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Simultaneous Structure and Texture Image Inpainting
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Abstract—An algorithm for the simultaneous filling-in of
texture and structure in regions of missing image information is
presented in this paper. The basic idea is to first decompose the
image into the sum of two functions with different basic character-
istics, and then reconstruct each one of these functions separately
with structure and texture filling-in algorithms. The first function
used in the decomposition is of bounded variation, representing
the underlying image structure, while the second function captures
the texture and possible noise. The region of missing information
in the bounded variation image is reconstructed using image
inpainting algorithms, while the same region in the texture image
is filled-in with texture synthesis techniques. The original image is
then reconstructed adding back these two sub-images. The novel
contribution of this paper is then in the combination of these three
previously developed components, image decomposition with
inpainting and texture synthesis, which permits the simultaneous
use of filling-in algorithms that are suited for different image
characteristics. Examples on real images show the advantages of
this proposed approach.

Index Terms—Bounded variation, filling-in, image decomposi-
tion, inpainting, structure, texture, texture synthesis.

I. INTRODUCTION

T HE filling-in of missing information is a very important
topic in image processing, with applications including

image coding and wireless image transmission (e.g., recovering
lost blocks), special effects (e.g., removal of objects), and
image restoration (e.g., scratch removal). The basic idea behind
the algorithms that have been proposed in the literature is
to fill-in these regions with available information from their
surroundings. This information can be automatically detected
as in [5], [10], or hinted by the user as in more classical texture
filling techniques [8], [14], [28].
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The algorithms reported in the literature best perform for pure
texture, [10], [14], [28], or pure structure, [2], [3], [5]. This
means that for ordinary images such as the one in Fig. 1, dif-
ferent techniques work better for different parts. In [26], it was
shown how to automatically switch between the pure texture and
pure structure filling-in process. This is done by analyzing the
area surrounding the region to be filled-in (inspired by [17]), and
selecting either a texture synthesis or a structure inpainting tech-
nique. Since most image areas are not pure texture or pure struc-
ture, this approach provides just a first attempt in the direction
of simultaneous texture and structure filling-in (attempt which
was found sufficient for the particular application of transmis-
sion and coding presented in the paper). It is the goal of this
paper to advance in this direction and propose a new technique
that will perform both texture synthesis and structure inpainting
in all regions to be filled-in.

The basic idea of our algorithm is presented in Fig. 2, which
shows a real result from our approach. The original image (first
row, left) is first decomposed into the sum of two images, one
capturing the basic image structure and one capturing the tex-
ture (and random noise), second row. This follows the recent
work by Vese and Osher reported in [30], [31]. The first image
is inpainted following the work by Bertalmio-Sapiro-Caselles-
Ballester described in [5], while the second one is filled-in with
a texture synthesis algorithm following the work by Efros and
Leung in [10], third row. The two reconstructed images are then
added back together to obtain the reconstruction of the orig-
inal data, first row, right. In other words, the general idea is
to perform structure inpainting and texture synthesis not on the
original image, but on a set of images with very different charac-
teristics that are obtained from decomposing the given data. The
decomposition is such that it produces images suited for these
two reconstruction algorithms. We will show how this approach
outperforms both image inpainting and texture synthesis when
applied separately.

The proposed algorithm has then three main building blocks:
Image decomposition, image (structure) inpainting, and texture
synthesis. In the next three sections we briefly describe the
particular techniques used for each one of them. As we show
in the experimental section, these particular selections, which
have been shown to produce state-of-the-art results in each
one of their particular applications, outperform previously
available techniques when combined as proposed in this paper.
In the concluding remarks section we discuss the possible
use of other approaches to address each one of these building
blocks in order to further improve on the results here reported.
In particular, the texture image can be further processed via
segmentation (which can also be directly obtained from the
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Fig. 1. Example of image with both texture and structure.

decomposition, see Section V and [31]), to further enhance the
results of the texture synthesis algorithm.1

II. I MAGE DECOMPOSITION

In this section, we review the image decomposition approach
proposed in [30], [31], which is one of the three key ingredients
of the simultaneous texture and structure image inpainting
algorithm. As explained in the introduction, this decomposition
produces images that are very well suited for the image
inpainting and texture synthesis techniques described in the next
sections. The description below is adapted from [31], where
the technique was first introduced. The interested readers are
referred to this work for more details, examples, and theoretical
results.

The two main ingredients of the decomposition developed
in [31] are the total variation minimization of [27] for image
denoising and restoration, and the space of oscillating functions
introduced in [23] to model texture or noise.

Let be a given observed image, .
could be just a noisy version of a true underlying image,

or could be a textured image, then being a simple sketchy
approximation or a cartoon image of(with sharp edges). A
simple relation between and can be expressed by a linear
model, introducing another function, such that

. In [27], the problem of reconstructing
from is posed as a minimization problem in the space of

1After this paper was accepted for publication, we learned that a number of
new papers on inpainting, inspired by [5], will be published at SIGGRAPH 2003
and CVPR 2003.

functions of bounded variation , [12], allowing for
edges

(1)

where is a tuning parameter. The second term in the
energy is a fidelity term, while the first term is a regularizing
term, to remove noise or small details, while keeping important
features and sharp edges.

In [23], Meyer proved that for small the model will remove
the texture. To extract both the (a piecewise constant
or cartoon representation of the image), and thecomponent
as an oscillating function (texture or noise) from; see Fig. 3,
Meyer proposed the use of a different space of functions, which
is in some sense the dual of the BV space (and therefore, con-
tains oscillations). The idea is that if (1) (or wavelet-type de-
compositions) is used, thenwill not just contain oscillations,
but also undesired brightness edges. Meyer introduced the fol-
lowing definition, and also proved a number of results showing
the explicit relationship between the norm below and the
model in [27] (see [23], [31] for details).

Definition 1: Let denote the Banach space consisting of
all generalized functions which can be written as

(2)

induced by the norm defined as the lower bound of all
norms of the functions where

and where the infimum is computed
over all decompositions (2) of.

Meyer showed that if the component represents texture or
noise, then , and proposed the following new image
restoration model:

(3)

In [30] and [31], the authors devised and solved a variant of this
model, making use only of simple partial differential equations.
This new model leads us to the decomposition we need for si-
multaneous structure and texture filling-in.

The following minimization problem is the one proposed in
[31], inspired by (3)

(4)

where are tuning parameters, and . The first
term ensures that , the second term ensures that

, while the third term is a penalty on the
norm in of .
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Fig. 2. Basic algorithm proposed in this paper. The original image in the first row, left (a section of Fig. 1) is decomposed into a structure image and a texture
image, [31], second row. Note how the image on the left mainly contains the underlying image structure while the image on the right mainly contains the texture.
These two images are reconstructed via inpainting, [5], and texture synthesis, [10], respectively, third row. The image on the left managed to reconstruct the structure
(see for example the chair vertical leg), while the image on the right managed to reconstruct the basic texture. The resulting two images are added to obtain the
reconstructed result, first row right, where both structure and texture are recovered.

For , as used in this paper, the corresponding Euler-
Lagrange equations are [31]

(5)

(6)

(7)

As can be seen from the examples in [31] and the images in
this paper, the minimization model (4) allows to extract from a
given real textured imagethe components and , such that
is a sketchy (cartoon) approximation of, and
represents the texture or the noise (note that this is not just a
low/high frequency decomposition). For some theoretical re-
sults and the detailed semi-implicit numerical implementation

Fig. 3. Illustration of the desired image decomposition. The top image is
decomposed in a cartoon type of image (left) plus an oscillations one (right,
texture). Note that both images have high frequencies.
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Fig. 4. Basic texture synthesis procedure.

of the above Euler-Lagrange equations, see [31]. We should note
that can be further segmented using information in
[31], or from as in Section V, segmentation that can help the
texture synthesis algorithm described below.

III. T EXTURE SYNTHESIS

We now describe the second key component of our scheme,
the basic algorithm used to fill-in the region of missing infor-
mation in , the texture image. While for the examples in this
paper, we use the algorithm developed in [10], this is not cru-
cial and other texture synthesis techniques could be tested for
this task. Note however that modulo the selection of a few pa-
rameters, this algorithm is fully automatic and produces very
good texture synthesis results. Moreover, this algorithm is very
well suited to natural images when the regions to be inpainted
cover a large variety of textures. These are the basic reasons that
lead us to the selection of this particular technique from the vast
literature on texture synthesis.

Let the region to be filled be denoted by. will be filled,
pixel by pixel, proceeding from the border inwards. Let
be a representative template, with known pixels, surrounding the
pixel to be filled-in next. We proceed to find a set of

from the available neighborhood, such that a given distance
is below a pre-defined threshold. As per [10],is the

normalized sum of squared differences (SSD) metric. Once such
a set of ’s is found, we randomly chose one of the pixels whose
location with respect to corresponds to the same position of

with respect to . We then fill with the value
of this pixel.

The template can be a simple seed-block of 33 pixels as
shown in Fig. 4. Then, of all 3 3 blocks with fully available
data in the image, we look at those closer than a pre-defined

threshold to , and randomly pick one. We then replace the
current pixel being filled-in in the lost block by the value of the
corresponding pixel next to the selected block. This algorithm
is considerably faster when using the improvements in [9], [13],
[33]. Note also that a segmentation algorithm (to the texture
image ) can be added to aid this texture synthesis algorithm.

IV. I MAGE INPAINTING

We now describe the third key component of our proposed
scheme, the algorithm used to fill-in the region of missing infor-
mation in the bounded variation image. For the examples in
this paper we use the technique developed in [5]. Other image
inpainting algorithms such as [2], [3] could be tested for this
application as well. The key idea behind these algorithms is to
propagate the available image information into the region to be
inpainted, information that comes from the hole’s boundary and
is propagated in the direction of minimal change (isophotes). We
should also note that these works explicitly showed the need for
high order partial differential equations for image inpainting (in
order to smoothly propagate both gray values on gradient di-
rections), thereby making simpler denoising algorithms such as
anisotropic diffusion not appropriate.

Once again let be the region to be filled in (inpainted) and
be its boundary. The basic idea in inpainting is to smoothly

propagate the information surroundingin the direction of the
isophotes entering . Both gray values and isophote directions
are propagated inside the region. Denoting bythe image, this
propagation is achieved by numerically solving the partial dif-
ferential equation (is an artificial time marching parameter)

(8)

where , and stand for the gradient, Laplacian, and or-
thogonal-gradient (isophote direction) respectively. This equa-
tion is solved only inside , with proper boundary conditions in

for the gray values and isophote directions [5].
Note that at steady state, , and

. This means that is constant in the direction of the
isophotes (since is just the derivative of in
the direction ), thereby achieving a smooth continuation of
the Laplacian inside the region to be inpainted. We have then
obtained a smooth propagation of available image information

surrounding the hole , propagation done in the direction
of minimal change (the isophotes, ).

For details on the numerical implementation of this in-
painting technique, which follows the techniques introduced in
[21], [27], as well as numerous examples and applications, see
[5]. Note in particular that at every numerical step of (8), a step
of anisotropic diffusion, [1], [25], is applied [5]. Multiresolu-
tion can also be applied to speed-up the convergence [5].

For image inpainting alternatives to this approach, see [2],
[3]. In particular, [3] shows the relationship of the above equa-
tion with classical fluid dynamics, and presents a different flow
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Fig. 5. Additional example, as in Fig. 2.

to achieve the steady state . The work in
[2] presents a formal variational approach that leads to a system
of coupled second order differential equations. All these works
were in part inspired by [22], [24]. Full details can also be found
at http://mountains.ece.umn.edu/~guille/inpainting.htm. Addi-
tional related work is described in [7], [15], [16], [19], and [20],
while [6], [11], [18], and [32] provide literature on inpainting as
done by professional restorators. Comments on these contribu-
tions and comparisons with the work just described are provided
in [5].

Fig. 6. Comparison of our proposed algorithm with pure texture synthesis
and pure image inpainting. Note how our proposed technique manages to
reconstruct both texture and structure (second image on first row), while pure
texture synthesis fails to reconstruct the structure of the wall and produces
artifacts in the water (first image on second row), while pure image inpainting
reconstructs the wall but fails with the water (second image on second row).

V. EXPERIMENTAL RESULTS

We now present additional experimental results and compare
with the case when the image is not decomposed prior to
filling-in, and just one algorithm, either image inpainting or
texture synthesis, is applied. The initial condition for inpainting
is given by running the texture synthesis algorithm. Color is
in general treated as in [5] and [10]. While each of the three
components of the algorithm here proposed has a number of
parameters, all but two of them were left unchanged for all the
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Fig. 7. Object removal. The original image is shown on top-left, followed by the result of our algorithm (top-right) and the results with pure texture synthesis
(bottom-left), failing to reconstruct the shoulder and introducing artifacts, and pure inpainting (bottom-right), giving a smoother reconstruction.

examples in this paper. The only parameters that vary areand
the number of steps in inpainting, although the results were
found to be very stable to these parameters as well.2 Texture
synthesis can be performed reasonably fast with the extensions
in [13], [33], while image inpainting also takes just a few
seconds. The overall algorithm takes about 2–3 minutes in a
Pentium III, 800 MHz, without any optimization. Most of the
computing time is consumed by the texture synthesis algorithm
since we are not using any of the speed improvements.

First, in Fig. 5 we repeat the steps as in Fig. 2 for a
different portion of the image. Then, in Fig. 6 we compare
the results of our algorithm with pure texture synthesis and pure
image inpainting. Fig. 7 shows an example of object removal.
The last example is presented in Fig. 8, where two different
textures are simultaneously reconstructed. The inpainted cartoon
image is used to guide the texture synthesis algorithm.
When reconstructing the texture of a given pixel (via a
straightforward vectorial extension to [10]), only pixels with
cartoon value equal to (the value of the cartoon
after inpainting has been performed) are searched. In other
words, the inpainted cartoon image is used to provide a rough
segmentation. Figs. 6–8 are all in color and can be seen at
http://mountains.ece.umn.edu/~guille/inpainting.htm.

2For all the images we have used� = 0:1, the number of numerical
steps of the decomposition is equal to 100, and the texture synthesis
algorithm uses a 7� 7 square template. Regarding the varying parameters,
� = 0:1 for Figs. 2 and 6 and� = 0:5 for the others, while the number
of inpainting steps (with a discrete time step of 0.1) are 200 for Figs.
2 and 6 and 2000 for the others (almost identical images were obtained
when 2000 steps were used for Fig. 2).

VI. CONCLUSIONS ANDFUTURE DIRECTIONS

In this paper, we have shown the combination of image
decomposition with image inpainting and texture synthesis.
The basic idea is to first decompose the image into the sum
of two functions, one that can be efficiently reconstructed
via inpainting and one that can be efficiently reconstructed
via texture synthesis. This permits the simultaneous use of
these reconstruction techniques in the image domain they
were designed for. In contrast with previous approaches, both
image inpainting and texture synthesis are applied to the region
of missing information, only that they are applied not to the
original image representation but to the images obtained from
the decomposition. The obtained results outperform those
obtained when only one of the reconstruction algorithms is
applied to each image region.

Further experiments are to be carried out to obtain the
best combination of image decomposition, image inpainting,
and texture synthesis. Since a number of algorithms exist for
each one of these three key components, the combination that
provides the best visual results is an interesting experimental
and theoretical research topic. As mentioned before, an inter-
mediate segmentation step of the texture image will further
improve the results (see Fig. 8). Without it, images with large
variability in texture types might not be correctly handled by
the texture synthesis step. Different parameters selections at the
image decomposition stage might also be needed for images
containing textures at many different scales. This opens the
door to investigate inpainting and texture synthesis combined
with an image decomposition step that splits the data into more
than two images (e.g., and a series of images at different
scales).
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Fig. 8. Inpainting multiple textures. Original image, result of our algorithm, and the result of pure texture synthesis (note the drifting), respectively. Pure inpainting
is not designed for this type of data.

We are also currently working on the extension of this work
to video and 3-D data, based on the 3-D inpainting techniques
developed in [4] and [29].
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