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Abstract

An algorithm for the simultaneous filling-in of texture and
structure in regions of missing image information is pre-
sented in this paper. The basic idea is to first decompose
the image into the sum of two functions with different ba-
sic characteristics, and then reconstruct each one of these
functions separately with structure and texture filling-in al-
gorithms. The first function used in the decomposition is of
bounded variation, representing the underlying image struc-
ture, while the second function captures the texture and
possible noise. The region of missing information in the
bounded variation image is reconstructed using image in-
painting algorithms, while the same region in the texture
image is filled-in with texture synthesis techniques. The
original image is then reconstructed adding back these two
sub-images. The novel contribution of this paper is then in
the combination of these three previously developed com-
ponents, image decomposition with inpainting and texture
synthesis, which permits the simultaneous use of filling-in
algorithms that are suited for different image characteris-
tics. Examples on real images show the advantages of this
proposed approach.

Keywords: Inpainting, filling-in, structure, texture, texture
synthesis, bounded variation, image decomposition.

1 Introduction

The filling-in of missing information is a very important
topic in image processing, with applications including im-
age coding and wireless image transmission (e.g., recover-
ing lost blocks), special effects (e.g., removal of objects),
and image restoration (e.g., scratch removal). The basic
idea behind the algorithms that have been proposed in the
literature is to fill-in these regions with available informa-
tion from their surroundings. This information can be au-
tomatically detected as in [4, 8], or hinted by the user as in
more classical texture filling techniques [7, 12, 27].

The algorithms reported in the literature best perform for
pure texture, [8, 12, 27], or pure structure, [2, 3, 4] (see
also early work in [23], which shows the use of the Burt-
Adelson pyramid for the reconstruction of smooth regions).

This means that for ordinary images such as the one in Fig-
ure 1, different techniques work better for different parts.
In [25], it was shown how to automatically switch between
the pure texture and pure structure filling-in process. This
is done by analyzing the area surrounding the region to be
filled-in (inspired by [15]), and selecting either a texture
synthesis or a structure inpainting technique. Since most
image areas are not pure texture or pure structure, this ap-
proach provides just a first attempt in the direction of simul-
taneous texture and structure filling-in (attempt which was
found sufficient for the particular application of transmis-
sion and coding presented in the paper). It is the goal of this
paper to advance in this direction and propose a new tech-
nique that will perform both texture synthesis and structure
inpainting in all regions to be filled-in.

The basic idea of our algorithm is presented in Figure
3, which shows a real result from our approach. The orig-
inal image (first row, left) is first decomposed into the sum
of two images, one capturing the basic image structure and
one capturing the texture (and random noise), second row.
This follows the recent work by Vese and Osher reported
in [28]. The first image is inpainted following the work by
Bertalmio-Sapiro-Caselles-Ballester described in [4], while
the second one is filled-in with a texture synthesis algorithm
following the work by Efros and Leung in [8], third row.
The two reconstructed images are then added back together
to obtain the reconstruction of the original data, first row,
right. In other words, the general idea is to perform struc-
ture inpainting and texture synthesis not on the original im-
age, but on a set of images with very different character-
istics that are obtained from decomposing the given data.
The decomposition is such that it produces images suited
for these two reconstruction algorithms. We will show how
this approach outperforms both image inpainting and tex-
ture synthesis when applied separately.

The proposed algorithm has then three main building
blocks: Image decomposition, image (structure) inpaint-
ing, and texture synthesis. In the next three sections we
briefly describe the particular techniques used for each one
of them. As we show in the experimental section, these par-
ticular selections, which have been shown to produce state-
of-the-art results in each one of their particular applications,
outperform previously available techniques when combined
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as proposed in this paper. In the concluding remarks section
we discuss the possible use of other approaches to address
each one of these building blocks in order to further improve
on the results here reported.

2 Image decomposition

In this section we review the image decomposition approach
proposed in [28], which is one of the three key ingredients
of the simultaneous texture and structure image inpainting
algorithm. As explained in the introduction, this decompo-
sition produces images that are very well suited for the im-
age inpainting and texture synthesis techniques described
in the next sections. The description below is adapted from
[28], where the technique was first introduced. The inter-
ested readers are referred to this work for more details, ex-
amples, and theoretical results.

The two main ingredients of the decomposition devel-
oped in [28] are the total variation minimization of [26] for
image denoising and restoration, and the space of oscillat-
ing functions introduced in [21] to model texture or noise.

Let � � IR� � IR be a given observed image, � � ���IR��.
� could be just a noisy version of a true underlying image �,
or could be a textured image, � then being a simple sketchy
approximation or a cartoon image of � (with sharp edges).
A simple relation between � and � can be expressed by
a linear model, introducing another function �, such that
���� �� � ���� �� � ���� ��� In [26], the problem of recon-
structing � from � is posed as a minimization problem in
the space of functions of bounded variation �	 �IR��, [10],
allowing for edges:

���
����

�

 ��� �

�
����� ������� � � � �� �

�
� (1)

where � � � is a tuning parameter. The second term in the
energy is a fidelity term, while the first term is a regular-
izing term, to remove noise or small details, while keeping
important features and sharp edges.

In [21], Meyer proved that for small � the model will
remove the texture. To extract both the � � �	 and the �
component as an oscillating function (texture or noise) from
� , Meyer proposed the use of a different space of functions,
which is in some sense the dual of the �	 space. He intro-
duced the following definition, and also proved a number
of results showing the explicit relationship between the ���
norm below and the model in [26] (see [21, 28] for details):
Definition 1. Let  denote the Banach space consisting of
all generalized functions ���� �� which can be written as

���� �� � ������� ���������� ��� ��� �� � ���IR��� (2)

induced by the norm ���� defined as the lower bound of
all �� norms of the functions ��� where � � ���� ���,

����� ��� �
�
����� ��� � ����� ��� and where the infimum

is computed over all decompositions (2) of � .
Meyer showed that if the � component represents texture

or noise, then � � , and proposed the following new image
restoration model:

���
�
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�
� (3)

In [28], the authors devised and solved a variant of this
model, making use only of simple partial differential equa-
tions. This new model leads us to the decomposition we
need for simultaneous structure and texture filling-in.

The following minimization problem is the one proposed
in [28], inspired by (3):

���
�������

�
���� ��� ��� �

�
���� (4)

� �

�
�� � �� ���� � �����

�����

� �
� � ��

��
�
� ��

�

��
����

� �

�

�
�

where �� � � � are tuning parameters, and � � �. The
first term ensures that � � �	 �IR��, the second term en-
sures that � � � � div���� ���, while the third term is a
penalty on the norm in  of � � div���� ���.

For � � 	, as used in this paper, the corresponding Euler-
Lagrange equations are [28]
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As can be seen from the examples in [28] and the images
in this paper, the minimization model (5) allows to extract
from a given real textured image � the components � and �,
such that � is a sketchy (cartoon) approximation of � , and
� � ������� ��� represents the texture or the noise (note that
this is not just a low/high frequency decomposition). For
some theoretical results and the detailed semi-implicit nu-
merical implementation of the above Euler-Lagrange equa-
tions, see [28].

3 Texture synthesis

We now describe the second key component of our scheme,
the basic algorithm used to fill-in the region of missing in-
formation in �, the texture image. While for the examples
in this paper, we use the algorithm developed in [8], this is
not crucial and other texture synthesis techniques could be
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tested for this task. Note however that modulo the selec-
tion of a few parameters, this algorithm is fully automatic
and produces very good texture synthesis results. Moreover,
this algorithm is very well suited to natural images when
the regions to be inpainted cover a large variety of textures.
These are the basic reasons that lead us to the selection of
this particular technique from the vast literature on texture
synthesis.

Let the region to be filled be denoted by �. � will be
filled, pixel by pixel, proceeding from the border �� in-
wards. Let �� be a representative template, with known pix-
els, touching the pixel ���� �� � � to be filled-in next. We
proceed to find a set of ��� from the available neighborhood,
such that a given distance ����� ���� is below a pre-defined
threshold. As per [8], � is the normalized sum of squared
differences (SSD) metric. Once such a set of ���’s is found,
we randomly chose one of the pixels whose location with
respect to ��� corresponds to the same position of ���� ��with
respect to ��. We then fill ���� �� � � with the value of this
pixel.

The template �� can be a simple seed-block of 3 � 3
pixels as shown in Fig 2. Then, of all � � � blocks with
fully available data in the image, we look at those closer
than a pre-defined threshold to ��, and randomly pick one.
We then replace the current pixel being filled-in in the lost
block by the value of the corresponding pixel next to the
selected block. This algorithm is considerably faster when
using the improvements in [11, 30].

4 Image inpainting

We now describe the third key component of our proposed
scheme, the algorithm used to fill-in the region of missing
information in the bounded variation image �. For the ex-
amples in this paper we use the technique developed in [4].
Other image inpainting algorithms such as as [2, 3] could
be tested for this application as well.

Once again let � be the region to be filled in (inpainted)
and Æ� be its boundary. The basic idea in inpainting is to
smoothly propagate the information surrounding � in the
direction of the isophotes entering ��. Both gray values
and isophote directions are propagated inside the region.
Denoting by � the image, this propagation is achieved by
numerically solving the partial differential equation (� is an
artificial time marching parameter)

��

��
� ����� � ���� (8)

where �, �, and �� stand for the gradient, Laplacian, and
orthogonal-gradient (isophote direction) respectively. This
equation is solved only inside�, with proper boundary con-
ditions in �� for the gray values and isophote directions [4].

Note that at steady state, ��

��
� �, and����� ���� � �.

This means that �� is constant in the direction ��� of the
isophotes, thereby achieving a smooth continuation of the
Laplacian inside the region to be inpainted.

For details on the numerical implementation of this in-
painting technique, which follows the techniques intro-
duced in [19, 26], as well as numerous examples and appli-
cations, see [4]. Note in particular that at every numerical
step of (8), a step of anisotropic diffusion, [1, 24], is ap-
plied [4]. Multiresolution can also be applied to speed-up
the convergence [4].

For image inpainting alternatives to this approach, see
[2, 3]. In particular, [3] shows the relationship of the above
equation with classical fluid dynamics, and presents a dif-
ferent flow to achieve the steady state ����� � ��� �
�. The work in [2] presents a formal variational ap-
proach that leads to a system of coupled second order
differential equations. All these works were in part in-
spired by [20, 22]. Full details can also be found at
mountains.ece.umn.edu/ guille/inpainting.htm. Additional
related work is described in [6, 13, 14, 17, 18], while
[5, 9, 16, 29] provides literature on inpainting as done by
professional restorators. Comments on these contributions
and comparisons with the work just described are provided
in [4].

5 Experimental results

We now present additional experimental results and com-
pare with the case when the image is not decomposed prior
to filling-in, and just one algorithm, either image inpainting
or texture synthesis, is applied. Color is treated similarly
to [4, 8] (with additional vectorial operations). While each
of the three components of the algorithm here proposed has
a number of parameters, all but two of them were left un-
changed for all the examples in this paper. The only pa-
rameters that vary are 	 and the number of steps in inpaint-
ing, although the results were found to be very stable to
these parameters as well.� Figure 4 shows an example of
object removal. Additional figures, in color, can be found at
mountains.ece.umn.edu/�guille/inpainting.htm

6 Conclusions and future directions

In this paper we have shown the combination of image de-
composition with image inpainting and texture synthesis.

�For all the images we have used � � ���, the number of numeri-
cal steps of the decomposition is equal to ���, and the texture synthesis
algorithm uses a � � � square template. Regarding the varying parame-
ters, � � ��� for figure 3 and � � ��� for the others, while the number
of inpainting steps (with a discrete time step of ���) are 200 for figure 3
and 2000 for the others (almost identical images were obtained when 2000
steps were used for Figure 3).
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The basic idea is to first decompose the image into the sum
of two functions, one that can be efficiently reconstructed
via inpainting and one that can be efficiently reconstructed
via texture synthesis. This permits the simultaneous use of
these reconstruction techniques in the image domain they
were designed for. In contrast with previous approaches,
both image inpainting and texture synthesis are applied to
the region of missing information, only that they are applied
not to the original image representation but to the images
obtained from the decomposition. The obtained results out-
perform those obtained when only one of the reconstruction
algorithms is applied to each image region.

Further experiments are to be carried out to obtain the
best combination of image decomposition, image inpaint-
ing, and texture synthesis. Since a number of algorithms
exist for each one of these three key components, the com-
bination that provides the best visual results is an interesting
experimental and theoretical research topic.
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Figure 1: Example of image with both texture and structure.
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Figure 2: Basic texture synthesis procedure

5

Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03) 
1063-6919/03 $17.00 © 2003 IEEE 



Figure 3: Basic algorithm proposed in this paper. The original image in the first row, left (a section of Figure 1) is decomposed
into a structure image and a texture image, [28], second row. Note how the image on the left mainly contains the underlying
image structure while the image on the right mainly contains the texture. These two images are reconstructed via inpainting,
[4], and texture synthesis, [8], respectively, third row. The image on the left managed to reconstruct the structure (see for
example the chair vertical leg), while the image on the right managed to reconstruct the basic texture. The resulting two
images are added to obtain the reconstructed result, first row, right, where both structure and texture are recovered.

Figure 4: Object removal. The original image is shown first, followed by the result of our algorithm and the result with pure
texture synthesis.
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