/§udx
Q Q Q

M2 .
=—/ Mo Moug dx—/<p<|M|>dx,
o\ 4 Q
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where M € L2(Q) x L¥(@)N, IM(X)| < ¢, K*Mo —divM + £ = 0in D'(Q), and
M.v=0dlr-aeonrl.

Following Demengel and Temam [17], we can associate to u and M a bounded
unsigned measure denoted Du - M which is defined, as a distribution on €2, by

(Du-M,w):—/u(divM)wdx—/ M - (Vy)udx, Yy € CP(RQ)
Q Q

(see aso[30] and [22]).
By the generalized Green’s formula (see also [30], [22], and [31])

/Du-I\7I=—/u-divI\7I+/u(I\7I-v)dF,
Q Q r

since M - v = 0dI'-ae., we get

2
/(Ku—uo)zdx—l—/(p(lDul)—i—/ MoKu+/ (ﬂ— Mou0> dx
Q Q Q Q 4
+/ Du.|\7|+/<p*(|l\7||)dx=o.
Q Q

Using thedecomposition Du = Vudx+Cy+(ut—u~)v dHN"1|g, whereCy(S)) = 0,
wefinally have

MZ
/(Ku—uo)zdx+/ MoKudx+f (—0— Mouo) dx
Q Q Q 4

4 /Q«pavm) + VU N+ ¢ (IND) dx
+/ (c|Cul + MCy) +/ ut—u)c+M-vydrNt=0.
Q\S S

Now, we have the following:

1°. (Ku — ug)? — (—Mp)ug + ((—Mp)?/4 4+ (—Mg)ug) > 0, by the definition of
G; and for dx-ae. x € Q.

22, o(IVU) )+ M(X) - Vux) +¢*(IMX)]) = e(IVUxX))) = IMX)| - [Vu(x)| +
e*(IM(X)|) = 0, by the definition of ¢* and for dx-a.e. x € 2, where Vu is
defined.

3. Cy << |Cy| and thereexistsh e L1(]Cy)N such that |h| = 1 and C, = h|Cy|
(the Radon-Nikodym theorem). We then obtain ¢|Cy| + M - C, = (C + M -
h)|Cy| > 0, because |[M| < c.

4°. Whenut and u~ are defined, wehaveu® —u~ > 0andc+ M - v > 0.

We can now give a characterization of £ € 3 F (u):

Proposition 4.1. Let& € LP(Q) pnd u e BV(Q), with Du = Vudx + Cy + J, the
decomposition of Du. Then & € aF (u) if and only if there exists M: @ — RN** with
M(X) = (Mog(X), M(X)) € R x RN, IM(-)| < ¢, and Mg € L2(), such that

e(IVuD+Vu-M+¢*(IM)) =0  dx-ae xeQ. (5)
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H={xeQ\X: c+ M()-h(x)=0,C, = h|Cy|,h e LY(|CuDN, |h| = 1},

then
supp(|Cul) C H, (6)
c+M-v=0 M/ =c dHVtae xeS, 7)
K*Mg—divM +£ =0  inD'(Q), (8)
—Mp = 2(Ku — up) dx—-a.e in €, (9
M.-v=0 dlr-aeonr. (10)

If in addition ¢ is differentiable, then we can compute M as

@'(IVuX))

M =
9 VU]

Vu(x), dx-ae xeQ, if |VuXx)|#0, (11

and M(x) = (0, ..., 0) if [Vu(x)| = 0. R
Finally, we have a characterization for the solution u of {inf,c_»q) F(v)}, taking
£ = 0and writing that 0 € 9 F (u).

Proof. Thedirect implication has just been proved. Conversely, if such an M exists, it
is easy to check that M isasolution of (P5) and u isasolution of (1), which amounts
to saying that & € 9F (u).

Now, if ¢ is differentiable, we only show how we obtain the expression of M, the
other results follow from before.

Let x € Q such that (5) is true a x and we denote by M;(x) (and by V;u(x)),
i =1,..., N, the components of M (x) (Vu(x), respectively). We have the following:

" (| — M(X)) = =M (X) - Vu(X) — p(|VUu(x)|) = T&i&{_m ‘T —o(TD}

Let x be aLebesgue point for [Du|. If [Vu(x)| # 0, then for T = Vu(x) we have
that

Vi(=M T —o(IT])) = (0,...,0),
which implies that

2o P(IVUXD o
M; (X) = T Viu(x).

We also deduce from 2° and (5) that

(IVUX)) — IMX)] - [Vux)| + ¢*(IM(x)]) = 0.
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Then

P (IMX)]) = IMX)| - [VUX)| — o(IVUX)|) = wﬂg{|l\7l<x)| ‘t—o®)},
te

which implies that [M(x)| = ¢'(t) for t = |[Vu(x)|. Hence, if [Vu(x)| = O, then
M) = (O, ..., 0),using ¢'(0) = 0. O

Remark 4.2. Unfortunately, the functional is not lower semicontinuous on SBV (),
the space of special functions of bounded variation, introduced by De Giorgi and Am-
brosio [16], defined by

BV(Q) ={ue BV(Q): Du=Vudx+ J, & C, =0}.

Thisfact is proved in [4]. Therefore, we cannot say a priori that the solution belongs to
BV (). For instance, the Mumford—Shah functional for image segmentation (see [25]
and [15])

1
MS(u) = 5/ |u—uo|2dx+/ |Vu|2dx+/ drN-1 (12)
Q Q S

is convex and lower semicontinuous on BV (£2). Maybe the subspace SBV(€2) is more
convenient than BV (€2) to model the reconstructed images.

Remark 4.3. Thedua problem (P5) with the solution M = (Mo, M) can offer anew
method to compute the solution u numerically, at least for thecase K = | Indeed, if we
solve the following constrained minimization problem with the solution M,

N2
_inf {/ <(d'VM) —(divl\7|)uo> dx—l—f<p*(|l\7||)dx},
M: IMel<c [ Jo 4 Q

then we can compute u by the relations My = div M, 2(u — Ug) = — Mg, from Propo-
sition 4.1. We have remarked that ¢* is strictly convex if and only if ¢ € C'(R), and
thisistrue for the potentials ¢1, 2, and ¢3 defined in the Introduction. For instance, for
m € [0, 1], wehavep;(m) = m?/2and @3(m) = 1—+/1 — m?. For thesetwo functions,
the constant ¢ is equal to one. This problem could be solved by a quasi-Newton method
with constraints, but we do not analyze this possible approach here.

5. TheEvolution Problem

In this section we study the evolution equation associated with the problem 0 € 3 F (u),
in the particular cases of one and two dimensions, i.e, N = 1and N = 2. Then BV (Q2)
is continuously embedded in the Hilbert space L?(Q2), this being necessary in order to
apply general results on maximal monotone operators and evol ution equations on Hilbert
spaces [8]. The function ¢ satisfies the same assumptions as in the previous sections.
For the moment, we only assumethat K: L?(Q) — L?() islinear and continuous.
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We can associate the following evolution problem to the minimization of the func-
tiona F (givenin (1)) if, for instance, ¢ € C(R):

au

O=E+Au in  ]O, oof x 2,
(Ev1) u(0, X) = up(x) for xeq,
¢'(|Dul)

Du-v=0 on 0%,
|Du|

whereu: [0, c0) x 2 — R isthe unknown function and A is the operator:

Au = 2K*(Ku — ug) — div (§0 (Wul)Vu) )
[Vu|

To study such an evolution problem, we apply nonlinear semigroup theory and the
notion of a maximal monotone operator [8].
Unfortunately, the operator A is not maximal monotone because it is the subdiffer-
ential of thefunctional F, F: L%(Q) — R U {+o0},
/(Ku — Up)? dx +/ o(|Vul) dx if ueWL(Q),
Fu) =4Ja Q
+00 if uel?2(Q)\Wh(Q),
which is not lower semicontinuous on L2($2). To overcome this difficulty, as in the
previous sections, we consider the relaxed functional F of F on L?(Q):
F(u) = /(Ku - uo)zdx+/ e(IVu) dx +¢c|Dsu|(R2)  if ue BV(Q),
Q Q

with Du = Vudx + Dsu, and F(u) = 400 if u € L2(Q)\BV (). Then we associate
to F the following evolution problem on L2(Q):
Oeau+8|f(u) on 10, 00[ x Q
(Evp) ot ’ ’
u(0, xX) = up(x) for x e Q.
It is easy to establish the following theorem from the above relaxation results and a

genera result of an evolution equation governed by a maximal monotone operator.

Theorem 5.1. Let @ ¢ RN be an open, bounded, and connected subset of RN (N =
1, 2) with Lipschitz boundary ' = 9. Let up € Dom(d F). Then there exists a unique
function u(t): [0, +-o0[ — L?() such that

u(t) e Dom@@F), Vvt >0, z—l: € L=((0, +00); LA(Q)), (13)
—E;—l: € aF (u(t)), ae te]0, +oof, u0 = ug. (14)

If 0 isa solution of (13)—(14), with (g instead of ug, then

Jut) — G llL2@) < lluo — GollL2(), vt > 0. (15)
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Let Du(-,t) = Vu(., t) dx + Dsu(-, t) bethe Lebesgue decomposition of Du(, t).
Then, for almost everyt > 0, thereexists M (t, -) € L2() x L¥()N, M = (Mo, M) =
(Mo, ..., My) satisfying (5)—7), (9), (10), and, instead of (8),

—(;—l: +K*Mp—divM =0  inD' ().

If, in addition, ¢ is differentiable, then M (t, x) isgiven by (11).

Proof. Thefunctional F isclearly convex, proper, and lower semicontinuousin L2(€2),
from Remark 2.5. Then 3 F ismaximal monotoneand (13) and (14) follow from nonlinear
semigroup theory [8, Theorem 3.1]. The other conditions follow immediately from (14)
and the characterization of 9 F. O

Remark 5.2, For eacht > 0, the map ug — u(t) is a contraction from Dom(d F)
into Dom(d F). We denote by S(t) its unique extension to a continuous nonexpansive
semigroup on Dom(3F) = DomF = BV () (see, for instance, [8] and [33]). If ug €
BV (), then ut) = St)uo is called the generali;ed solution of (Evy). Moreover,
S(t)up € Dom(aF) for al t > 0, i.e., the operator dF has aregularizing effect.

Behavior of solutionsast — +oo: Let ¢ and K satisfy assumptions H1-H4 and
Uo € Dom(o If).ThentheprobIem(Evz) hasauniquesolutionu(t): [0; +oco[ — L3(R),
which satisfies (13)—(15) and we also know that F: L2(S2) — R U {+o0} hasaunique
minimum 4 on BV ().

We now prove, as in [23], that u(t) converges strongly in L1(2) and weakly in
L2(Q)tod ast — oo.

First, we recall aresult of Bruck [10] which proves the weak convergencein L2(Q)
to 0.

Proposition 5.3 [10]. Let H be a Hilbert space and let A be the subdifferential o F
of a proper lower semicontinuous function F: H — ]—o0, +00] which assumes a
minimumin H.

If u: [0, oo[ — H isabsolutely continuous and satisfies

u(t) € Dom(A), vt >0,
au
Oe — + Au a.e.,
€ ot +
‘ au

—1 € L*(0, c0),
then u(t) hasaweak limit G in H ast — oo and G belongsto .A~1(0).

H

ot

Theorem 5.4. Let Up € Dom(d F). Then the solution u of (Evy) convergesast — oo
to the minimum b of F in the following sense:

u(t) — astrongly in L(2) and weakly in L%($2).



148 L. Vese
Proof. The existence of a weak limit G in L?(2) is a consequence of the existence
result from Section 3, Theorem 5.1, and Proposition 5.3. It remains to show the strong
convergence in L1(§A2).

We prove that F(u(t)) is uniformly bounded and therefore u(t) will be uniformly

bounded in BV (Q2).
From

au N
5 e dF (u(t)),
by the definition of the subdifferential, we have
A au A au 2
F(U(t))+f —ut)dx < F(v)—i—/ —uvdXx, Yv e L4(Q).
o ot q ot

Let v = G. Then

)0 = u® |l L2)-
L2(Q)

Fu = Fa+ [ Ma—umydx < F@ + Ha—“

o ot ot

Now, F(0) < oo because G € Dom(F) = BV(Q), [[du/dt| L2, is uniformly
bounded from (13), like ||G — u(t) || 2g), from the weak convergence.

Finally, asin Section 3, there is a subsequence u(t,) which convergesin L1(Q) to

alimit, which must be G. Moreover, all the sequence u(t) converges strongly in L(2)

to U (for instance by contradiction). O

Remark 5.5. Unfortunately, we have obtained the strong convergence of u(t) to d only
in L1(2), and notin L2(R), sinceDom(F) = BV () isonly continuously embedded in
L?(2). Generally, we could obtain the strong convergencein L2(£2) under the following
assumptionon F: for eachC > 0, theset {u € L2(Q): If(u)-|-||u||fz(9) < C}isstrongly
compact (see[8]), but thisis not truein our case.

6. Approximation by I"'-Convergence

In order to solve the minimization problem (4) numerically, we first need to regularize
it and to work on a more regular space than BV (£2), because we do not know how to
approximate directly in the energy the term

/IDSUI=f |Cu|+/ jut —u"|dHN
Q Q\§ S

for u € BV (). Therefore, it is necessary to approach in some sense the functional F
by a sequence (F;).-o of quadratic functionals, finite, lower semicontinuous, and well-
defined on a subspace of W-P(Q2) (werecall that p=2if N=1and p= N/(N — 1)
if N > 2), and where the functions have the singular part of the gradient equal to zero.
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Thereare many possibilitiesto construct the sequence (F,),-o, and we consider here
two cases. The most classical approximation and regularization is obtained by defining
g1t RY - RT, 01.(2) = ¢(2) + 2%

We can also approach and regularize the function ¢, which is assumed to be con-
tinuously differentiable on ]0, +oc[, in the following manner: let gp.: RT™ — R* be
(e >0)

%:)zzwp(e)— wz(g), if z<e,
92:(2) = { 9(2), if e<z<?i, (16)
24 (1/8)Zz+(p<}) _Yde
2 2¢ €
By the following assumption,
o' . : .
10, 0[ 2 2+~ is continuously decreasing, a7)

we have that ¢o.(2) > ¢(2), for al z > 0 (this is of course true for the previous
approximation g1, of @).

Now, choosing oneof thesetwo sequences (¢, ).~ 0, We definethe sequence (Fi; )¢~ 0,
i=12by

/|Ku—uo|2dx+/<pig<|w|>dx, it ue W),
Q Q

Fie(u) = Vu e L%(Q),
~+o00, elsawhere.
We also define
Eu) = F(u), if ueWL(Q), Vuel3Q),
T ] 400, elsawhere

(F istherestriction of F from Section 2 to functionsu € W1(Q), with Vu € L?(Q)).
Sometimes, we use the notation (F;).q instead of (Fi;).-0, F. being one of these
two approximations.
From now on, we assume assumptions H1-H4 from Section 2. For the results
concerning the sequence (F,),-0, We need in addition to assume that ¢ € C(0, 4+00)
and (17).

Proposition 6.1. For every ¢ > 0, the functional F, has a unique minimum u® €
WLL(Q), with Vué € L3(Q).

Proof. Let u, be a minimizing sequence for F,. Then u, € W), with Vu, €
L2(2), and there exists a constant M > 0 such that

/ IKup — Upl?dx < M, VunllLo@) < M,
Q
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from the construction of ¢,. Then we prove, as in the existence result from Section 3,
that

[unllLrey < M.

Then thereisu € WL1(), with Vu e L?(Q), and a subsequence of uy, still denoted
Un, such that

Un — u  weaklyin LP(), Vun — Vu  weakly in L%(Q).

Since ¢, is convex and continuous, and K: LP(Q) — L2() islinear and continuous,
we obtain that

F.(u) < liminf F.(uy),
n—oo
i.e, uisaminimum of F,., denoted u®. The uniquenessisdeduced asin Section3. O

Now, to show that (u®),.q converges to the unique minimum of F, we use the
notion of I"-convergence and its relation with the pointwise convergence, presented by
Dal Masoin [14].

Let X be atopologica space. The set of all open neighborhoods of x in X will be
denoted by N (x). Let (F,) be asequence of functions from X into R.

Definition 6.2.  The I'-lower limit and the I"-upper limit of the sequence (F) are the
functions from X into R defined by

(F—Iiminf Fh> (X) = sup liminfinf Fy(y),
h—oo UeN(x) h—oo yeU

(F-Iimsuth) (X) = sup limsupinf Fu(y).
h—o0 UeN(X) h—oo yeU

If there existsafunction F: X — R such that

C-liminf F, = T-limsup F, = F,
h—oo

h—o0

then we write F = I'-limy_, o, F, and we say that the sequence (Fy,) I'-convergesto F
(in X) or that F isthe I'-limit of (Fy) (in X).

We also use the following two results from [14]:

Proposition 6.3. If (Fy,) isadecreasing sequence convergingto F pointwise, then (Fy)
I"-converges to the lower semicontinuous envelope of F in X, denoted by sc™ F.

Corollary 6.4. Suppose that (Fy,) is equi-coercive and I'-converges to a function F,
with a unique minimum point Xo in X. Let (xp) be a sequence in X such that x;, is a
minimum for F, in X for every h € N. Then (xp) convergesto xp in X and (Fn (X))
convergesto F(xp).
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Proposition 6.5. The sequence (Uf)q~o from Propo:fjtion 6.1 converges in L1(R) to
the unique minimumu of F and F, (u®) convergesto F(u).

Proof. Inour case, for X = L(2), we have that F.(u) \, F(u) ase \, O, for every
u e WH(Q),withVu e L?(Q). Of course, the sequence (F,) isequi-coercivein L1(Q),
since F, > F forall ¢ > 0 and F iscoercivein L(). To apply the above results, we
need to check that F = sc™F in L1(£2). We consider two steps.

Sep 1: F is lower semicontinuous in L1(2) with respect to the L-topology. It is
easy to verify this: let u, u, € LY(Q), such that u, — uin L}(Q), asn — oo and
liminfn_ F(Un) < 400. Then, as F (uy) isbounded (or for asubsequence), we deduce
that u, € BV () with ||up||gv (g uniformly bounded. Thenu € BV (2), u, — uin
LP(Q) andu, — uin BV-wx*, asn — oo. Finadly, we have

F(u) < liminf F(up),
n—oo

i.e., step 1isproved.

Sep 2: F isthe lower semicontinuous envelope of F in L1(£2), with respect to the L1-
topology. From step 1, it sufficesto show that, for u € BV (£2), there exists a sequence
Un € WHL(Q), with Vu, € L2(R), such that

Uy —> U inL*Q)as n— oo  and If(u)zlinminflf(un).

Letu € BV (L2). From Rerrlark 2.5wehavethat F isthelower semicontinuous envel ope
in LP(Q) of itsrestriction F|w1q, = F. Then thereisa sequence u, € W1(Q), such
that u, — uin LP(Q) and

F(u) = lim F(up) = lim F(up).

Now, for eachu, € WL1(Q), thereisasequence (UK )y € WHH(Q)NC>(Q), such
that uk — u, inW1(Q), ask — oo (see[19]). Inparticular, wehavethat Vuk e L2(Q)
and uk — up in LP(R), ask — oo, by the Sobolev embedding. Then, since the map
ur [, ¢(|Dul) dx isaconvex and continuous function from W*1(Q) into R (see, for
instance, [17]), and K is linear and continuous from LP(2) into L2(£2), we deduce in
addition that

F(Un) = F(up) = Jim F(uk).

Then, by a double approximation argument, we deduce that, for u € BV (2), there
existsu" € WH1(Q), with Vu" e L?(R2), suchthat u” — uin LP(Q) (and, in particular,
in LY()), and

F(u) = lim Fu"),

i.e., step 2 isproved.
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In thisway we obtain that the sequence (u®),-.o convergesin L1() to u, the unique
minimum of F (equation (4)). O

Remark 6.6. To compute u® numerically, with ¢ > 0 small enough, we can use the
associated Euler—Lagrange equation, having the solution u?, the minimum of F,, which
is now Gateaux-differentiable at each point. However, unfortunately, the problem is still
nonlinear. To overcome this difficulty, wewill construct asequence of functions (U nen,
which will converge to u®, and uf, will be the solution of alinear equation. For instance
(for K = 1), if we consider the second regularization ¢, (16) of ¢ and denote ¢, by ©
for smplicity, and the values

Pd'(z d'(z
L—iim 2@ oy im 22
z>o00 27 -0t 27

then we can show that there exists a strictly convex and decreasing function W defined
on [M, L] such that

— 2
d(2) = Mg}fﬂ(wz + W (w)).
The minimum will be reached for w = ®'(2)/2z. Then we let
E(u, b):/ |Ku—uo|2—|—/ b|Du|2+/ w(b),
Q Q Q

and we obtain the following algorithm: start from any u' and bt and let

n+1

u™t =ag min E(u,b"),

ueHY(Q)
) (b,(| Dun+l|)
n+1 __ n+1 —
o™ =ag min EUWTLD) =MV = s AL
where we have used the notationsa v b = max(a, b) anda A b = min(a, b). Therefore,
u"+* will be characterized by

u™t — div(b"Du"*?) = uo.

The discrete version of this algorithm is introduced in [3] for the Euler—Lagrange
equation associated to the minimization problem (this algorithm will be used here), and
in [12] and [13] for the minimized energy. In those papers, stability and convergence
results are presented. Also, in continuous variables, in [11] the authors have proved the
convergence of the algorithm for the total variation minimization.

Remark 6.7. Inthissectionwehave presented theresultsinthegeneral N-dimensional
case. In practice, for signal and image reconstruction, we will have N = 1 or N = 2.
Then p = 2 and the regularizing sequence (u®),-.o will belong to H1().
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7. TheNumerical Approximation of the Problem

In this section we recall the version of the previous agorithm introduced in [3], to
approach by finite differences schemes the associated Euler—L agrange equation written
in conservative form:

¢'(|Du))
|Dul

To discretize the divergence operator, amethod of Rudin et al. [29] for thetotal variation

minimization is used. We also adapt the algorithm to the associated evolution equation.

K*Ku —adiv( Du) = K*Uup. (18)

Remark 7.1. For numerical reasons, we need to compute u¢, the continuous approx-
imation of the BV solution u, with ¢ > 0 small enough, defined in Section 6 as a
minimizer of F;,, the approximation of F. If we use the approximation F, of F, then
it is not necessary to consider, in (16), the case z > 1/¢, since, in practice, for discrete
images, the gradients are always bounded. Moreover, if the function ¢ is regular and
“quadratic” at the origin (like, for instance, ¢1, @2, and ¢z from the Introduction), we
will not consider the case z < ¢. In the description of the agorithm, we assume that
¢: RT — R+ isof classC?, ¢’(0) = 0, with z > ¢'(2)/z strictly positive, continuous,
and decreasing in [0, +oo[. Therefore, we discretize directly (18).

Remark 7.2.  We need to specify boundary conditionson I" = 92 associated to (18).
From Section 4 (see (10)), the natural condition is

¢'(IDup
|Dul

Du-n=0, or'-ae.onT,

wheren istheunit normal to I'. However, because ¢’ (z) /zisstrictly positivein [0, +o0],
and the discrete gradients are bounded in the norm, we get thefollowing classical bound-
ary condition:

% =0 on TI'=0Q.
an
We approach the solution u by a sequence (U")n=0, With U® = up, such that u™* is
the solution of the following linear problem:

/ D n
K*Ku"! — o div (% Du””) = K*uo. (29)
Let y» be the function defined by
‘”/;Z) if z>0,
I/f: R+ — R+a W(Z) = ’
Iing)(piz) if z=0,
z—

Then, for each type of potential, the function v is strictly positive and bounded on R*.
Now we move to the precise description of the algorithm in dimension one.
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7.1. The One-Dimensional Case

Let for themoment K = |. In this case, (18) becomes

9
u-— aa—x(l//(luxl)ux) = Up. (20)

Assumethat @ =]0,1[.Let M € N*, x; = ih,whereh=1/M and0 <i < M, bethe
discrete points. Let up: [0, 1] — R begiven and let u: ]O, 1] — R be a solution to the
problem (20). We define the discrete approximations uy, of u and ug , of ug by

Upn(Xp)) =uj ~ u(x), for O0<i < M,
Ugh(Xi) = Ugj ~ Up(X), for 0<i <M,

with the following discrete boundary conditions (corresponding to Neumann boundary
conditions):

Un(Xo) = Un(X1), Un(Xm) = Un(Xm-1)- (21)
We may assume that the initial discrete signal, the data, satisfies the following property:
thereexist my > my; > O such that my < ug; < my, for 0<i <M,

which will be used to establish the so-called L *°-stability for the solution. We also recall
the usual notations for finite differencesin dimension one. Let

AL Ui '=Ujt1 — U, A_Uj i=Uj —Uj_g, for 0<i <M.

The numerical approximation of (20) will be
A+Ui

ui—%A[w< - >(Aaui>]=uo,i, O<i<M, 22)

with the boundary conditions (21).

Since the problem is still nonlinear, as we have mentioned, we approach the numer-
ical solution un by asequence (up)n=o, which is obtained by afixed point algorithm (see
also [2]) as follows (sometimes we write u, Uo, u” instead of up, ugn, up):

1. u®isarbitrarily given, such that my < u® < m; (for instance, u® = up).
2. If u" is calculated, then we compute u"** as the solution to the discrete linear

problem:
A !'1+l
)( *: )}:uo,i, O<i<M, (2

L - gA_ |:W (‘ Apul
with the discrete boundary conditions for u"2.

h h

In fact, (23) is an approximation of (19). Now, we multiply (23) by h?/«, and we
define cy(uf), ca(ul), Ca(ul), Co(uf), and C(u") by
uin-s-l -

cl(ui“)=01:=w< h '>, Cz(ui”)=02:=w<

_ G _ (h?/a)
- (h2Ja)+ci+ ¢  (h2Ja)+ci+C

n n
U —U_g
h

) e

(25)

Ci
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Weremark that ¢;, Cij,C > 0,fori = 1,2, and C; + C, + C = 1 (we note that these
coefficients depend on (ul")). All these properties on the coefficients will guarantee the
L >°-stability of the scheme. With these notations, (23) becomes

uftt = C MU 4+ CouMuME 4 C(ul)uo;. (26)
For the evolution equation:

MO 2 ubuo = s, u© = uo,

ot aX
in]0, T[ x K2, we use the same approximation for the divergence term, and we have
the choice between an explicit or implicit scheme. Let At > 0, n € N, and define
Un(N At x) =ul ~u(n At, X), withud = ugp.
Theexplicit schemeis, forl<i <M —1,

uMtt —yn o
' X Lul — ﬁ[cl(ui“)(ui”ﬂ —u) + (U (U — U )] = U
or
a At a At a At
= [1 — 7(01 +C) — At} u' + Vclui”+l + Tczui”_l + Atug;.
We have that

my<ul <mp, for0<i <M}= {m <ul™ <mp, for0<i <M},

under the following stability condition:

2
1-— At —‘Z sup v —1) >0.
h? (0,100l
Theimplicit schemewill be, for0 <i < M,

uMt —up o
S U = e Ml - a4 el W - U] = o,

which can be written in the form (26).

7.2. The Two-Dimensional Case

In this subsection we describe the extension of the previous approximation to the two-
dimensiona problem (following [3]), whichis, for N = 2, with Du = (uy, uy),

9 ad
U~ e F(DUD) — g (h(IDUDUy) = o 27)

inQ c R2 andwith du/on = 0onT = 9%2. We follow [3].
Assume @ = ]0,1[ x ]0,1[, h > O, and let x, = ih,y; = jh,h = 1/M, for
0 <i, ] < M, be the discrete points. Asin the one-dimensional case, we recall the
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following usual notations:

1°. un(Xi, ¥)) = Uij & Ui, Yj), Uph(Xi, ¥j) = Ugij ~ Uo(Xi, Yj).

2°. m(a, b) = minmod(a, b) = ((signa + signb)/2) min(|a|, |b]).

37, ALuij = F(Uiz1j — Uij) and AV Uij = F(Uj jg1 — Uij)-
So, (Ug,ij)i,j=o,m IS the initial discrete image, the data, such that m; < ug;; < my,
where m; > my; > 0. We approach the numerical solution (u;;)i j—o,m by asequence
(U)i.j=o.m for n — oo, whichis obtained as follows:

1. W@ isarbitrarily given, such that m; < uY; < m; (we can take u® = uy).
2. If u" is calculated, then we compute u™*! as the solution of the linear discrete
problem:

N 1/2
Ut S ax |y ALU 2_|_ m aquy aluy Ajui
" h ~ h h * h h
AYur\? acu a2 ) ket
—gAy " +4ij +(m +u I] - IJ +4ij
h h h h h

= Uo,ij, (28)
fori, j =1,..., M — 1, and with the boundary conditions
n+1 n+1 n+1 n+1 n+1 n+1 n+1 n+1
uOJ_ulj’ uM]_uM 1j> uIO _ull’ uIM_uIMl

We use here the minmod function, in order to reduce the oscillations and to get the
correct values of derivatives in the case of local maxima and minima. We observe that,
to approach, for instance, the term (3/9x) (¥ (| (uy, Uy)|)uy), we do not use the minmod
function for uy, since we wish to obtain afive point finite differences scheme.

We multiply (28) by (h?/a) and then we denote by ci(uf), c2(uf}), ca(ufl), and
ca(uf}), the coefficients of u'f7 ;, u™*7, U}y, and uf'f 2, , respectively. We remark, for
i = 1 ,4, that ¢ > 0, since the func’uon Y is strictly positive. Now, for u,J, let
GCi(uf] )andC(u ) bedefinedby (i =1,...,4)

G _ (h*/a)

C = , C= .
(hz/O{)+C1+Cz+C3+C4 (h2/0l)+C1+C2+Cg+C4

Then we have that C;,C > Oand C; + C, + C3 + C4 + C = 1 (we recall that these
coefficients depend on uf} ).
Hence, we write (28) as

n+1 = Cy (U )UPLl, + cz(u”)ulrwllJ + Cs(u,J)u|“J++1l
+ Ca(uf} )u,“]“l + C(uf))Uojj- (29)

We do not describe the approximation for the two-dimensional evolution problem,
thisbeing similar to the one-dimensional case. Also, in order to verify the L *°-stahility of
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these schemes, the existence and uniqueness of u™+* for afixed u", and the convergence,
we refer the reader to [3] and [32].

At the end of this subsection we briefly consider the case K # | (see[3]). In many
cases the degradation operator K, the blur, is a convolution type integral operator.

In the numerical approximations, (Kmn)m.n=0,d 1Sa@Symmetric matrix with

d

Z Kmn = 1

m,n=1
and an approximation of Ku can be

d
Kuij = Z KmnUi+d/2—m, j+d/2—n-

m,n=1

Since K issymmetric, then K* = K and K*Ku = K Ku is approximated by

d d
KKuij = Z Z KmnKrtuierfrfm,j+d7tfn~

m,n=1r,t=1

Then we use the same approximation of the divergence term and the same iterative
algorithm, with a slight modification. The equation, in this case, is approximated by
(using the same notations ¢; as before)

(h?/a) KK U + (Co(ul}) + C2(uf}) + ca(ul}) + ca(uf)ufj™
= Co(UDUNT; + C2(UUMT ) + ca(uiul i + caiUME; + (h/a) Kugj.

8. Experimental Results

8.1. Reconstruction of Noisy Sgnals

In this subsection we present experimental resultsto reconstruct two noisy signals, using
the potential ¢(z) = +/¢ + 22 (the function of minimal surfaceswith aparameter ¢ > 0)
and the discretization of the stationary equation. The first signal is piecewise-constant,
while the second is piecewise-linear (see Figure 1).

A priori, thereisno optimal choice for the parameters. Then, for each case, we first
tested the algorithm for different values of the parameters and we show here our best
results. We remark that for the piecewise-constant case, the parameter ¢ is smaller than
for the piecewise-linear case (we will find the same behavior for images). In this case,
with avery small ¢, the problem is close to the Total Variation minimization [29].

8.2. Reconstruction of Noisy and Blurred Images

In thislast subsection we present several results on synthetic and real images, degraded
by noise and blur, using the same potential ¢(z) = +/¢ + z2. We show the SNR (the
mean signal to noise ratio between the original and the noisy image or the result, after
normalization) each time. The SNR is smaller for a noisy image, and larger for the
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Figure 1. (Left) The piecewise-constant signal: original, noisy, and result, superposed (h = 1, ¢ = 7,

& = 0.001). (Right) The piecewise-linear signal: origina, noisy, and result, superposed (h = 1, « = 20,
e=1).

Figure2. Synthetic picture: origina and noisy (SNR = 7.38 dB).

Figure 3. Results with the synthetic picture. (Left) The stationary case (SNR = 18.54dB, h = 1, o« = 20,
& = 0.001). (Right) The associated evolution case (SNR = 18.54 dB).

reconstructed image. Therefore, the choice of parameters is made in order to increase
theinitial SNR.
Thefirst three images have been degraded with an additive Gaussian noise.
Webeginwith asynthetic picture. The corresponding SNRis7.38 dB (see Figure 2).
In Figure 3 we present the results on the synthetic image, using for the first (left)
the stationary equation, and for the second (right) the evolution equation. We seethat in
the evolution case we obtain the same result (with the same SNR), and this agrees with
the theoretical result on the evolution problem.
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Figure4. From left toright: original, noisy (SNR = 11.56 dB), and result (SNR=18.23dB, « = 16,h = 1,
e=1).

Figure5. From left toright: original, noisy (SNR =11.00 dB), and result (SNR=18.30dB, « = 15,h = 1,
e=1).

Figure 6. From left to right: original, noisy (SNR = 3.68 dB), and result (SNR = 16.63 dB, h = 0.09,
a = 2800, ¢ =1).

We continue with results for two real pictures, representing an office and alady, in
the stationary case (see Figures 4 and 5).

For the last two results (Figures 6 and 7), we test a uniform impulsive noise (strong
“salt and pepper” noise).

For the lady image, Figure 6, it was necessary to consider alarge « (theregularizing
parameter), but very few iterations.
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Figure7. Resultson another synthetic picturein the stationary case. (Left) Theinitial data, (right) the result,
on each line. From top to bottom: original and results, for denoising, deblurring, and denoising—deblurring.

We end this section with Figure 7, where we show results with a synthetic image
degraded by both noise and blur.
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