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1. Introduction

In this paper we study, in the space of functions of bounded variation, a variational model
of image reconstruction introduced in [3], which now becomes more and more classical
in the context of image analysis.

The general problem is to reconstruct a piecewise-smooth original image u from an
observed and degraded initial image u0.

Let u0, u be two real functions defined on a bounded and open subset � of R
N

(generally,� is a rectangle in R
2). We assume here that u0 is the result of a transformation

or degradation, applied to the original image u, of the form

u0 = K u + η,
where K is a linear operator (for instance, the blur) and η is a random noise.

The problem is to find u, knowing u0. To do this, we assume some knowledges on
K (and/or on η) and we add some a priori constraints on the solution.

The model presented in [3] for image reconstruction allows us to search the image-
function u among the minimizers of the following functional:

Fα(u) =
∫
�

(K u − u0)
2 dx + α

∫
�

ϕ(|Du|) dx . (1)

Here, α ≥ 0 is a weight parameter and ϕ: R → R
+ is an even function. The a priori

constraint on the solution is represented by the regularizing term ϕ(|Du|).
The Euler–Lagrange equation associated to the minimization problem can be for-

mally written as

2K ∗K u − α div

(
ϕ′(|Du|)
|Du| Du

)
= 2K ∗u0, (2)

where K ∗ denotes the adjoint operator of K . If α = 0, the equation becomes

2K ∗K u = 2K ∗u0.

Unfortunately, this is an ill-posed problem, because K ∗K is not always invertible and
the problem is often unstable. Then we choose α > 0 to regularize the problem. This is
also necessary to remove the noise.

As in [28], [11], or [3], it is clear that, to denoise an image by preserving its edges,
we need to work with functions ϕ with at most a linear growth at infinity. To ensure the
existence and the uniqueness of a solution u, we need in addition to assume that ϕ is a
convex function, nondecreasing on R

+ (sometimes ϕ has to be strictly convex). Then ϕ
will be with “linear growth” and we will search the solution u in the space BV (�) of
functions of bounded variation, well adapted to model images.

In order to diffuse the image in regions where variations of gray levels are weak
(where |Du| 	 ε, with ε > 0 a threshold parameter) and to preserve the contours of
these regions (where |Du| 
 ε), we have many possible choices for ϕ in this class of
functions, for instance,

ϕ1(z) =




1

2ε
z2 if z ≤ ε,

z − ε

2
if z > ε.
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Indeed, for this function, in a neighborhood of a point x ∈ � where |Du(x)| < ε,
(2) formally becomes

2

α
(K ∗K u − K ∗u0) = 1

ε

 u, (3)

which is a diffusion equation, with strong regularizing properties in all directions, which
will remove the noise.

On a contour, where |Du(x)| > ε, (2) locally becomes

2

α
(K ∗K u − K ∗u0) = div

(
Du

|Du|
)
= 1

|Du|uξξ ,

where ξ is the unit orthogonal vector to Du and uξξ denotes the second-order derivative
of u in the ξ -direction. We note that div(Du(x)/|Du(x)|) represents the curvature of the
level curve of u passing by x (the edge). In this case the diffusion will be weak, because
1/|Du| is small and this will be only in the ξ -direction, i.e., in the parallel direction to
the contour. In this way, the edges will be preserved.

We can also use, instead of ϕ1, other functions ϕ with the same behavior but more
regular: for example, ϕ2(z) =

√
1+ z2−1 (the function of minimal surfaces) or ϕ3(z) =

log cosh z.
For more details on the choice of the function ϕ, we refer the reader to [3].
In the context of image analysis, Rudin and Osher [28] have introduced Total Vari-

ation minimization (for ϕ(z) = |z|), and Chambolle and Lions [11] and Acart and Vogel
[1] have carried out the theoretical study in this particular case. In [1] the authors have
also considered the function of minimal surfaces ϕ2, but only to approach and regularize
the total variation.

In this paper we study the general problem in the convex case, in the space of func-
tions of bounded variation. We give in addition a characterization of the subdifferential
of F . We also introduce the evolution equation associated to the minimization problem,
using techniques from the theory of time-dependent minimal surfaces [17]. We show
that, as the time tends to infinity, the solution of the evolution problem converges to the
solution of the variational problem. We also approximate the BV solution by Sobolev
functions, using the notion of �-convergence [14].

The outline of the paper is as follows. In Section 2 we review the basic properties of
functions of bounded variation and of lower semicontinuous functionals of measures, and
we give the assumptions on u0, ϕ, and K . The existence and the uniqueness of the solution
u of the minimization problem on the space BV (�) is presented in Section 3. In Section 4
we give a characterization of the subdifferential ∂F of F and therefore of the Euler–
Lagrange equation associated to the minimization problem, written in BV (�), while
in Section 5 we study the associated evolution problem, using the theory of maximal
monotone operators. In Section 6 we approximate by �-convergence the problem in
continuous variables. In Section 7, we present finite differences schemes for both the
Euler–Lagrange and evolution equations, and, finally in Section 8 we show numerical
results for signal and image reconstruction.
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2. Notations, Assumptions, and Preliminary Results

Let� be an open, bounded, and connected subset of R
N , with Lipschitz boundary �. We

use standard notations for the Sobolev and Lebesgue spaces W 1,p(�) and L p(�). For
the theoretical study of the problem, we consider α = 1 for simplicity, and the functional
Fα will be denoted by F .

To ensure the existence and the uniqueness of a minimizer for (1) in BV (�), we
make the following assumptions on ϕ and K :

H1. ϕ: R → R
+ is an even and convex function, nondecreasing in R

+, such that:
(i) ϕ(0) = 0 (without loss of generality).

(ii) There exist c > 0 and b ≥ 0 such that cz − b ≤ ϕ(z) ≤ cz + b, ∀z ∈ R
+.

H2. K : L p(�) → L2(�) is a linear and continuous operator, where p = N/
(N − 1) if N ≥ 2 and p = 2 if N = 1.

H3. Kχ� �= 0.
H4. K is injective or ϕ is strictly convex.

Remark 2.1. Since ϕ: R → R
+ is convex, then it is continuous. Moreover, its asymp-

tote (recession) function ϕ∞ exists (see, for instance, [21]) and it is finite (from H1(ii)):

ϕ∞(z) := lim
t→∞

ϕ(t z)

t
∈ [0;+∞).

In fact, c = limt→∞(ϕ(t)/t) and ϕ∞(z) = cz · sign z.

Remark 2.2. Thanks to H1(ii), the functional j (u) := ∫
�
ϕ(|Du|) dx is well-defined

and finite on the space W 1,1(�). However, as is well known, W 1,1(�) is a nonreflexive
Banach space and then the minimization problem (1) may not have the solution in this
space. For these reasons, we work with functions of bounded variation and we use the
notions of convex function of measures and relaxed functionals on measures to obtain
the existence of a minimum. Moreover, the space of BV -functions is the proper class
for many basic image processing tasks, because it allows discontinuities along curves or
edges, while W 1,1-functions may not.

Example 2.3. For E ⊂ � with C2 boundary, we consider the characteristic function
χE , defined by

χE (x) =
{

1 if x ∈ �,
0 if x ∈ �\E .

Then χE ∈ BV (�), because T V (χE ) := ∫
�
|DχE | = HN−1(∂E) < ∞, but χE /∈

W 1,1(�), according, for instance, to Evans and Gariepy [19, Theorem 2 (characteriza-
tion of Sobolev functions), Section 4.9.2]. In particular, the boundary of E , ∂E , could
represent an edge in an image. We note that HN−1(∂E) is called the perimeter of E in
� [20].
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Remark 2.4. Examples of linear and continuous operators K from L p(�) into L2(�)

include the identity operator (K = I ) if N = 1, 2 and convolutions with a positive
kernel. In image analysis, for K = k ∗ u, the kernel k must satisfy k(x) ≥ 0, k(x)→ 0
rapidly as |x | → ∞, and

∫
RN k(x) = 1. Generally, k is the heat kernel or a function

which satisfies in addition the following properties: k(x) = k(|x |), k(|x |) = 0 if |x | ≥ 1
and k ∈ C∞(RN ) (see, for instance, [26]). In these particular cases, k belongs to L2(�),
and then, for u ∈ L p(�), K u := k ∗ u is well-defined, linear, and continuous from
L p(�) into L2(�), even if N > 2. Assumption H3 means that K does not annihilate
constant functions. This will guarantee the BV -coerciveness of the functional and it is
always true for the convolution operator.

We now introduce the basic notations and preliminary results on the space BV (�),
and we recall the notion of lower semicontinuity of functionals defined on this space.

We denote by LN (or sometimes by dx) the Lebesgue N -dimensional measure in
R

N and by Hα the α-dimensional Hausdorff measure. We also set |E | = LN (E), the
Lebesgue measure of a measurable set E ⊂ R

N . We use the notation B(�) for the family
of the Borel subsets of �. If x, y ∈ R

N , then x · y will denote their scalar product.
Given a vector-valued measureµ: B(�)→ R

M , we use the notation |µ| for its total
variation. We recall that

|µ|(A) = sup

{
M∑

j=1

∫
�

vj dµj : v = (v1, . . . , vM) ∈ C0(A;RM), ‖v‖∞ ≤ 1

}
,

where C0(A;RM) denotes the closure, in the sup norm, of continuous functions with
compact support in A. We denote by M(�) the set of all signed measures on � with
bounded total variation.

The usual weak ∗ topology on M(�) is defined as the weakest topology on M(�)

for which the maps µ → ∫
�
ψ dµ are continuous for every continuous function ψ

vanishing on ∂�.
We say that u ∈ L1(�) is a function of bounded variation (u ∈ BV (�)) if its distri-

butional derivative Du = (D1u, . . . , DN u) belongs to M(�). For a general exposition
of the theory of functions of bounded variation, we refer, for instance, to [34].

The space BV (�) endowed with the norm

‖u‖BV (�) = ‖u‖L1(�) + |Du|(�)
is a Banach space.

The product topology of the strong topology of L1(�) for u and of the weak∗
topology of measures for Du will be called the weak ∗ topology of BV , and will be
denoted by BV -w∗. We recall that every bounded sequence in BV (�) admits a sub-
sequence converging in BV -w∗. This sequence is also relatively compact in L p(�)

for 1 ≤ p < N/(N − 1) and N ≥ 1, and relatively weakly compact in L p(�) for
p = N/(N − 1) and N ≥ 2 [20], [1].

We also have an extension to BV -functions of the Poincaré–Wirtinger inequality
[9], [1]: for u ∈ BV (�), let

ū := 1

|�|
∫
�

u(x) dx .
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Then there exists M > 0 such that

‖u − ū‖L p(�) ≤ M |Du|(�),
for every p <∞ if N = 1 and for p = N/(N − 1) if N > 1. Then, for N = 1, we can
take p = 2. We deduce that if u ∈ BV (�), then u ∈ L p(�) (BV (�) is continuously
embedded in L p(�)).

For any function u ∈ L1(�), we denote by Su the complement of the Lebesgue set
of u, i.e., x /∈ Su if and only if there exists ũ(x) ∈ R such that

lim
ρ→0+

ρ−N
∫

Bρ(x)
|u(y)− ũ(x)| dy = 0.

The limit ũ(x) denotes the approximate limit of u at x and ũ is a Borel function equal to
u almost everywhere. The set Su is of zero Lebesgue measure.

If u ∈ BV (�), then u is differentiable almost everywhere on�\Su and∇u coincides
with the Radon–Nikodym derivative of Du with respect to LN . Moreover, the Hausdorff
dimension of Su is at most (N −1) and for HN−1-a.e. x ∈ Su it is possible to find unique
u+(x), u−(x) ∈ R, with u+(x) > u−(x) and ν ∈ Sn−1, such that

lim
ρ→0+

ρ−N
∫

Bνρ (x)
|u(y)− u+(x)| dy = lim

ρ→0+
ρ−N

∫
B−νρ (x)

|u(y)− u−(x)| dy = 0,

where Bνρ (x) = {y ∈ Bρ(x): (y−x)·ν > 0} and B−νρ (x) = {y ∈ Bρ(x): (y−x)·ν < 0}
(we assume that the normal ν “points toward the larger value” of u; we have denoted by
Bρ(x) the ball centered in x of radius ρ).

We have the Lebesgue decomposition

Du = ∇u · LN + Dsu,

where ∇u ∈ (L1(�))N is the Radon–Nikodym derivative of Du and Dsu is singular,
with respect to LN . We also have the decomposition for Dsu:

Dsu = Cu + Ju,

where

Ju = (u+ − u−)ν ·HN−1
|Su

is the Hausdorff part or jump part and Cu is the Cantor part of Du. We recall that the
measure Cu is singular with respect to LN and it is “diffuse,” i.e., Cu(S) = 0 for every
set S of Hausdorff dimension N − 1. Hence, we have, for every B ∈ B(�), that

Dsu(B\Su) = Cu(B\Su) and Dsu(B ∩ Su) = Ju(B ∩ Su).

Finally, we can write Du and its total variation on �, |Du|(�), as

Du = ∇u · LN + Cu + (u+ − u−)ν ·HN−1
|Su

,

|Du|(�) =
∫
�

|∇u| dx +
∫
�\Su

|Cu| +
∫

Su

(u+ − u−) dHN−1

(we recall that u+ > u−).
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It is then possible to define the convex function of measures ϕ(| · |) on M(�), which
is, for Du,

ϕ(|Du|) = ϕ(|∇u|) · LN + ϕ∞(1)|Dsu|,
and the functional

J (u) = ϕ(|Du|)(�) =
∫
�

ϕ(|∇u|) dx + ϕ∞(1)
∫
�

|Dsu|

(see [21], where it is proved that the functional ϕ(| · |)(�) is weakly∗ lower semicontin-
uous on M(�), or [17]). It is also easy to see that J (·) is convex on BV (�) (for this,
we use the fact that ϕ is convex and increasing on R+).

By the decomposition of Dsu, the properties of Cu, Ju , and the definition of the
constant c, the functional J can be written as

J (u) =
∫
�

ϕ(|∇u|) dx + c
∫
�\Su

|Cu | + c
∫

Su

(u+ − u−) dHN−1.

Now, the functional J : BV (�)→ [0,+∞) is lower semicontinuous with respect to the
BV -w∗ topology and less than or equal to j , where j is defined by

j (u) =


∫
�

ϕ(|∇u|) dx if u ∈ W 1,1(�),

+∞ if u ∈ BV (�)\W 1,1(�).

We note that the functional j is not lower semicontinuous on BV (�) (or on L p(�),
L1(�)) with respect to BV -w∗ (or the L p, L1 topologies, respectively). However, for
each u ∈ BV (�), there exists (see p. 692 of [17]) a sequence {un}n≥1 ∈ C∞(�) ∩
W 1,1(�) such that un → u as n →∞ in BV -w∗ and

J (u) = ϕ(|Du|)(�) = lim
n→∞

∫
�

ϕ(|∇un|) dx = lim
n→∞ j (un).

In this way, we deduce that J is the relaxation of j on BV -w∗, that is,

J (u) = ̄ (u) := inf
{

lim inf
n→∞ j (un): un ∈ BV (�), un → u in BV−w∗

}
,

(̄ is the greatest BV -w∗ lower semicontinuous functional less than or equal to j).
For more general lower semicontinuity results for functionals defined on measures,

we refer the reader to [5]–[7] and [4].
It is then natural to consider, instead of j (u), J (u) for the second term of F(u) in (1)

and we denote the new functional on BV (�) by F̂ (this will be equal to F in W 1,1(�)):

F̂(u) =
∫
�

|K u − u0|2 dx +
∫
�

ϕ(|∇u|) dx + c
∫
�

|Dsu|.

Remark 2.5. J is the lower semicontinuous envelope of j with respect to the L p

topology [5]–[7], [4], with p = N/(N − 1). Then, because K is linear and continuous
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from L p(�) into L2(�), if u0 ∈ L2(�), the functional

F̂(u) =
∫
�

|K u − u0|2 dx + J (u)

is the lower semicontinuous envelope of F on L p(�). In fact, if u ∈ BV (�), then there
exists a sequence un ∈ W 1,1(�) such that un → u (as n →∞) in L p(�), and

F̂(u) = lim
n→∞ F̂(un) = lim

n→∞ F(un).

3. The Minimization Problem

In this section we study the existence and the uniqueness of the solution of the mini-
mization problem

inf
u

{
F̂(u) =

∫
�

(K u − u0)
2 dx +

∫
�

ϕ(|∇u|) dx + c
∫
�

|Dsu|
}
, (4)

for u ∈ BV (�) (we recall that BV (�) ⊂ L p(�), with p = 2 if N = 1 and p =
N/(N − 1) if N ≥ 2), Du = ∇u · LN + Dsu, K u ∈ L2(�), and u0 ∈ L2(�).

To do this, we essentially follow Acart and Vogel [1] to show that

ϕ(|Du|)(�)+ ‖K u − u0‖L2(�)

is coercive in BV (�), and Chambolle and Lions [11] for passing to the limit in the
minimizing sequences.

Proposition 3.1. Let u0 ∈ L2(�). Under assumptions H1–H4, there exists a unique
solution u ∈ BV (�) of (4), satisfying K u ∈ L2(�).

Proof. Step 1: Existence. In what follows, we denote by M a strictly positive constant,
which can be different from line to line.

Let {un}n≥1 be a minimizing sequence for (4). Then un ∈ BV (�) thanks to assump-
tion H1(ii) and we have

|Dun|(�) =
∫
�

|∇un| dx + |Dsun|(�) ≤ M, ∀n ≥ 1,

where Dun = ∇un dx + Dsun is the Lebesgue decomposition of Dun .
Now, we prove that | ∫

�
un| ≤ M , ∀n ≥ 1.

Let

wn =
∫
�

un

|�| χ� and vn = un − wn.
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Then
∫
�
vn = 0 and Dvn = Dun . Hence, |Dvn|(�) ≤ M . Using the Poincaré–Wirtinger

inequality, we obtain that

‖vn‖L p(�) ≤ M.

We also have

M ≥ ‖K un − u0‖2
2 = ‖Kvn + Kwn − u0‖2

2

≥ (‖Kvn − u0‖2 − ‖Kwn‖2)
2

≥ ‖Kwn‖2(‖Kwn‖2 − 2‖Kvn − u0‖2)

≥ ‖Kwn‖2[‖Kwn‖2 − 2(‖K‖ · ‖vn‖p + ‖u0‖2)].

Let xn = ‖Kwn‖2 and an = ‖K‖ · ‖vn‖p + ‖u0‖2. Then

xn(xn − 2an) ≤ M, with 0 ≤ an ≤ ‖K‖ · M + ‖u0‖L2(�) = M ′, ∀n ≥ 1.

Hence, we obtain

0 ≤ xn ≤ an +
√

a2
n + M ≤ M ′′,

which implies

‖Kwn‖2 =
∣∣∣∣
∫
�

un dx

∣∣∣∣ · ‖Kχ�‖2

|�| ≤ M ′′, ∀n ≥ 1,

and thanks to assumption H3, we obtain that | ∫
�

un dx | is uniformly bounded.
Again, by the Poincaré–Wirtinger inequality, we have∥∥∥∥un −

∫
�

un

|�|
∥∥∥∥

L p(�)

≤ C |Dun|(�) ≤ C · M,

with p = 2 if N = 1 and p = N/(N − 1) if N ≥ 2. Finally, we obtain

‖un‖L p(�) =
∥∥∥∥un −

∫
�

un

|�| +
∫
�

un

|�|
∥∥∥∥

L p(�)

≤
∥∥∥∥un −

∫
�

un

|�|
∥∥∥∥

L p(�)

+
∣∣∣∣
∫
�

un

∣∣∣∣ ≤ M ′′′.

Therefore, un is bounded in L p(�) and, in particular, in L1(�). Then un is also bounded
in BV (�), and there is a subsequence, still denoted un , and u ∈ BV (�), such that
un ⇀ u weakly in L p(�) and in BV -w∗, Dun ⇀ Du weakly∗ in M(�). Moreover,
K un converges weakly to K u in L2(�), from assumption H2.

Finally, we have (from the above lower semicontinuity results in BV -w∗)∫
�

(K u − u0)
2 dx ≤ lim inf

n→∞

∫
�

(K un − u0)
2 dx

and ∫
�

ϕ(|Du|) ≤ lim inf
n→∞

∫
�

ϕ(|Dun|),
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that is to say

F̂(u) ≤ lim inf
n→∞ F̂(un)

and u is a minimum of F̂ .

Step 2: Uniqueness. Let u, v ∈ BV (�) be two solutions of the minimization
problem (4).

We first show that K u = Kv: if, on the contrary, K u �= Kv, then

F̂( 1
2 u + 1

2v) <
1
2 F̂(u)+ 1

2 F̂(v) = inf F̂,

because F̂ is the sum of two convex functions with independent variables, K u and Du,
the first one being strictly convex. However, this inequality cannot be true if u and v are
minimizers F̂ . Then K u = Kv.

If K is injective, we will have u = v. Otherwise, if K is not injective, but ϕ is strictly
convex, then Du = Dv, which implies that u = v + C and K · C = 0. Therefore, from
assumption H3, we obtain that C = 0, i.e., u = v.

4. Characterization of Solutions

In this section we characterize the solution of the minimization problem by computing
the subdifferential of F̂(u). We use the techniques of Temam for the problem of minimal
surfaces [17] and duality results from [18].

We assume assumptions H1–H4 and that u0 ∈ L2(�).
We first extend F̂ to L p(�): for u ∈ L p(�)\BV (�), F̂(u) = +∞ and for u ∈

BV (�), with Du = ∇u dx + Cu + Ju , F̂(u) is given by

F̂(u) =
∫
�

(K u − u0)
2 dx +

∫
�

ϕ(|∇u|) dx + c
∫
�\Su

|Cu | + c
∫

Su

|Ju |.

The definition of the subdifferential ∂ F̂ at u is the following (see [18]): let u ∈ L p(�)

and ξ ∈ L p′(�). Then

ξ ∈ ∂ F̂(u) iff

{
F̂(u) ∈ R and

F̂(u)−
∫
�

ξu ≤ F̂(v)−
∫
�

ξv,∀v ∈ L p(�)

}
.

We have that F̂(u) = infv∈L p(�) F̂(v) if and only if 0 ∈ ∂ F̂(u) and for this reason it is
natural to provide a characterization of ∂ F̂ .

The subdifferential of F̂ : Let u ∈ BV (�) ⊂ L p(�) and ξ ∈ L p′(�) . We say that
ξ ∈ ∂ F̂(u) if u achieves the minimum on BV (�) of the following variational problem:

(P1) inf
v∈BV (�)

{
F̂(v)−

∫
�

ξv dx

}
.
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By Remark 2.5, we can replace in (P1) the infimum on BV (�) by the infimum on
W 1,1(�) (W 1,1(�) ⊂ BV (�) ⊂ L p(�)). Using the following property: if v ∈ W 1,1(�),
then Dsv = 0, the problem becomes

(P2) inf
v∈W 1,1(�)

{∫
�

(Kv − u0)
2 dx +

∫
�

ϕ(|∇v|) dx −
∫
�

ξv dx

}
.

Now, problems (P1) and (P2) have the same infimum, which belongs to R, because we
have assumed that ξ ∈ ∂ F̂(u), that is, u is a solution of (P1).

We now write (P∗2 ), the dual of (P2), in the sense of Ekeland and Temam [18].
We first recall the definition of the Legendre transform (or polar) of a function: let

V and V ∗ be two vector spaces in duality by a bilinear pairing denoted by 〈·, ·〉. Let
�: V → R̄ be a function. Then the Legendre transform �∗: V ∗ → R̄ of � is defined
by

�∗(u∗) = sup
u∈V
{〈u, u∗〉 −�(u)}.

Let F : W 1,1(�) → R, G: L2(�) × L1(�)N → R, G1: L2(�) → R, and
G2: L1(�)N → R, such that

F(v) = −
∫
�

vξ dx = −〈v, ξ〉L p×L p′ ,

G1(w0) =
∫
�

(w0 − u0)
2 dx, G2(w̄) =

∫
�

ϕ(|w̄|) dx,

G(w) = G1(w0)+ G2(w̄),

with w = (w0, w̄) = (w0, w1, . . . , wN ) ∈ L2(�)× L1(�)N .
Then (P∗2 ) is given by

(P∗2 ) sup
p∗∈L2(�)×L∞(�)N

{−F∗(�∗ p∗)− G∗(−p∗)},

where the operator �: W 1,1(�)→ L2(�)× L1(�)N is defined by

�v = (Kv, D1v, D2v, . . . , DNv)

and �∗ is the adjoint.
We compute F∗ and G∗ using the definition of the Legendre transform: if V =

W 1,1(�) with V ∗ the dual, then

F∗(�∗ p∗) = sup
v∈W 1,1(�)

〈�∗ p∗ + ξ, v〉V×V ∗ =
{

0 if �∗v∗ + ξ = 0 on V,

+∞ elsewhere.

It is easy to see that

G∗(p∗) = G∗1 (p∗0)+ G∗2 ( p̄∗),
where p∗ = (p∗0, p̄∗) = (p∗0, p∗1, . . . , p∗N ).

We have that

G∗1 (p∗0) =
∫
�

(
(p∗0)

2

4
+ p∗0u0

)
dx .
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Since ϕ: R → R
+ is convex, lower semicontinuous, and even, we also have [18]

G∗2 ( p̄∗) =
∫
�

ϕ∗(| p̄∗|) dx,

if | p̄∗(·)| ∈ Dom(ϕ∗).
In this way, we can also write (P∗2 ) in the following form:

(P∗2 ) sup
p∗∈K

{
−
∫
�

(
(p∗0)

2

4
− p∗0u0

)
dx −

∫
�

ϕ∗(| p̄∗|) dx

}
,

where

K = {p∗ ∈ L2(�)× L∞(�)N : | p̄∗(x)| ∈ Dom(ϕ∗),�∗ p∗ + ξ = 0 in D′(�)}.
We can simply see from assumption H1(ii) that if m ∈ R, then m ∈ Dom(ϕ∗) if and only
if |m| ≤ c = ϕ∞(1) (see also [17]).

From �∗ p∗ + ξ = 0 in D′(�), we get

〈�∗ p∗, w〉 + 〈ξ,w〉 = 〈p∗,�w〉 + 〈w, ξ〉
= 〈p∗0, Kw〉 + 〈 p̄∗, Dw〉 + 〈w, ξ〉 = 0, ∀w ∈ D(�).

Then we have

K ∗ p∗0 − div p̄∗ + ξ = 0 in D′(�).
For p∗ satisfying this relation, we obtain that div p̄∗ ∈ L p′(�), and then we can define
(by a theorem of Lions and Magenes [24]) the trace of p̄∗ · ν on � = ∂�, where ν
represents the unit normal to �, and integrating by parts, we get, for v ∈ W 1,1(�)∫

�

p̄∗ · νv d� =
∫
�

N∑
i=1

(Di p̄∗i v) dx +
∫
�

N∑
i=1

( p̄∗i Div) dx

= 〈K ∗ p∗0, v〉 + 〈v, ξ〉 − 〈p∗0, Kv〉 − 〈v, ξ〉 = 0.

In this way, we deduce, for p∗ ∈ K, that p̄∗ · ν = 0 d�-a.e. on �.
Finally, we rewrite K in the following way:

K = {p∗ ∈ L2(�)× L∞(�)N :

| p̄∗(x)| ≤ c, K ∗ p∗0 − div p̄∗ + ξ = 0 in D′(�), p̄∗ · ν = 0 on �}.
We now apply the duality Theorem III.4.1 from [18], since the functional in (P2)

is convex, continuous with respect to�v in L2(�)× L1(�)N , and infP2 is finite. Then
inf(P2) = sup(P∗2 ) ∈ R and (P∗2 ) has a solution M ∈ K [18]. This solution is unique if
ϕ∗ is strictly convex, which is equivalent to saying that ϕ ∈ C1(R), according to a result
of Rockafellar [27].

Now we write that u is a solution of (P1), that M is a solution of (P∗2 ), and that
inf(P1) = inf(P2) = sup(P∗2 ) (the extremality relations):∫

�

(K u − u0)
2 dx +

∫
�

ϕ(|Du|)−
∫
�

ξu dx

= −
∫
�

(
M2

0

4
− M0u0

)
dx −

∫
�

ϕ∗(|M̄ |) dx,
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where M ∈ L2(�) × L∞(�)N , |M̄(x)| ≤ c, K ∗M0 − div M̄ + ξ = 0 in D′(�), and
M̄ · ν = 0 d�-a.e. on �.

Following Demengel and Temam [17], we can associate to u and M̄ a bounded
unsigned measure denoted Du · M̄ which is defined, as a distribution on �, by

〈Du · M̄, ψ〉 = −
∫
�

u(div M̄)ψ dx −
∫
�

M̄ · (∇ψ)u dx, ∀ψ ∈ C∞
0 (�)

(see also [30] and [22]).
By the generalized Green’s formula (see also [30], [22], and [31])∫
�

Du · M̄ = −
∫
�

u · div M̄ +
∫
�

u(M̄ · ν) d�,

since M̄ · ν = 0 d�-a.e., we get∫
�

(K u − u0)
2 dx +

∫
�

ϕ(|Du|)+
∫
�

M0 K u +
∫
�

(
M2

0

4
− M0u0

)
dx

+
∫
�

Du · M̄ +
∫
�

ϕ∗(|M̄ |) dx = 0.

Using the decomposition Du = ∇u dx+Cu+(u+−u−)ν dHN−1|Su , where Cu(Su) = 0,
we finally have∫

�

(K u − u0)
2 dx +

∫
�

M0 K u dx +
∫
�

(
M2

0

4
− M0u0

)
dx

+
∫
�

(ϕ(|∇u|)+ ∇u · M̄ + ϕ∗(|M̄ |)) dx

+
∫
�\Su

(c|Cu | + M̄Cu)+
∫

Su

(u+ − u−)(c + M̄ · ν) dHN−1 = 0.

Now, we have the following:

1◦. (K u − u0)
2 − (−M0)u0 + ((−M0)

2/4 + (−M0)u0) ≥ 0, by the definition of
G∗1 and for dx-a.e. x ∈ �.

2◦. ϕ(|∇u(x)|)+ M̄(x) ·∇u(x)+ϕ∗(|M̄(x)|) ≥ ϕ(|∇u(x)|)−|M̄(x)| · |∇u(x)|+
ϕ∗(|M̄(x)|) ≥ 0, by the definition of ϕ∗ and for dx-a.e. x ∈ �, where ∇u is
defined.

3◦. Cu << |Cu | and there exists h ∈ L1(|Cu |)N such that |h| = 1 and Cu = h|Cu |
(the Radon–Nikodym theorem). We then obtain c|Cu | + M̄ · Cu = (C + M̄ ·
h)|Cu | ≥ 0, because |M̄ | ≤ c.

4◦. When u+ and u− are defined, we have u+ − u− ≥ 0 and c + M̄ · ν ≥ 0.

We can now give a characterization of ξ ∈ ∂ F̂(u):

Proposition 4.1. Let ξ ∈ L p′(�) and u ∈ BV (�), with Du = ∇u dx + Cu + Ju the
decomposition of Du. Then ξ ∈ ∂ F̂(u) if and only if there exists M : �→ R

N+1 with
M(x) = (M0(x), M̄(x)) ∈ R× R

N , |M̄(·)| ≤ c, and M0 ∈ L2(�), such that

ϕ(|∇u|)+ ∇u · M̄ + ϕ∗(|M̄ |) = 0 dx-a.e. x ∈ �. (5)
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If

H = {x ∈ �\Su : c + M̄(x) · h(x) = 0,Cu = h|Cu |, h ∈ L1(|Cu |)N , |h| = 1},

then

supp(|Cu |) ⊂ H, (6)

c + M̄ · ν = 0, |M̄ | = c dHN−1-a.e. x ∈ Su, (7)

K ∗M0 − div M̄ + ξ = 0 in D′(�), (8)

−M0 = 2(K u − u0) dx–a.e. in �, (9)

M̄ · ν = 0 d�-a.e. on �. (10)

If in addition ϕ is differentiable, then we can compute M̄ as

M̄(x) = −ϕ
′(|∇u(x)|)
|∇u(x)| ∇u(x), dx-a.e. x ∈ �, if |∇u(x)| �= 0, (11)

and M̄(x) = (0, . . . , 0) if |∇u(x)| = 0.
Finally, we have a characterization for the solution u of {infv∈L p(�) F̂(v)}, taking

ξ = 0 and writing that 0 ∈ ∂ F̂(u).

Proof. The direct implication has just been proved. Conversely, if such an M exists, it
is easy to check that M is a solution of (P∗2 ) and u is a solution of (P1), which amounts
to saying that ξ ∈ ∂ F̂(u).

Now, if ϕ is differentiable, we only show how we obtain the expression of M , the
other results follow from before.

Let x ∈ � such that (5) is true at x and we denote by M̄i (x) (and by ∇i u(x)),
i = 1, . . . , N , the components of M̄(x) (∇u(x), respectively). We have the following:

ϕ∗(| − M̄(x)|) = −M̄(x) · ∇u(x)− ϕ(|∇u(x)|) = sup
T∈RN

{−M̄ · T − ϕ(|T |)}.

Let x be a Lebesgue point for |Du|. If |∇u(x)| �= 0, then for T = ∇u(x) we have
that

∇T (−M̄ · T − ϕ(|T |)) = (0, . . . , 0),

which implies that

M̄i (x) = −ϕ
′(|∇u(x)|)
|∇u(x)| ∇i u(x).

We also deduce from 2◦ and (5) that

ϕ(|∇u(x)|)− |M̄(x)| · |∇u(x)| + ϕ∗(|M̄(x)|) = 0.
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Then

ϕ∗(|M̄(x)|) = |M̄(x)| · |∇u(x)| − ϕ(|∇u(x)|) = sup
t∈R

{|M̄(x)| · t − ϕ(t)},

which implies that |M̄(x)| = ϕ′(t) for t = |∇u(x)|. Hence, if |∇u(x)| = 0, then
M̄(x) = (0, . . . , 0), using ϕ′(0) = 0.

Remark 4.2. Unfortunately, the functional is not lower semicontinuous on SBV(�),
the space of special functions of bounded variation, introduced by De Giorgi and Am-
brosio [16], defined by

SBV(�) = {u ∈ BV (�): Du = ∇u dx + Ju ⇔ Cu = 0}.

This fact is proved in [4]. Therefore, we cannot say a priori that the solution belongs to
SBV(�). For instance, the Mumford–Shah functional for image segmentation (see [25]
and [15])

MS(u) = 1

2

∫
�

|u − u0|2 dx +
∫
�

|∇u|2 dx +
∫

Su

dHN−1 (12)

is convex and lower semicontinuous on SBV(�). Maybe the subspace SBV(�) is more
convenient than BV(�) to model the reconstructed images.

Remark 4.3. The dual problem (P∗2 ) with the solution M = (M0, M̄) can offer a new
method to compute the solution u numerically, at least for the case K = I . Indeed, if we
solve the following constrained minimization problem with the solution M̄ ,

inf
M̄ : |M̄(x)|≤c

{∫
�

(
(div M̄)2

4
− (div M̄)u0

)
dx +

∫
�

ϕ∗(|M̄ |) dx

}
,

then we can compute u by the relations M0 = div M̄ , 2(u − u0) = −M0, from Propo-
sition 4.1. We have remarked that ϕ∗ is strictly convex if and only if ϕ ∈ C1(R), and
this is true for the potentials ϕ1, ϕ2, and ϕ3 defined in the Introduction. For instance, for
m ∈ [0, 1], we have ϕ∗1 (m) = m2/2 and ϕ∗2 (m) = 1−√1− m2. For these two functions,
the constant c is equal to one. This problem could be solved by a quasi-Newton method
with constraints, but we do not analyze this possible approach here.

5. The Evolution Problem

In this section we study the evolution equation associated with the problem 0 ∈ ∂ F̂(u),
in the particular cases of one and two dimensions, i.e., N = 1 and N = 2. Then BV (�)
is continuously embedded in the Hilbert space L2(�), this being necessary in order to
apply general results on maximal monotone operators and evolution equations on Hilbert
spaces [8]. The function ϕ satisfies the same assumptions as in the previous sections.
For the moment, we only assume that K : L2(�)→ L2(�) is linear and continuous.
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We can associate the following evolution problem to the minimization of the func-
tional F (given in (1)) if, for instance, ϕ ∈ C1(R):

(Ev1)




0 = ∂u

∂t
+Au in ]0,∞[×�,

u(0, x) = u0(x) for x ∈ �,
ϕ′(|Du|)
|Du| Du · ν = 0 on ∂�,

where u: [0,∞)×�→ R is the unknown function and A is the operator:

Au = 2K ∗(K u − u0)− div

(
ϕ′(|∇u|)
|∇u| ∇u

)
.

To study such an evolution problem, we apply nonlinear semigroup theory and the
notion of a maximal monotone operator [8].

Unfortunately, the operator A is not maximal monotone because it is the subdiffer-
ential of the functional F , F : L2(�)→ R ∪ {+∞},

F(u) =


∫
�

(K u − u0)
2 dx +

∫
�

ϕ(|∇u|) dx if u ∈ W 1,1(�),

+∞ if u ∈ L2(�)\W 1,1(�),

which is not lower semicontinuous on L2(�). To overcome this difficulty, as in the
previous sections, we consider the relaxed functional F̂ of F on L2(�):

F̂(u) =
∫
�

(K u − u0)
2 dx +

∫
�

ϕ(|∇u|) dx + c|Dsu|(�) if u ∈ BV (�),

with Du = ∇u dx + Dsu, and F̂(u) = +∞ if u ∈ L2(�)\BV (�). Then we associate
to F̂ the following evolution problem on L2(�):

(Ev2)


0 ∈ ∂u

∂t
+ ∂ F̂(u) on ]0,∞[×�,

u(0, x) = u0(x) for x ∈ �.
It is easy to establish the following theorem from the above relaxation results and a
general result of an evolution equation governed by a maximal monotone operator.

Theorem 5.1. Let � ⊂ R
N be an open, bounded, and connected subset of R

N (N =
1, 2) with Lipschitz boundary � = ∂�. Let u0 ∈ Dom(∂ F̂). Then there exists a unique
function u(t): [0,+∞[→ L2(�) such that

u(t) ∈ Dom(∂ F̂), ∀t > 0,
∂u

∂t
∈ L∞((0,+∞); L2(�)), (13)

−∂u

∂t
∈ ∂ F̂(u(t)), a.e. t ∈ ]0,+∞[, u(0) = u0. (14)

If û is a solution of (13)–(14), with û0 instead of u0, then

‖u(t)− û(t)‖L2(�) ≤ ‖u0 − û0‖L2(�), ∀t ≥ 0. (15)
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Let Du(·, t) = ∇u(·, t) dx + Dsu(·, t) be the Lebesgue decomposition of Du(·, t).
Then, for almost every t > 0, there exists M(t, ·) ∈ L2(�)×L∞(�)N , M = (M0, M̄) =
(M0, . . . ,MN ) satisfying (5)–(7), (9), (10), and, instead of (8),

−du

dt
+ K ∗M0 − div M̄ = 0 in D′(�).

If, in addition, ϕ is differentiable, then M(t, x) is given by (11).

Proof. The functional F̂ is clearly convex, proper, and lower semicontinuous in L2(�),
from Remark 2.5. Then ∂ F̂ is maximal monotone and (13) and (14) follow from nonlinear
semigroup theory [8, Theorem 3.1]. The other conditions follow immediately from (14)
and the characterization of ∂ F̂ .

Remark 5.2. For each t > 0, the map u0 → u(t) is a contraction from Dom(∂ F̂)
into Dom(∂ F̂). We denote by S(t) its unique extension to a continuous nonexpansive

semigroup on Dom(∂ F̂) = Dom F̂ = BV (�) (see, for instance, [8] and [33]). If u0 ∈
BV (�), then u(t) = S(t)u0 is called the generalized solution of (Ev2). Moreover,
S(t)u0 ∈ Dom(∂ F̂) for all t > 0, i.e., the operator ∂ F̂ has a regularizing effect.

Behavior of solutions as t → +∞: Let ϕ and K satisfy assumptions H1–H4 and
u0 ∈ Dom(∂ F̂). Then the problem (Ev2) has a unique solution u(t): [0;+∞[→ L2(�),
which satisfies (13)–(15) and we also know that F̂ : L2(�)→ R ∪ {+∞} has a unique
minimum ū on BV (�).

We now prove, as in [23], that u(t) converges strongly in L1(�) and weakly in
L2(�) to ū as t →∞.

First, we recall a result of Bruck [10] which proves the weak convergence in L2(�)

to ū.

Proposition 5.3 [10]. Let H be a Hilbert space and let A be the subdifferential ∂F
of a proper lower semicontinuous function F : H → ]−∞,+∞] which assumes a
minimum in H .

If u: [0,∞[ → H is absolutely continuous and satisfies

u(t) ∈ Dom(A), ∀t ≥ 0,

0 ∈ ∂u

∂t
+Au a.e.,∥∥∥∥∂u

∂t

∥∥∥∥
H

∈ L∞(0,∞),

then u(t) has a weak limit ū in H as t →∞ and ū belongs to A−1(0).

Theorem 5.4. Let u0 ∈ Dom(∂ F̂). Then the solution u of (Ev2) converges as t →∞
to the minimum ū of F̂ in the following sense:

u(t)→ ū strongly in L1(�) and weakly in L2(�).
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Proof. The existence of a weak limit ū in L2(�) is a consequence of the existence
result from Section 3, Theorem 5.1, and Proposition 5.3. It remains to show the strong
convergence in L1(�).

We prove that F̂(u(t)) is uniformly bounded and therefore u(t) will be uniformly
bounded in BV (�).

From

−∂u

∂t
∈ ∂ F̂(u(t)),

by the definition of the subdifferential, we have

F̂(u(t))+
∫
�

∂u

∂t
u(t) dx ≤ F̂(v)+

∫
�

∂u

∂t
v dx, ∀v ∈ L2(�).

Let v = ū. Then

F̂(u(t)) ≤ F̂(ū)+
∫
�

∂u

∂t
(ū − u(t)) dx ≤ F̂(ū)+

∥∥∥∥∂u

∂t

∥∥∥∥
L2(�)

· ‖ū − u(t)‖L2(�).

Now, F̂(ū) < ∞ because ū ∈ Dom(F̂) = BV (�), ‖∂u/∂t‖L2(�) is uniformly
bounded from (13), like ‖ū − u(t)‖L2(�), from the weak convergence.

Finally, as in Section 3, there is a subsequence u(tn) which converges in L1(�) to
a limit, which must be ū. Moreover, all the sequence u(t) converges strongly in L1(�)

to ū (for instance by contradiction).

Remark 5.5. Unfortunately, we have obtained the strong convergence of u(t) to ū only
in L1(�), and not in L2(�), since Dom(F̂) = BV (�) is only continuously embedded in
L2(�). Generally, we could obtain the strong convergence in L2(�) under the following
assumption on F̂ : for each C ≥ 0, the set {u ∈ L2(�): F̂(u)+‖u‖2

L2(�)
≤ C} is strongly

compact (see [8]), but this is not true in our case.

6. Approximation by �-Convergence

In order to solve the minimization problem (4) numerically, we first need to regularize
it and to work on a more regular space than BV (�), because we do not know how to
approximate directly in the energy the term

∫
�

|Dsu| =
∫
�\Su

|Cu | +
∫

Su

|u+ − u−| dHN−1,

for u ∈ BV (�). Therefore, it is necessary to approach in some sense the functional F̂
by a sequence (Fε)ε>0 of quadratic functionals, finite, lower semicontinuous, and well-
defined on a subspace of W 1,p(�) (we recall that p = 2 if N = 1 and p = N/(N − 1)
if N ≥ 2), and where the functions have the singular part of the gradient equal to zero.
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There are many possibilities to construct the sequence (Fε)ε>0, and we consider here
two cases. The most classical approximation and regularization is obtained by defining
ϕ1ε: R

+ → R
+, ϕ1ε(z) = ϕ(z)+ εz2.

We can also approach and regularize the function ϕ, which is assumed to be con-
tinuously differentiable on ]0,+∞[, in the following manner: let ϕ2ε: R

+ → R
+ be

(ε > 0)

ϕ2ε(z) =




ϕ′(ε)
2ε

z2 + ϕ(ε)− εϕ′(ε)
2

, if z ≤ ε,
ϕ(z), if ε ≤ z ≤ 1

ε
,

εϕ′(1/ε)
2

z2 + ϕ
(

1

ε

)
− ϕ′(1/ε)

2ε
, if z ≥ 1

ε
.

(16)

By the following assumption,

]0,∞[ $ z %→ ϕ′(z)
z

is continuously decreasing, (17)

we have that ϕ2ε(z) ≥ ϕ(z), for all z ≥ 0 (this is of course true for the previous
approximation ϕ1ε of ϕ).

Now, choosing one of these two sequences (ϕiε)ε>0, we define the sequence (Fiε)ε>0,
i = 1, 2, by

Fiε(u) =



∫
�

|K u − u0|2 dx +
∫
�

ϕiε(|∇u|) dx, if u ∈ W 1,1(�),

∇u ∈ L2(�),

+∞, elsewhere.

We also define

F̄(u) =
{

F(u), if u ∈ W 1,1(�), ∇u ∈ L2(�),

+∞, elsewhere

(F̄ is the restriction of F from Section 2 to functions u ∈ W 1,1(�), with ∇u ∈ L2(�)).
Sometimes, we use the notation (Fε)ε>0 instead of (Fiε)ε>0, Fε being one of these

two approximations.
From now on, we assume assumptions H1–H4 from Section 2. For the results

concerning the sequence (F2ε)ε>0, we need in addition to assume that ϕ ∈ C1(0,+∞)
and (17).

Proposition 6.1. For every ε > 0, the functional Fε has a unique minimum uε ∈
W 1,1(�), with ∇uε ∈ L2(�).

Proof. Let un be a minimizing sequence for Fε. Then un ∈ W 1,1(�), with ∇un ∈
L2(�), and there exists a constant M > 0 such that∫

�

|K un − u0|2 dx ≤ M, ‖∇un‖L2(�) ≤ M,



150 L. Vese

from the construction of ϕε. Then we prove, as in the existence result from Section 3,
that

‖un‖L p(�) ≤ M.

Then there is u ∈ W 1,1(�), with ∇u ∈ L2(�), and a subsequence of un , still denoted
un , such that

un ⇀ u weakly in L p(�), ∇un ⇀ ∇u weakly in L2(�).

Since ϕε is convex and continuous, and K : L p(�)→ L2(�) is linear and continuous,
we obtain that

Fε(u) ≤ lim inf
n→∞ Fε(un),

i.e., u is a minimum of Fε, denoted uε. The uniqueness is deduced as in Section 3.

Now, to show that (uε)ε>0 converges to the unique minimum of F̂ , we use the
notion of �-convergence and its relation with the pointwise convergence, presented by
Dal Maso in [14].

Let X be a topological space. The set of all open neighborhoods of x in X will be
denoted by N (x). Let (Fh) be a sequence of functions from X into R̄.

Definition 6.2. The �-lower limit and the �-upper limit of the sequence (Fh) are the
functions from X into R̄ defined by(

�- lim inf
h→∞

Fh

)
(x) = sup

U∈N (x)
lim inf

h→∞
inf
y∈U

Fh(y),(
�- lim sup

h→∞
Fh

)
(x) = sup

U∈N (x)
lim sup

h→∞
inf
y∈U

Fh(y).

If there exists a function F : X → R̄ such that

�- lim inf
h→∞

Fh = �- lim sup
h→∞

Fh = F,

then we write F = �- limh→∞ Fh and we say that the sequence (Fh) �-converges to F
(in X ) or that F is the �-limit of (Fh) (in X ).

We also use the following two results from [14]:

Proposition 6.3. If (Fh) is a decreasing sequence converging to F pointwise, then (Fh)

�-converges to the lower semicontinuous envelope of F in X , denoted by sc−F .

Corollary 6.4. Suppose that (Fh) is equi-coercive and �-converges to a function F ,
with a unique minimum point x0 in X . Let (xh) be a sequence in X such that xh is a
minimum for Fh in X for every h ∈ N. Then (xh) converges to x0 in X and (Fh(xh))

converges to F(x0).
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Proposition 6.5. The sequence (uε)ε>0 from Proposition 6.1 converges in L1(�) to
the unique minimum u of F̂ and Fε(uε) converges to F̂(u).

Proof. In our case, for X = L1(�), we have that Fε(u) ↘ F̄(u) as ε ↘ 0, for every
u ∈ W 1,1(�), with∇u ∈ L2(�). Of course, the sequence (Fε) is equi-coercive in L1(�),
since Fε ≥ F̂ for all ε > 0 and F̂ is coercive in L1(�). To apply the above results, we
need to check that F̂ = sc− F̄ in L1(�). We consider two steps.

Step 1: F̂ is lower semicontinuous in L1(�) with respect to the L1-topology. It is
easy to verify this: let u, un ∈ L1(�), such that un → u in L1(�), as n → ∞ and
lim infn→∞ F̂(un) < +∞. Then, as F̂(un) is bounded (or for a subsequence), we deduce
that un ∈ BV (�) with ‖un‖BV (�) uniformly bounded. Then u ∈ BV (�), un ⇀ u in
L p(�) and un ⇀ u in BV -w∗, as n →∞. Finally, we have

F̂(u) ≤ lim inf
n→∞ F̂(un),

i.e., step 1 is proved.

Step 2: F̂ is the lower semicontinuous envelope of F̄ in L1(�), with respect to the L1-
topology. From step 1, it suffices to show that, for u ∈ BV (�), there exists a sequence
un ∈ W 1,1(�), with ∇un ∈ L2(�), such that

un → u in L1(�) as n →∞ and F̂(u) = lim inf
n→∞ F̄(un).

Let u ∈ BV (�). From Remark 2.5 we have that F̂ is the lower semicontinuous envelope
in L p(�) of its restriction F̂ |W 1,1(�) = F . Then there is a sequence un ∈ W 1,1(�), such
that un → u in L p(�) and

F̂(u) = lim
n→∞ F̂(un) = lim

n→∞ F(un).

Now, for each un ∈ W 1,1(�), there is a sequence (uk
n)k∈N ∈ W 1,1(�)∩C∞(�̄), such

that uk
n → un in W 1,1(�), as k →∞ (see [19]). In particular, we have that∇uk

n ∈ L2(�)

and uk
n → un in L p(�), as k → ∞, by the Sobolev embedding. Then, since the map

u %→ ∫
�
ϕ(|Du|) dx is a convex and continuous function from W 1,1(�) into R (see, for

instance, [17]), and K is linear and continuous from L p(�) into L2(�), we deduce in
addition that

F̂(un) = F(un) = lim
k→∞

F̄(uk
n).

Then, by a double approximation argument, we deduce that, for u ∈ BV (�), there
exists un ∈ W 1,1(�), with∇un ∈ L2(�), such that un → u in L p(�) (and, in particular,
in L1(�)), and

F̂(u) = lim
n→∞ F̄(un),

i.e., step 2 is proved.
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In this way we obtain that the sequence (uε)ε>0 converges in L1(�) to u, the unique
minimum of F̂ (equation (4)).

Remark 6.6. To compute uε numerically, with ε > 0 small enough, we can use the
associated Euler–Lagrange equation, having the solution uε, the minimum of Fε, which
is now Gâteaux-differentiable at each point. However, unfortunately, the problem is still
nonlinear. To overcome this difficulty, we will construct a sequence of functions (uεn)n∈N,
which will converge to uε, and uεn will be the solution of a linear equation. For instance
(for K = I ), if we consider the second regularization ϕ2ε (16) of ϕ and denote ϕ2ε by�
for simplicity, and the values

L = lim
z→∞

�′(z)
2z

, M = lim
z→0+

�′(z)
2z

,

then we can show that there exists a strictly convex and decreasing function � defined
on [M, L] such that

�(z) = inf
M≤w≤L

(wz2 +�(w)).

The minimum will be reached for w = �′(z)/2z. Then we let

E(u, b) =
∫
�

|K u − u0|2 +
∫
�

b|Du|2 +
∫
�

�(b),

and we obtain the following algorithm: start from any u1 and b1 and let

un+1 = arg min
u∈H 1(�)

E(u, bn),

bn+1 = arg min
M≤b≤L

E(un+1, b) = M ∨ �
′(|Dun+1|)
2|Dun+1| ∧ L ,

where we have used the notations a ∨ b = max(a, b) and a ∧ b = min(a, b). Therefore,
un+1 will be characterized by

un+1 − div(bn Dun+1) = u0.

The discrete version of this algorithm is introduced in [3] for the Euler–Lagrange
equation associated to the minimization problem (this algorithm will be used here), and
in [12] and [13] for the minimized energy. In those papers, stability and convergence
results are presented. Also, in continuous variables, in [11] the authors have proved the
convergence of the algorithm for the total variation minimization.

Remark 6.7. In this section we have presented the results in the general N -dimensional
case. In practice, for signal and image reconstruction, we will have N = 1 or N = 2.
Then p = 2 and the regularizing sequence (uε)ε>0 will belong to H 1(�).
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7. The Numerical Approximation of the Problem

In this section we recall the version of the previous algorithm introduced in [3], to
approach by finite differences schemes the associated Euler–Lagrange equation written
in conservative form:

K ∗K u − α div

(
ϕ′(|Du|)
|Du| Du

)
= K ∗u0. (18)

To discretize the divergence operator, a method of Rudin et al. [29] for the total variation
minimization is used. We also adapt the algorithm to the associated evolution equation.

Remark 7.1. For numerical reasons, we need to compute uε, the continuous approx-
imation of the BV solution u, with ε > 0 small enough, defined in Section 6 as a
minimizer of Fiε, the approximation of F̂ . If we use the approximation F2ε of F̂ , then
it is not necessary to consider, in (16), the case z ≥ 1/ε, since, in practice, for discrete
images, the gradients are always bounded. Moreover, if the function ϕ is regular and
“quadratic” at the origin (like, for instance, ϕ1, ϕ2, and ϕ3 from the Introduction), we
will not consider the case z ≤ ε. In the description of the algorithm, we assume that
ϕ: R

+ → R
+ is of class C1, ϕ′(0) = 0, with z %→ ϕ′(z)/z strictly positive, continuous,

and decreasing in [0,+∞[. Therefore, we discretize directly (18).

Remark 7.2. We need to specify boundary conditions on � = ∂� associated to (18).
From Section 4 (see (10)), the natural condition is

ϕ′(|Du|)
|Du| Du · n = 0, ∂�-a.e. on �,

where n is the unit normal to�. However, because ϕ′(z)/z is strictly positive in [0,+∞[,
and the discrete gradients are bounded in the norm, we get the following classical bound-
ary condition:

∂u

∂n
= 0 on � = ∂�.

We approach the solution u by a sequence (un)n≥0, with u0 = u0, such that un+1 is
the solution of the following linear problem:

K ∗K un+1 − α div

(
ϕ′(|Dun|)
|Dun| Dun+1

)
= K ∗u0. (19)

Let ψ be the function defined by

ψ : R
+ → R

+, ψ(z) =



ϕ′(z)

z
if z > 0,

lim
z→0

ϕ′(z)
z

if z = 0.

Then, for each type of potential, the function ψ is strictly positive and bounded on R
+.

Now we move to the precise description of the algorithm in dimension one.
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7.1. The One-Dimensional Case

Let for the moment K = I . In this case, (18) becomes

u − α ∂
∂x
(ψ(|ux |)ux ) = u0. (20)

Assume that � = ]0, 1[. Let M ∈ N
∗, xi = ih, where h = 1/M and 0 ≤ i ≤ M , be the

discrete points. Let u0: [0, 1] → R be given and let u: ]0, 1[ → R be a solution to the
problem (20). We define the discrete approximations uh of u and u0,h of u0 by

uh(xi ) = ui ≈ u(xi ), for 0 < i < M,

u0,h(xi ) = u0,i ≈ u0(xi ), for 0 ≤ i ≤ M,

with the following discrete boundary conditions (corresponding to Neumann boundary
conditions):

uh(x0) := uh(x1), uh(xM) := uh(xM−1). (21)

We may assume that the initial discrete signal, the data, satisfies the following property:

there exist m2 ≥ m1 ≥ 0 such that m1 ≤ u0,i ≤ m2, for 0 ≤ i ≤ M,

which will be used to establish the so-called L∞-stability for the solution. We also recall
the usual notations for finite differences in dimension one. Let


+ui := ui+1 − ui , 
−ui := ui − ui−1, for 0 < i < M.

The numerical approximation of (20) will be

ui − α

h

−
[
ψ

(∣∣∣∣
+ui

h

∣∣∣∣
)(
+ui

h

)]
= u0,i , 0 < i < M, (22)

with the boundary conditions (21).
Since the problem is still nonlinear, as we have mentioned, we approach the numer-

ical solution uh by a sequence (un
h)n≥0, which is obtained by a fixed point algorithm (see

also [2]) as follows (sometimes we write u, u0, un instead of uh, u0,h, un
h):

1. u0 is arbitrarily given, such that m1 ≤ u0
i ≤ m2 (for instance, u0 = u0).

2. If un is calculated, then we compute un+1 as the solution to the discrete linear
problem:

un+1
i − α

h

−
[
ψ

(∣∣∣∣
+un
i

h

∣∣∣∣
)(
+un+1

i

h

)]
= u0,i , 0 < i < M, (23)

with the discrete boundary conditions for un+1.

In fact, (23) is an approximation of (19). Now, we multiply (23) by h2/α, and we
define c1(un

i ), c2(un
i ), C1(un

i ), C2(un
i ), and C(un

i ) by

c1(u
n
i ) = c1 := ψ

(∣∣∣∣un
i+1 − un

i

h

∣∣∣∣
)
, c2(u

n
i ) = c2 := ψ

(∣∣∣∣un
i − un

i−1

h

∣∣∣∣
)
, (24)

Ci = ci

(h2/α)+ c1 + c2
, C = (h2/α)

(h2/α)+ c1 + c2
. (25)
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We remark that ci ,Ci ,C > 0, for i = 1, 2, and C1 + C2 + C = 1 (we note that these
coefficients depend on (un

i )). All these properties on the coefficients will guarantee the
L∞-stability of the scheme. With these notations, (23) becomes

un+1
i = C1(u

n
i )u

n+1
i+1 + C2(u

n
i )u

n+1
i−1 + C(un

i )u0,i . (26)

For the evolution equation:

∂u(t)

∂t
− α ∂

∂x
(ψ(|ux |)ux ) = u0, u(0) = u0,

in ]0, T [ × �, we use the same approximation for the divergence term, and we have
the choice between an explicit or implicit scheme. Let 
t > 0, n ∈ N, and define
uh(n 
 t, xi ) = un

i ≈ u(n 
 t, xi ), with u0
h = u0,h .

The explicit scheme is, for 1 ≤ i ≤ M − 1,

un+1
i − un

i


t
+ un

i −
α

h2
[c1(u

n
i )(u

n
i+1 − un

i )+ c2(u
n
i )(u

n
i − un

i−1)] = u0,i

or

un+1
i =

[
1− α 
 t

h2
(c1 + c2)−
t

]
un

i +
α 
 t

h2
c1un

i+1 +
α 
 t

h2
c2un

i−1 +
tu0,i .

We have that

{m1 ≤ un
i ≤ m2, for 0 ≤ i ≤ M} ⇒ {m1 ≤ un+1

i ≤ m2, for 0 ≤ i ≤ M},
under the following stability condition:

1−
t

(
2α

h2
sup

[0,+∞[
ψ − 1

)
≥ 0.

The implicit scheme will be, for 0 < i < M ,

un+1
i − un

i


t
+ un+1

i − α

h2
[c1(u

n
i )(u

n+1
i+1 − un+1

i )+ c2(u
n
i )(u

n+1
i − un+1

i−1 )] = u0,i ,

which can be written in the form (26).

7.2. The Two-Dimensional Case

In this subsection we describe the extension of the previous approximation to the two-
dimensional problem (following [3]), which is, for N = 2, with Du = (ux , uy),

u − α ∂
∂x
(ψ(|Du|)ux )− α ∂

∂y
(ψ(|Du|)uy) = u0, (27)

in � ⊂ R
2 and with ∂u/∂n = 0 on � = ∂�. We follow [3].

Assume � = ]0, 1[ × ]0, 1[, h > 0, and let xi = ih, yj = jh, h = 1/M, for
0 ≤ i, j ≤ M , be the discrete points. As in the one-dimensional case, we recall the
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following usual notations:

1◦. uh(xi , yj ) = ui j ≈ u(xi , yj ), u0,h(xi , yj ) = u0,i j ≈ u0(xi , yj ).
2◦. m(a, b) = minmod(a, b) = ((sign a + sign b)/2)min(|a|, |b|).
3◦. 
x

∓ui j = ∓(ui∓1, j − ui j ) and 
y
∓ui j = ∓(ui, j∓1 − ui j ).

So, (u0,i j )i, j=0,M is the initial discrete image, the data, such that m1 ≤ u0,i j ≤ m2,
where m2 ≥ m1 ≥ 0. We approach the numerical solution (ui j )i, j=0,M by a sequence
(un

i j )i, j=0,M for n →∞, which is obtained as follows:

1. u0 is arbitrarily given, such that m1 ≤ u0
i j ≤ m2 (we can take u0 = u0).

2. If un is calculated, then we compute un+1 as the solution of the linear discrete
problem:

un+1
i j − α

h

x
−


ψ



(
x

+un
i j

h

)2

+
(

m

(
y
+un

i j

h
,

y
−un

i j

h

))2



1/2


(
x

+un+1
i j

h

)

− α

h

y
−


ψ



(
y

+un
i j

h

)2

+
(

m

(
x
+un

i j

h
,

x
−un

i j

h

))2



1/2


(
y

+un+1
i j

h

)
= u0,i j , (28)

for i, j = 1, . . . ,M − 1, and with the boundary conditions

un+1
0, j = un+1

1, j , un+1
M j = un+1

M−1, j , un+1
i0 = un+1

i1 , un+1
i,M = un+1

i,M−1.

We use here the minmod function, in order to reduce the oscillations and to get the
correct values of derivatives in the case of local maxima and minima. We observe that,
to approach, for instance, the term (∂/∂x)(ψ(|(ux , uy)|)ux ), we do not use the minmod
function for ux , since we wish to obtain a five point finite differences scheme.

We multiply (28) by (h2/α) and then we denote by c1(un
i j ), c2(un

i j ), c3(un
i j ), and

c4(un
i j ), the coefficients of un+1

i+1, j , un+1
i−1, j , un+1

i, j+1, and un+1
i, j−1, respectively. We remark, for

i = 1, . . . , 4, that ci > 0, since the function ψ is strictly positive. Now, for un
i j , let

Ci (un
i j ) and C(un

i j ) be defined by (i = 1, . . . , 4)

Ci = ci

(h2/α)+ c1 + c2 + c3 + c4
, C = (h2/α)

(h2/α)+ c1 + c2 + c3 + c4
.

Then we have that Ci ,C > 0 and C1 + C2 + C3 + C4 + C = 1 (we recall that these
coefficients depend on un

i j ).
Hence, we write (28) as

un+1
i j = C1(u

n
i j )u

n+1
i+1 j + C2(u

n
i j )u

n+1
i−1 j + C3(u

n
i j )u

n+1
i j+1

+ C4(u
n
i j )u

n+1
i j−1 + C(un

i j )u0,i j . (29)

We do not describe the approximation for the two-dimensional evolution problem,
this being similar to the one-dimensional case. Also, in order to verify the L∞-stability of



A Study in the BV Space of a Denoising–Deblurring Variational Problem 157

these schemes, the existence and uniqueness of un+1 for a fixed un , and the convergence,
we refer the reader to [3] and [32].

At the end of this subsection we briefly consider the case K �= I (see [3]). In many
cases the degradation operator K , the blur, is a convolution type integral operator.

In the numerical approximations, (Kmn)m,n=0,d is a symmetric matrix with

d∑
m,n=1

Kmn = 1

and an approximation of K u can be

K ui j =
d∑

m,n=1

Kmnui+d/2−m, j+d/2−n.

Since K is symmetric, then K ∗ = K and K ∗K u = K K u is approximated by

K K ui j =
d∑

m,n=1

d∑
r,t=1

Kmn Krt ui+d−r−m, j+d−t−n.

Then we use the same approximation of the divergence term and the same iterative
algorithm, with a slight modification. The equation, in this case, is approximated by
(using the same notations ci as before)

(h2/α)K K un+1
i j + (c1(u

n
i j )+ c2(u

n
i j )+ c3(u

n
i j )+ c4(u

n
i j ))u

n+1
i j

= c1(u
n
i j )u

n+1
i+1, j +c2(u

n
i j )u

n+1
i−1, j +c3(u

n
i j )u

n+1
i, j+1+c4(u

n
i j )u

n+1
i, j−1 + (h2/α)K u0,i j .

8. Experimental Results

8.1. Reconstruction of Noisy Signals

In this subsection we present experimental results to reconstruct two noisy signals, using
the potential ϕ(z) = √ε + z2 (the function of minimal surfaces with a parameter ε > 0)
and the discretization of the stationary equation. The first signal is piecewise-constant,
while the second is piecewise-linear (see Figure 1).

A priori, there is no optimal choice for the parameters. Then, for each case, we first
tested the algorithm for different values of the parameters and we show here our best
results. We remark that for the piecewise-constant case, the parameter ε is smaller than
for the piecewise-linear case (we will find the same behavior for images). In this case,
with a very small ε, the problem is close to the Total Variation minimization [29].

8.2. Reconstruction of Noisy and Blurred Images

In this last subsection we present several results on synthetic and real images, degraded
by noise and blur, using the same potential ϕ(z) = √

ε + z2. We show the SNR (the
mean signal to noise ratio between the original and the noisy image or the result, after
normalization) each time. The SNR is smaller for a noisy image, and larger for the
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Figure 1. (Left) The piecewise-constant signal: original, noisy, and result, superposed (h = 1, α = 7,
ε = 0.001). (Right) The piecewise-linear signal: original, noisy, and result, superposed (h = 1, α = 20,
ε = 1).

Figure 2. Synthetic picture: original and noisy (SNR = 7.38 dB).

Figure 3. Results with the synthetic picture. (Left) The stationary case (SNR = 18.54 dB, h = 1, α = 20,
ε = 0.001). (Right) The associated evolution case (SNR = 18.54 dB).

reconstructed image. Therefore, the choice of parameters is made in order to increase
the initial SNR.

The first three images have been degraded with an additive Gaussian noise.
We begin with a synthetic picture. The corresponding SNR is 7.38 dB (see Figure 2).
In Figure 3 we present the results on the synthetic image, using for the first (left)

the stationary equation, and for the second (right) the evolution equation. We see that in
the evolution case we obtain the same result (with the same SNR), and this agrees with
the theoretical result on the evolution problem.
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Figure 4. From left to right: original, noisy (SNR = 11.56 dB), and result (SNR = 18.23 dB, α = 16, h = 1,
ε = 1).

Figure 5. From left to right: original, noisy (SNR = 11.00 dB), and result (SNR = 18.30 dB, α = 15, h = 1,
ε = 1).

Figure 6. From left to right: original, noisy (SNR = 3.68 dB), and result (SNR = 16.63 dB, h = 0.09,
α = 2800, ε = 1).

We continue with results for two real pictures, representing an office and a lady, in
the stationary case (see Figures 4 and 5).

For the last two results (Figures 6 and 7), we test a uniform impulsive noise (strong
“salt and pepper” noise).

For the lady image, Figure 6, it was necessary to consider a large α (the regularizing
parameter), but very few iterations.
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Figure 7. Results on another synthetic picture in the stationary case. (Left) The initial data, (right) the result,
on each line. From top to bottom: original and results, for denoising, deblurring, and denoising–deblurring.

We end this section with Figure 7, where we show results with a synthetic image
degraded by both noise and blur.
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