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Introduction v

The MCM Comes of Age
Paul J. Campbell
Dept. of Mathematics and Computer Science
Beloit College
Beloit, WI 53511
campbell@beloit.edu

This special volume commemorates the second ten years of the Mathemat-
ical Contest in Modeling (MCM). With the 2005 contest, the MCM turned 21.

The idea for the MCM came from Ben Fusaro in late 1983, who envisioned
an “applied” analogue of the famous annual William Lowell Putnam Contest in
mathematical problem-solving. Sol Garfunkel, Executive Director of COMAP,
realized the potential for the idea and secured grant funding.

Since the first contest, participation has grown steadily, with the 2005 MCM
involving 828 teams of undergraduates, from more than 300 institutions in 11
countries.

Moreover, the MCM inspired expansion in 1999 to the Interdisciplinary
Contest in Modeling (ICM), which in 2005 involved an additional 164 teams
from 4 countries. In a few more years, we expect to celebrate the ICM’s tenth
anniversary with a volume like this one and its predecessor UMAP Models:
Tools for Teaching 1994, which celebrated the tenth anniversary of the MCM.
That volume is available on COMAP’s special Modeling Resource CD-ROM
(http://www.comap.com/product/?idx=613).

Short articles in this volume give the current rules of the MCM, describe
the process of judging the solution papers, and offer assorted short tips from
advisors of teams. We also reprint here from the earlier volume Ben Fusaro’s
recounting of the history, background, and emergence of the MCM.

This volume contains all of the 20 problems set in the second ten years of
the MCM. For each year, one Outstanding paper is included, together with
abbreviated accompanying commentaries.

We also include a digest of the current contest rules and an account of how
it is judged, by contest director Frank Giordano.

Coaches of multiple Outstanding teams offer tips on how to help teams
succeed. Anne Dougherty emphasizes the importance of student ability, train-
ing, and team preparation. James Morrow notes the importance of publicity
of successes in attracting students to the contest and to major in mathematics
and highlights the excitement of the participants. Garrett Mitchener offers the
unique perspective of someone who was a three-time Outstanding winner as
a student and now coach of an Outstanding team in 2005; his theme is to “go
with what you know” in terms of the mathematics, the computing support,
and the writing. Edward Allen and colleagues comment on how to make the
contest fun and a celebration.
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Finally, we collect together advice from the judges over the years, who have
a lot to say about what to put in—and what to leave out of—a contest paper.

A few Outstanding papers have used highly sophisticated mathematics,
such as neural nets or genetic algorithms. Often, however, simple mathematics
may suffice to realize great insight. Above all, as Prof. Fusaro remarks in
his account of background and history, the value of the MCM lies not in the
competition but in the educational experience of students.

We hope that you enjoy this volume. If your institution has not yet par-
ticipated in the MCM, you may obtain information and register for the next
MCM or ICM contest (both in February) by going to http://www.comap.com/
undergraduate/contests/ .

About the Editor

Paul Campbell graduated summa cum laude
from the University of Dayton and received an
M.S. in algebra and a Ph.D. in mathematical logic
from Cornell University. He has been at Beloit
College since 1977. He is Reviews Editor for Math-
ematics Magazine and has been editor of The UMAP
Journal since 1984, a responsibility that he enjoys
immensely and helps him be even more of a “gen-
eralist.” He is co-author of COMAP’s applications-
oriented collegiate mathematics text For All Practi-
cal Purposes (7th ed., W.H. Freeman, 2006), already
used by more than half a million students.
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Outstanding MCM Teams
1985–1994

1985–1994 1995–2004
Beloit College, WI 1991, 1994
Bethel College, MN 2001, 2002
California Institute of Technology, CA 1989 2003
California Polytechnic State Univ., CA 1989, 1990 2000
Calvin College, MI 1985, 1987 1997
Colorado School of Mines, CO 1986
Cornell University, NY 1993
Donghua University, Shanghai, China 2003
Drake University, IA 1988, 1989
Duke University, NC 1998, 1999, 2000,

2001, 2002
East China University of Science

and Technology, Shanghai 1997
Eastern Oregon University, OR 1998
Fudan University, China 1996
Georgetown University, DC 1986
Gettysburg College, PA 1996
Grinnell College, IA 1986 1994
Harvard University, MA 1988 1997, 2003, 2004
Harvey Mudd College, CA 1985, 1986 (2), 1989 1995 (2), 1998 (2),

1999 (3), 2001,
2002, 2003, 2004

Hiram College, OH 1991
Humboldt State University, CA 1990
Iowa State University, IA 1995
Lawrence Technological University 2001
Lewis & Clark College, OR 2000
Macalester College, MN 1995, 1997, 1998
Maggie Walker Governor’s School, VA 2000, 2001, 2002
Merton College, Oxford University, U.K. 2004
Moorhead State University, MN 1987
Mount St. Mary’s College, MD 1985, 1991
National University of Defence Tech.,

Changsha, China 2000
Nazareth College, NY 1993
New Mexico State University, NM 1985
North Carolina School of Science

and Mathematics, NC 1988, 1989, 1992, 1995, 1999, 2002
1994

Ohio State University, OH 1989
Oklahoma State University, OK 1992
Pacific Lutheran University, WA 1999



viii Tools for Teaching 2004–2005

Peking University, Beijing, China 2003
Pomona College, CA 1986, 1992 1996, 1997
Rensselaer Polytechnic Institute, NY 1987
Ripon College, WI 1991
Rose-Hulman Institute of Tech., IN 1990 1997, 1999
St. Bonaventure University, NY 1996
Southeast University, Nanjing, China 2003
Southeast Missouri State Univ., MO 1995
Southern Methodist University, TX 1985
Southern Oregon State University, OR 1990
Stellenbosch University, South Africa 2001
Stetson University, FL 1998
Tsinghua University, Beijing, China 1998
U.S. Air Force Academy, CO 1990
U.S. Military Academy, NY 1988, 1993 2000, 2001, 2002
University College Cork, Cork, Ireland 2001, 2004
University of Alaska Fairbanks, AK 1990, 1991, 1993 1995, 1997, 1999
University of Calgary, Alberta, Canada 1994
University of California—Berkeley, CA 1986, 1993 1999
University of Colorado—Boulder, CO 1992 2000, 2002, 2003,

2004 (2)
University of Colorado—Denver, CO 1987
University of Dayton, OH 1989
University of North Carolina, NC 1994 1996
University of Puget Sound 1999
University of Science and Technology

of China, Hefei 1996
University of Toronto, Ontario, Canada 1986, 1988, 1994 1997
University of Washington, WA 2002, 2003 (2), 2004
University of Western Ontario, Ontario,

Canada 1991
Wake Forest University, NC 1996, 2000, 2001,

2002 (2)
Washington University, MO 1985, 1986, 1989, 1996, 1997, 2000

1992
Worcester Polytechnic Institute, MA 1996
Youngstown State University, OH 2003
Zhejiang University, Hangzhou, China 2003
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Background and History
of the MCM
Bernard (Ben) A. Fusaro
Dept. of Mathematics
Florida State University
Tallahassee, MD 21801
fusaro@math.fsu.edu

Genesis
The concept of a national applied mathematics contest for undergradu-

ates occurred to me in October 1983. The idea surfaced because of difficulties
that we were having at Salisbury State University (now Salisbury University)
with getting our students to prepare for the Putnam Mathematical Competition.

Salisbury has a high percentage of first-generation college students, and
they tend to view facing such a formidable exam as an ordeal. The practice
of the Putnam of reporting a large proportion of low numerical scores adds
to the chilling effect. Finally, the small amount of applied content of Putnam
problems did not generate much enthusiasm in practical-minded students.

There was much more to my notion of an applied mathematics contest than
just offering different questions that would merit higher scores. For a dozen
years, I had chafed at the overemphasis in established mathematics of the pure,
formalistic approach, almost devoid of content. On many campuses, there was
scarcely any appreciable applied or constructive mathematics presence.

In my mind, (classical) applied mathematics, computational mathematics,
and statistics are as important a part of contemporary mathematical activities
and curricula as pure mathematics. The model that I had in mind represents
each of these four as a vertex of a tetrahedron. The edges, faces, and interior
represent activities such as applied linear algebra, numerical analysis, or op-
erations research. The Putnam deals with a small neighborhood of the pure
mathematics vertex at the lofty apex of the tetrahedron. It would be difficult
to tell from Putnam questions that the computer even existed.

These thoughts merged and then popped up in verbal form as “Applied Put-
nam.” My on-campus colleagues liked the idea, but it seemed prudent to check
with some off-campus mathematicians who had long involvements in applied
mathematics. Calls to M.S. Klamkin (University of Alberta), H.O. Pollak (Bell
Labs), and E.Y. Rodin (Washington University) elicited favorable responses and
encouragement to proceed. I then called A.P. Hillman, who has had many years
of experience with the Putnam. He urged me to start with a small pilot project
and warned that I might be underestimating the difficulty of starting a national
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contest. (He was right.)
Being Chair of the Education Committee of the Society for Industrial and

Applied Mathematics (SIAM) gave me a natural forum for this project. I sent
an outline of a proposal for a pilot contest to the committee in November 1983.
The gist of the proposal is illustrated in Table 1.

Table 1.

The original proposal for an “Applied Putnam.”

Pure Putnam “Applied Putnam”

Time of contest December March

Sessions Two (three hours each) Two (three hours each)

Number of problems 12 2

Type of problems Structural, pure Contextual, applied

Format Individual students Teams of three students
No calculator or computer aids Microcomputers allowed

The committee liked the proposal but had strong reservations about the time
allotted per problem. The feeling was that an applied mathematics problem
could not be done in half a day; estimates ran from a day to a week. One
experienced SIAM officer said that a realistic problem would need a whole
semester! These observations, coupled with my own fairly unshakable view
that a contest for undergraduates should not occupy more than a weekend,
doomed one of my favorite schemes, that teams should be required to do one
continuous problem and one discrete problem.

Although the committee looked on the idea with favor, SIAM’s leadership
felt that the committee already had enough projects and that it should continue
to concentrate on the K–12 level. However, so many people had judged the
idea to be good and workable that I decided to seek another forum.

Funding
Warren Page, then editor of the College Mathematics Journal, gave an

invited lecture to the Maryland–DC–Virginia Section of the Mathematical As-
sociation of America in November of 1983. His lively presentation included
many applied examples, so I approached him after his talk. Page listened as
attentively as he could, while being badgered by another mathematician who
kept trying to tie Page’s talk to the Vietnam War. Page’s initial reaction was
that the concept was interesting but not feasible.

About three weeks later, Page called me at home to say that he had given
this concept of an applied contest quite a bit of thought; it was a valuable idea
and it ought to be done. Moreover, he had broached the subject to Sol Gar-
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funkel, Executive Director of COMAP, which had been supporting applicable
mathematics in a variety of ways since 1972. Garfunkel was very enthusiastic,
and Page urged me to get in touch with him.

Although I was a member of COMAP and had used its materials, I had
never had any interaction with Garfunkel. After one phone conversation, it
was clear that we had similar goals. In fact, my personal campaign to “increase
the applied mathematics presence on campus” might be one way to describe
what COMAP had been doing over the years. He suggested that a proposal for
a three-year grant be sent to the Fund for the Improvement of Post-Secondary
Education (FIPSE) of the U.S. Dept. of Education, with COMAP the adminis-
tering body and me as the Project Director. FIPSE had a reputation for backing
novel ideas that might have far-reaching effects. The derivative term “Applied
Putnam” was transformed into “Mathematical Competition [now Contest] in
Modeling.” A preliminary proposal made FIPSE’s January 1984 deadline, and
the three-year proposal was approved in June 1984.

Goals
The goals and purposes of the MCM are best described by two paragraphs

from the abstract of the proposal to FIPSE:

The purpose of this competition is to involve students and faculty in
clarifying, analyzing, and proposing solutions to open-ended problems.
We propose a structure which will encourage widespread participation
and emphasize the entire modeling process. Major features include:

• The selection of realistic open-ended problems chosen with the advice
of working mathematicians in industry and government.

• An extended period of time for teams to prepare solution papers
within a clearly defined format.

• The ability of participants to draw on outside resources including
computers and texts.

• An emphasis on clarity of exposition in determining final awards with
the best papers published in professional mathematics journals.

As the contest becomes established in the mathematics community,
new courses, workshops, and seminars will be developed to help students
and faculty gain increased experience with mathematical modeling.

Organizing
Garfunkel and I were in firm agreement that the contest must be primarily

an educational experience, not a competitive one. In a sense, we wanted it to be
closer to the spirit of traditional English sport than to modern American sports.
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I formed an advisory board of mathematical scientists who had been early
backers of an applied mathematics contest:

• A.P. Hillman, University of New Mexico;

• M.S. Keener, Oklahoma State University;

• H.O. Pollak, Bellcore;

• F.J. Roberts, Rutgers University;

• E.Y. Rodin, Washington University;

• L.H. Seitelman, Pratt & Whitney;

• Maynard Thompson, Indiana University; and

• myself as chair.

Hillman, who for many years directed grading for the Putnam, agreed to
be chief grader. This coup eliminated one of the two swords that hung over
our heads: finding suitable problems, and judging.

The advisory board first met in August 1984. We selected two types of prob-
lems, approved ground rules, set up a Putnam-like system of faculty advisors,
and established a classification for solution papers. We set the inaugural contest
for the weekend of 15 February 1985. The meeting was very productive; but
we departed with a note of concern over the short amount of time for publicity,
registration, and final write-up of contest materials. We wondered whether we
could get our predicted 55 colleges to enter the first contest.

It turned out that 158 teams, representing 104 colleges, registered for the
first contest, a response that overwhelmed us. Any more than 100 solution
papers would be unmanageable; there wouldn’t be enough judges to allow
for multiple readers for each paper. It turned out that 90 papers, representing
70 colleges, were submitted—a large but tractable number. The MCM was a
success!

Acknowledgment
This history of the foundation of the MCM is adapted from the author’s

“Mathematical Competition in Modeling” in Mathematical Modelling [continued
as Mathematical and Computer Modelling] 6 (6) (1985): 473–484.
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About the Author

Ben was the founder of the MCM and its di-
rector for the first seven years. He has a B.A.
from Swarthmore College, an M.A. from Columbia
University (analysis), a Ph.D. from the University
of Maryland (partial differential equations), and
most recently (1990) an M.A. from the University
of Maryland (computer science ).

He taught at several other colleges and univer-
sities before going to Salisbury State in 1974, where
he served as chair of the Mathematics and Com-
puter Science Dept. 1974–82 and received the Dis-
tinguished Faculty Award in 1992. Ben was NSF
Lecturer at New Mexico Highlands University and
at the University of Oklahoma, Fulbright Profes-
sor at National Taiwan Normal University, and visiting professor at the U.S.
Military Academy at West Point. He has taught most undergraduate mathe-
matics courses, plus graduate courses in integral equations, partial differential
equations, and mathematical modeling.

In recent years, Ben has been a major exponent of environmental mathe-
matics, a topic on which he has presented several minicourses.
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Ground Rules for the MCM

Registration of Teams
The team advisor must register the team(s) in advance using the contest

Website (detailed instructions are at the URL cited at the end of this chapter).
Each department may sign up either one or two teams of up to three under-
graduates each, but no more than three teams may be registered from any one
institution. Team members may be changed at the last minute without noti-
fying COMAP. If a department preregisters only one team but later wishes to
add a second team, the department must obtain a new control number for the
second team.

Contest Date and Time
The contest is held on a weekend in February. In recent years it has begun

at 8 P.M. EST local time on a Thursday and ended the following Monday at 8:00
P.M. EST.

The team advisor must send to COMAP three copies of the solution paper
to arrive by a specified deadline. The paper must be typed and in English
and include paper copies of any supplemental diagrams, graphs, computer
programs, etc. No non-paper supplementary materials (diskettes, videotapes,
etc.) are accepted.

The Advisor
The advisor is the key to the success of MCM. The advisor alerts students

to the competition and its benefits, encourages the organization of teams, and
registers the teams for the contest. It is both legitimate and desirable to coach
and prepare teams.

Rules
Each team receives the same two problems to consider but may submit a

solution paper for only one.
Teams may use any inanimate source of data or materials—computers, soft-

ware, references, web sites, books, etc., however all sources used must be cred-
ited. Failure to credit a source will result in a team being disqualified from the
competition.
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Team members may not seek help from or discuss the problem with their ad-
visor or anyone else, except other members of the team. Input of any form from
anyone other than student team members is strictly forbidden. This includes
email, telephone contact, personal conversation, communication via web chat
or other question-answer systems, or any other form of communication.

Neither the school name nor team members’ names may appear anywhere
in the solution paper; they may appear only on the control sheet.

Suggested Outline
• A clarification or restatement of the problem, as appropriate.

• A clear exposition of all variables, parameters, assumptions and hypotheses.

• An analysis of the problem motivating and justifying the modeling to be
used.

• The design of the model.

• A discussion of how the model could be tested, including error analysis and
stability (conditioning, sensitivity, etc.).

• A discussion of the apparent strengths or weaknesses of the model or ap-
proach.

• A one-page summary of the results, typed on the Summary Sheet, must be
attached to the front of each copy of the solution paper.

Judging
Partial solutions are acceptable. There is no passing or failing cut-off score,

nor will numerical scores be assigned. The judges are primarily interested in
the team’s approach and methods. Conciseness and organization are extremely
important. Key statements should present major ideas and results.

Each solution paper must include a one-page typed summary on the Sum-
mary Sheet included with the contest materials. It is unlikely that MCM judges
will read beyond a poorly constructed summary. The summary is a very important
part of the MCM paper. The judges place considerable weight on the summary,
and winning papers are sometimes distinguished from other papers based on
the quality of the summary. A summary should clearly describe the approach
to the problem and, most prominently, the most important conclusions. The
concise presentation of the summary should inspire a reader to learn the details
of the work. Summaries that are mere restatements of the contest problem, or
are a cut-and-paste boilerplate from the Introduction, are generally considered
to be weak.
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Results, Recognition, and Prizes
Judging takes place a few weeks after the contest. Solutions are recognized

as Successful Participation, Honorable Mention, Meritorious, or Outstanding.
The advisors and teams are notified of the results in April. COMAP issues

news releases and announcements in college and professional publications.
All successful participants receive a certificate. Outstanding teams receive

bronze plaques, and each year their solution papers have been published in a
special issue of The UMAP Journal.

INFORMS, the Institute for Operations Research and the Management Sci-
ences, designates one Outstanding team from each problem as an INFORMS
Winner. Each member of these teams receives a three-year membership in
INFORMS and a cash prize. Each member of the other Outstanding teams
receives a one-year membership in INFORMS.

The Society for Industrial and Applied Mathematics (SIAM) designates one
Outstanding team from each problem as a SIAM Winner. Each designated team
receives a certificate, a cash prize, and partial expenses for a trip to the SIAM
annual meeting.

The Ben Fusaro Award honoring the Founding Director of the MCM was
awarded for the first time in 2004. It recognizes one of the Meritorious or
Outstanding teams for an especially creative approach to the contest problem.

Details of the procedures for an upcoming contest, plus answers to fre-
quently asked questions, are available at

http://www.comap.com/undergraduate/contests/mcm/instructions.php .

Major funding and support for the MCM is provided by the U.S. National
Security Agency and by SIAM. However, to cover remaining costs, COMAP
must charge a per-team registration fee, to be paid by credit card.
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Judging the MCM

Frank Giordano, MCM Director
Naval Postgraduate School
1 University Circle
Monterey, CA 93943-5000
frgiorda@nps.navy.mil

Each paper submitted is classified as Non-successful, Successful Participant,
Honorable Mention, Meritorious, or Outstanding. Further, from among the
Outstanding papers, judges from SIAM, INFORMS, and the MAA pick winners
to receive awards from their societies. Typically, the top 2–3% are classified as
Outstanding, the next 15% as Meritorious, and the next 25% as Honorable
Mention. A paper classified as Successful Participant is a complete paper that
satisfies the rules of the contest.

The process of determining the classification of each paper consists of dis-
tinct phases: screening, further screening, and judging. Each phase employs a
mixture of normalized grading, ranking, classification against a judge’s “abso-
lute ideal,” and qualitative judging. We describe each of the phases.

Screening Rounds 1 and 2
There are three screening rounds, to identify papers that are not going to

be among the top 43% (Honorable Mention or above). After a preliminary
reading of several papers (not graded), judges jointly design a 7-point grading
scale. Discriminators used on the scale are designed to classify the papers
into three categories. The top classification reflects exceptional quality; the
second category are papers that the judge feels should be retained; and the third
category are papers that the judge thinks should be eliminated. The judging
scale emphasizes heavily the organization of the paper: What ideas have the
contestants used in developing and analyzing their models? The summary
is weighted heavily, as the contest rules require that it reflect the major ideas
that the contestants used. Typically, a judge devotes 10–15 minutes to screen a
paper.

The first two of the three screening rounds are accomplished by “Triage
Judges.” Each paper is read by one judge in each round. After the second
round, papers judged in the lowest category by both the judges who read them
are eliminated. If both judges vote the paper weak, but their scores differ by
more than 2 points, a third judge classifies the paper before it is eliminated.
Typically, about 25% of the papers are eliminated after the first two screening
rounds.
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Screening Round 3
Further judging takes place under a different set of judges. Normalized

scores from the first two screening rounds are used to rank-order the papers.
The normalized scores are used to organize the papers into as many stacks as
there are judges. Upon arrival, judges are given a stratified packet of papers to
read for “calibration” (not grade). After reading the papers, the judges jointly
design a 7-point screening scale. The judges then conduct a third and final
screening round.

After the screening round, the judges design a 100-point scale for the final
judging.

Final Judging
About 43% of papers advance to final judging. Typically, there are four final

judging rounds. A judge typically spends 30–45 minutes to judge each paper. In
addition to judging the paper, the judge is asked to rank it against all papers read
in the round. The judge is also required to assign an “absolute” classification:
Successful Participant, Honorable Mention, Meritorious, or Outstanding. This
classification permits the judges to render an opinion on the “absolute” quality
of the paper independent of grading and ranking procedures.

After the three screening rounds and the first two final judging rounds,
about 18% of papers remain. After two more final judging rounds, typically
6–12 papers remain. Time is provided for judges to read papers that they have
not yet read. The judges then meet to debate and compare the merits of the
papers. The Outstanding papers are chosen by consensus.

Stratified Packets
Beginning with the third screening round, the papers are organized into

as many stacks as there are judges. The papers are distributed modulo the
number of judges, using the cumulative normalized scores. The cumulative
scores are weighted, with the final judging rounds counting more than the
screening rounds.

Eliminating Papers
Typically, about 25% of the papers are eliminated after the first two screen-

ing rounds. Beginning with the third screening round, the Contest Director,
the Associate Contest Director, and the two Head Judges meet to discuss the
elimination of papers. The information that they use is



Judging the MCM 11

• the overall rank based on normalized scores,

• the round rank assigned each round, and

• the overall classification given to the paper by the judge.

Each item is quite useful in determining which papers should be eliminated.
Since judges receive a stratified packet, the round ranks are especially use-
ful. No “quota” is used to determine how many papers to cut each round;
however, typically the top 43% (Honorable Mention, Meritorious, and Out-
standing) remain after the first screening round, and the top 18% (Meritorious
and Outstanding) remain after the third grading round.

The Judges
The judges are led by experienced Head Judges who graded for several

years before becoming a Head Triage Judge. The professional societies choose
their own judges from among volunteers with strong credentials. COMAP
rounds out the judging team by choosing a field of judges with a wide range
of expertise. If needed, the field of judges is augmented with subject-matter
experts.

Conclusion
Judging a contest that receives as many creative student solutions as the

MCM does is a difficult task. The judges deserve our gratitude for a difficult
job done well, and with great dedication and integrity.

About the Author
Frank Giordano has been Director of the MCM since 1991. He is a Dis-

tinguished Honor Graduate of the U.S. Military Academy and has an M.S. in
Management Science and a Ph.D. in Operations Research from the University
of Arkansas. In addition, he was a scholar on the George Olmsted Founda-
tion at the University of Madrid, where he received various certificates from
the College of Philosophy and Letters and the equivalent of an M.S. degree
from the College of Civil Engineering. From 1975 to 1995, he was a professor of
Mathematical Sciences at the U.S. Military Academy, rising to department head
and vice-dean; he retired from the U.S. Army in 1995 as a brigadier general. He
spent 1995–96 as E.L. Wiegand Distinguished Visiting Professor at Carroll Col-
lege (Montana), and since 2002 he has been Professor of Defense Analysis and
Operations Research at the Naval Postgraduate School. Over the past decade,
he has prepared and directed various NSF grants for COMAP.
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Ability, Training, Preparation
Anne M. Dougherty
Dept. of Applied Mathematics
University of Colorado
526 UCB
Boulder, CO 80309–0526
anne.dougherty@colorado.edu

Introduction
Since 1997, Bengt Fornberg and I have been advisors for Modeling Contest

teams at the University of Colorado at Boulder. Through 2005, we have worked
with 23 teams and have had consistent success: 6 Outstanding, 9 Meritorious,
7 Honorable Mention, and 1 Successful Participant designations.

Over the past few years, I have given considerable thought to the ingredients
that make an Outstanding team. I believe that success in the MCM comes down to
equal parts student ability, training, and team preparation. Take bright and talented
students, give them challenging coursework that includes mathematical and
computational work, prepare them in teams of three for the MCM, and then let
them go. The results are exciting.

Students
The University of Colorado at Boulder has some of the most talented un-

dergraduates anywhere. After graduating from high school, these students are
looking for additional challenges—although they don’t always know what that
means. They are bright and articulate, and our goal is to encourage each of them
to develop fully. These students have different majors in science, engineering
and applied mathematics; but as they pass through our calculus and differen-
tial equations courses, we encourage them to “take more math courses.” Some
will become applied math majors, double majors, or minors; but all will benefit
from additional mathematical and computational training.

Training
The mantra of the Department of Applied Mathematics is “mathematics,

computation, and communication.” Each of these skills is infused throughout
our curriculum. As early as Calculus 3, our students are required to work
on computer projects using Mathematica or Matlab. Each major, and most of
our minors, takes a minimum of one programming course and one course in
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numerical analysis. Computer software is used extensively throughout our
upper-division courses.

Our best undergraduates, many of whom are MCM participants, are also en-
couraged to work on research projects with CU faculty. Students have worked
in physics labs, on significant programming projects, and on research projects
with applied math faculty. While working on these projects, students don’t
have the time pressure of the MCM. Nonetheless, they do work on open-ended
research problems, grappling with some of the same issues as those posed in
the contest problems. Through coursework and research projects, our students
receive extensive mentoring and training in skills that will serve them well in
both the MCM and in future graduate work or careers.

Team Recruitment and Preparation
The primary role of the advisor in the MCM is team recruitment and prepa-

ration. Students are recruited from throughout the science, engineering, math,
and applied math disciplines. The best teams are those where each student
brings skills that complement those of their teammates. We recruit students
from our classes, via email, and by word of mouth spread through students.
We always stress that students must want to do the contest—they need to feel
excited and challenged. As soon as possible, even as early as the fall semester,
we encourage students to form their teams. Thus, the individual excitement
that they feel is transferred to team enthusiasm.

The MCM is a unique event that students must be prepared for. You can
have students with enormous amounts of ability and good training; but if they
are not prepared for the nature of the contest, they may not do as well as
possible. To prepare students, we have one or two meetings before the winter
break and then three meetings afterwards. After going over the contest rules,
we discuss division of labor, timing, and the nature of the final paper.

It is important that each team understand that a division of labor is crit-
ical. While the character of each team is slightly different (and depends on
the problem), there are usually three roles: the writer, the programmer, and the
researcher. After some initial brainstorming and research by all team members
in the first few hours of the contest, the team should have some ideas for their
first, and most simplistic, model. At this point, the writer can begin writing the
introduction, the programmer begins the numerical work for the first model,
and the third member continues the mathematical development and library (or
Internet) research.

Beginning the writing on Friday cannot be overstressed. One of my first
teams was exceptionally talented, but they did not understand (and I had not
stressed) the importance of this timing. Each person worked on the research,
model development, and programming. They actually developed several mod-
els, from the simple to the very sophisticated. Unfortunately, only the simple
model made it into their paper. They didn’t start writing until Sunday night—
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and then all three wrote furiously. The resulting paper was an unedited jumble
of ideas, a real disappointment. I now stress, multiple times during our prepa-
rations, how important it is for one person to be responsible for the paper—and
that he/she needs to start writing early.

During our practice sessions, we also discuss the format of the paper. The
problem restatement, the assumptions, the models, and the conclusion are all
examined. We also talk about the word-processing itself. Some teams prefer
to work in LATEX; others prefer Word. I tell students that they should use
whichever they feel most comfortable as long as they can easily incorporate
equations, graphs, and tables. I do encourage students to set up a template
before the contest begins and to make sure that they can import graphs and
figures.

The last topic that we discuss is where each team will work. Each team needs
its own separate workspace. Some teams prefer to work at a team member’s
home or apartment. Others prefer to work in one of the computer labs. We also
provide weekend access for one team to the departmental conference room.

Aftermath
After the contest results are announced, we make sure to publicize them

throughout the university. In April, we host the Modeling Contest presenta-
tions. Each team is given 15–20 minutes to present their solution. All under-
graduates and faculty are invited to attend. It is great for each team to be able
to share their solution with everyone else. Students who did not participate in
the contest are inspired to do it the following year. It is always amazing to me
how much these students can accomplish in just 96 hours. Their energy and
enthusiasm motivate me. I believe that these students, who have accepted the
MCM challenge and given it their best, will remember this event for the rest of
their lives.

About the Authors
In 1994, Anne Dougherty received her Ph.D. in prob-
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Making Math Exciting
James Allen Morrow
Dept. of Mathematics
University of Washington
Box 354350
Seattle, WA 98195-4350
morrow@math.washington.edu

The Mathematical Contest in Modeling is an important event at the Uni-
versity of Washington. It has attracted our best students, and the success of
our teams has made the Department, the University, and the community very
proud. Publications such as the University of Washington Daily, Columns Mag-
azine, the Seattle Times, and the Seattle PI have published articles about our
winning teams. The Seattle Times even wrote an editorial praising them. The
winners have been introduced at special events and praised highly by the UW
President at Regents’ meetings. The result is that the Mathematics Depart-
ment has become widely respected, and consequently outstanding students
are selecting mathematics as their major.

Publicity about our success has contributed to continuing interest in the
contest, making it easy to recruit talented and enthusiastic participants. We
are usually able to form some teams consisting of experienced competitors and
others with promising newcomers. It is important to give younger students the
chance to participate, since experience in the contest is a good (but not perfect)
predictor for success. The contest is also addictive—students are anxious to
compete again and are willing to spend time preparing.

Teams are formed in October so that they will have several months to work
together. It is a good idea to have a variety of talents on each team. Many team
members are double majors and have experience using mathematics to solve
problems. Interest is such that we are also entering teams in the ICM.

Preparation for the contest consists of

• frequent team meetings;

• reading winning papers;

• discussions of judges’ comments;

• discussions with previous teams (particularly winning teams), who talk
about their experiences and give advice;

• preparation of facilities (office space, computing accounts and equipment,
library access, printers), and

• arranging the working environment well in advance.
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Students need to become familiar with

• LATEX, in order to minimize time dealing with document preparation—this
means making sure that appropriate software is available and correctly in-
stalled; and

• library and on-line resources that will have to be used to find information.

Research experience and experience working on a team are very impor-
tant. The difference between classwork and tests is enormous. Students need
to have the experience of formulating problems and dealing with inevitable
failed attempts to find solutions. A good way to gain this experience is to par-
ticipate in summer Research Experiences for Undergraduates (REUs), work on
independent projects, and work with a group to attack problems in specific
areas.

Students need to learn to work together to contribute ideas and constructive
criticism. We try to form teams that have compatible personalities; in many
cases, the teams consist of students who have already been working together
informally on homework and test preparation. Each team will have its unique
way of assigning responsibilities. One person may have computational skills,
one person may have mathematical modeling experience, another may have
good expository skills.

An intangible yet definite feature of the contest is the excitement that it
generates. It has become a high point of the year for the students. It is their
Super Bowl and they await it nervously, yet with confidence. The energy of the
teams seems boundless. Only someone with the physical strength of youth can
exert such an intense, concentrated, effort. Our faculty marvel at the quality of
the output produced in such a short time under stressful circumstances. The
results have been so rewarding that the University and the wider community
eagerly anticipate the event and constantly ask for information.

The best way to end this essay is to quote some of the students.

• An MCM contestant: “I am glad (after 15 hours of sleep, that is) that I did
this contest. I got to work with such brilliant minds on a problem that I
would have never done otherwise. We learned so much in the process and
got pushed so hard. Now every time there is a stressful situation, I’ll always
think back about the MCM and realize that there could be worse situations.
It was an unparalleled experience all together.”

• An ICM contestant: “At the start of the contest, we said that our first and
foremost goal was to be better friends at the end than the beginning, and
I’m very proud that we succeeded. We were able to come to consensus on
almost everything, and work out our difficulties when we couldn’t.”

Perhaps COMAP didn’t realize when the contest was first suggested how much
it would do to make math exciting!
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Go with What You Know
W. Garrett Mitchener
Department of Mathematics
Duke University
P.O Box 90320
Durham NC 27708
wgm@math.duke.edu

A problem doesn’t have to be fancy to be difficult.
—Michael Reed

The Mathematical Contest in Modeling is very different from most math
contests. Having participated as a student and advised teams as a faculty
member, I offer the following suggestions about what skills should be present
in an MCM team. My main point is:

Good teams have a mixture of mathematical, computational, and writing skills.

I suggest that one member become the team’s specialist in each of these
areas, though all members usually contribute skills to all three. Unlike other
contests, in the MCM problem-solving tricks are not as useful. Instead, teams
must

• make creative use of what talents they have,

• know how to best use them in the limited time of the contest, and

• know how make good judgments about what tools to use and learn in the
limited time of the contest.

What Mathematics to Use
I find that the most useful mathematical areas are probability and dynamical

systems, because almost every modeling problem involves uncertainty, vari-
ability, and changing quantities. Specific problems may require knowledge
from other areas. For example, graph theory might be useful for problems con-
cerning networks, PDEs are often appropriate for materials-science problems,
and an image-analysis problem may require signal processing. Obviously, no
one team member should plan to be an expert in all things mathematical, nor
should anyone plan to become an expert in PDEs in one weekend.

Some research will no doubt be necessary, and if you decide to read books
or articles to learn a specialized topic, do the necessary reading but know how
to stop before reading becomes a time sink. With that in mind, perhaps the
most useful mathematical skill is the ability to improvise: You should be as creative
as possible with what you do know. Improvising can improve your paper by
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giving the problem a fresh perspective that will not be found through research.
Additionally, the problems generally don’t come with enough information for
you to solve them completely. In real life, you would ask the problem poser
for the information, but it may not be available, and it will certainly not be
available during the contest, so very often you must improvise. For example,
you might make additional assumptions that allow you to simulate the missing
information. From there, you can show what you would do with the actual
information if it were available.

Use what you know, but improvise as needed.

Computation
Computation and simulation are indispensable tools for applied mathemat-

ics. Someone on the team should be skilled in software development, and know
how to

• write good programs rapidly;

• estimate the total time required to write, debug, run, and analyze a proposed
computation; and

• propose alternatives to computations that will take too much time.

I prefer programming languages such as Python that are high-level and
easy to use. A Python program that takes two hours to develop and runs in
fifteen minutes is often better than an equivalent C++ program that runs in
seconds but takes two days to write and debug. I remember several situations
where I wrote a program in C++ and spend tremendous amounts of time fixing
memory bugs and compiler issues. In the end, despite the speed of C++ the
program turned out to be so time-consuming that it never finished running.
With 20/20 hindsight I can say: There simply isn’t enough time in a weekend
for that. You don’t want to end up with a paper that just says you designed a
simulation but couldn’t run it, with no results or analysis.

Mathematica, Maple, and Matlab can be indispensible time-savers, since
they include high-level programming languages with built-in solving and graph-
ics commands. However, if you plan to use one of these, start learning it well
ahead of time; you don’t want to waste a lot of time during the contest trying to
learn a complex software package. As with mathematics, I recommend above
all that you make the most of what you already know. If you discover during
the contest that there are better tools and methods available, see if you have
time to learn them, but consider leaving them for next year.

Program in what you know, but in advance learn a useful language well.
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Writing
Writing skills at all levels of detail are crucial. It’s surprisingly easy to spend

all weekend on a problem and write an incomprehensible paper—without re-
alizing it. You understand the problem and your team’s solution thoroughly
(well, you hope so); but to write a good paper, you must step back and adopt
the perspective of someone who knows nothing about what you did.

The paper needs to have consistent notation, a list of references, and ap-
propriate graphics. It should be organized, coherent, and readable. Identify
vague points in the paper. For example, if you find yourself writing that a
certain result “looks better,” figure out specifically what makes it look better
and use that as an opportunity to improve the analysis of your result and make
a stronger, more correct, and more precise statement in your paper.

The judges are looking for specific features, such as

• clearly-stated assumptions,

• a thorough understanding of the problem (including natural questions that
weren’t specifically asked in the problem statement), and

• a clear description and analysis of your model.

Someone on the team needs to be in charge of making sure that all of these
features are present and easy for the judges to find. Given that the task of
writing will often be split among all three team members, someone should
be in charge of assembling fragments written by each member and checking
them for consistency and redundancy. Most models come in phases of increas-
ing complexity, and it’s crucial that the paper clearly state which assumptions
and conclusions are true of which phases. With three contributors, confusion
among phases and inconsistent notation can easily creep in. Someone must be
responsible for finding and eliminating all these potential sources of errors so
that the explanation of the model and its behavior are clear.

On a more mechanical level, someone needs to be proficient with the type-
setting or writing software you use, such as LATEX or Word, so when you need
to add page numbers, merge revisions, or import graphics in a particular way,
you don’t waste time looking through manuals or online help. Again, go with
what you know; and if you don’t know how to do a particular task, spend a
reasonable amount of time trying to figure it out, but know when to improvise
and go with Plan B.

Write what you know, as if your reader doesn’t know about it.

Conclusion
In conclusion, the MCM challenges teams to balance creativity against exist-

ing knowledge, and quantity against quality. Team members should be aware
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of their own strengths and weaknesses, and make certain that mathematical,
computational, and expository skills are all covered. They should be prepared
to explore new tools during the contest, but with the realization that it’s often
best to go with what you already know.

About the Author
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At Wake Forest, we have had good success in the Mathematical Contest in
Modeling. In the years 2000–2003, five of our teams received the “Outstanding”
designation, including two teams in 2002. Also, those teams received each of
the major prizes in that period: SIAM (twice), MAA, and INFORMS.

There are several reasons that we believe we have had success.

• Make it fun. We make the competition as much fun and as rewarding as
possible for the participants. We announce the contestants on the teams. The
competition is a good project for students. We write letters of recommen-
dation that include their participation in this activity. We also award one
semester hour of Pass/Fail credit for participation. We have many students
who participate in the competition a second or third time.

• Maintain focus. We help the students focus on the competition. It is very
important that the participants do not get frustrated during the contest. To
make their participation easier, we give the teams a budget for food. We find
rooms for them to use for the whole competition. Faculty have been known
to give up their offices to a team for the entire length of the competition if
no other suitable space can be found.

• Recruit. We recruit aggressively. It is hard to get students’ attention. Just
because an activity is fun and worthwhile does not mean that students will
automatically participate. It is not difficult, however, to find students to
participate. One year, we only had one team ready but wanted two teams
to participate. One advisor twisted the arms of his best three students in a
single course. It took a bit of cajoling, but that team of two women and one
man took an Outstanding designation and the INFORMS prize.

• Scout out talent. We look for more than just mathematics majors. While
mathematics majors usually have the best feeling for the mathematics, indi-
viduals in other majors may have wonderful ideas about modeling that com-
plement the skills of the mathematics majors. The departments of physics,
computer science, and English are good sources for participants.
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• Share the work. We share the responsibility as advisors. We have many
faculty who are willing to sponsor a team, so we do not all get to advise a team
every year. Although a team may have one official coach, several different
faculty members will meet with the teams to share ideas and experiences.
Other departments, besides mathematics, are also willing to sponsor teams.

• Stress writing. We emphasize the importance of good exposition. Wake
Forest requires as part of its graduation requirements that its students take
many more courses in the humanities than most universities. Our students,
even in the sciences, are very good writers. In preparation, we emphasize
that excellent writing is absolutely required. Long or hard-to-understand
proofs either need to be referenced or put into an appendix.

• Have a common computer culture. Our students have a common computer
platform. All undergraduates at Wake Forest receive a laptop computer. For
the contest, having a single platform helps communication and the transfer
of information and makes the writing process much easier.

• Prepare. We review old contest problems and solutions, to help the students
understand what types of solutions are required. Veteran participants are
good sources of information for newer participants on how to pace a team
during the competition.

• Practice. We ensure that the students have practiced writing up their solution
in whatever format they are going to use. If the students are going to use
TEX or MS Word, we make sure that they are familiar with that system before
the competition starts.

• Celebrate! Students at Wake Forest have developed a tradition of “rolling the
quad” after significant wins in athletic competitions (see Figures 1–3), a tra-
dition known elsewhere as “TP-ing” (from the initials of “toilet-papering”).

Figure 1. Space.
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As advisors, we decided that our modeling teams deserved no less. After
taking an Outstanding, we get the Mathematics Club to use approximately
200 rolls of toilet paper to decorate the quad in honor of our teams.

Figure 2. Operator.

We invite the President of the University and the Dean of the College to
participate, and the university photographer and the local TV news stations
to observe. There is a certain excitement on the quad when students and
the faculty from the Mathematics Dept. celebrate by throwing rolls of toilet
paper over the trees. Faculty from other departments have mentioned how
much they appreciate that we celebrate academic accomplishments as much
as athletic wins.

Figure 3. Transformed space.
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The combination of technical, communication and creative skills that this
competition requires is a good fit for our institution. We owe special thanks
to the organizers and judges of this competition. Finally, we would like to
believe that the key to our success in this competition is the excellent collection
of advisors; but the fact of the matter is that it is the creative, hardworking, and
talented students who make this competition such a wonderful experience at
Wake Forest.
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The following advice is synthesized and distilled from commentaries by
judges of the MCM and ICM over the years.

The Model Should Be Based on Research . . .

Teams are increasingly adept at using the Internet to find credible informa-
tion sources to support their modeling efforts, but there is a good deal of room
for improvement in how to incorporate such information into their papers,
especially for a team that perceives that it has struck the mother lode of refer-
ence sources. Incorporating others’ work without diluting one’s own effort is



28 The MCM at 21

challenging. Parroting large portions of technical reports, thereby reducing the
team’s contribution to simply interpreting someone else’s research, is not the
solution.

Three uses of existing research are common in technical reports:

• To chronicle the events leading to the approach taken in the current paper
and to help the reader understand the context or domain of the problem. This
action is typically accomplished in an Introduction or Background section.

• To identify and justify technical parameters needed for the new approach.

• To compare the graphical, symbolic, or numerical results generated by the
new modeling approach with those previously identified, so as to examine
the benefits or drawbacks of the new approach.

Credible existing research used in these ways does not replace or dilute the
current effort but directly supports and strengthens it.

The judges look for evidence whether a team actually did some modeling of
its own rather than simply looking up a few equations and trying to shoehorn
those into the problem. Experiments can be good to see, too, if appropriate.

Given the time pressure of the contest, a team has to be cautious not to
get trapped into adopting a complicated modeling component from existing
research without being able to explain clearly its development, its use and
limitations, and its impact on the current model. This temptation is the classic
red herring of the contest, luring teams into committing to an approach—only
to discover late in the process that they are ill-equipped to handle it. Ultimately,
evidence of this error appears in the paper as miraculously appearing formulae,
unexplained graphics, and tables of data still waiting to be analyzed. Just as in
a court of law, the judges consistently find the results of models built on such
tenuous foundations difficult to believe.

. . . Must Produce Results . . .

Develop your model—do not just provide a laundry list of possible models.
Start with a simple model and then refine it. Also, it is far better to work out
one model thoroughly than to present several half-baked approaches. Judges
are definitely not interested in a blow-by-blow historical narrative of what you
tried that didn’t work.

Some papers have noticeable gaps that call into question the validity, ve-
racity, credibility, and applicability of the results presented. Consequently, if
a team’s principal effort is, say, to construct computer code to simulate an air
traffic scenario, they must present evidence that their code/model actually ran and
yielded the information sought. Analyzing the output of a model provides a basis
for determining if the modeling approach chosen was reasonable.
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. . . Which Must Be Analyzed . . .

Simply creating an acceptable mathematical representation (system of equa-
tions, simulation, differential equations, etc.) of a real-world event is not
enough. The representation (model) must be tested to verify that the infor-
mation that it produces (solutions, simulation output, graphics, etc.) makes
sense in the context of the questions asked and the assumptions made. It is
insufficient to present such a representation without this additional evidence. Once a
mathematical model is created, use

• symbolic,

• graphical, and/or

• numerical

methods to exhibit evidence that the model works. Many of the best papers
use a combination of these three approaches; some teams write computer code
or use spreadsheets, while others use a computer algebra system as their work-
bench.

. . . and Compared with the Assumptions
Papers reaching the final round of judging paid attention to

• stating their assumptions clearly,

• avoiding making assumptions that are never used or not really needed,

• explaining the impact of each assumption, and

• telling why they felt it was necessary to include it in their model develop-
ment.

They were also careful not to assume away the challenging and information-
relevant portions of the problem posed. It is easy to follow the logical con-
struction of these teams’ models and to identify what they were attempting to
do. However, sometimes even a very good paper mistakenly places key infor-
mation in appendices rather than in the section where supporting evidence is
desperately needed.

Crucial Elements in an Outstanding Entry
A thorough, informative summary is essential. Your summary is a key com-

ponent of the paper; it needs to be clear and contain results. It should not
say, “Read inside for results.” The summary should motivate a judge to read
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the paper to see how you obtained your results. Even a paper that is oth-
erwise strong can be eliminated in early judging rounds because of a weak
summary. Many teams mistakenly form the summary by simply copying
parts of the introduction of the paper, which has the different purpose of
establishing the background for the problem. On the other hand, the sum-
mary should not be overly technical. A long list of techniques can obscure
your results; it is better to provide only a quick overview of your approach.
Don’t merely restate the problem, but indicate how it is being modeled and
what was learned from the model. Put into the summary the “bottom-line
and managerial recommendation” results—not a chronological description of
what you did.

Develop a model that people can understand. The model should be easy to
follow. While an occasional “snow job” may make it to later rounds of
judging, we generally abhor a morass of variables and equations that can’t
be fathomed. Well-chosen examples enhance the readability of a paper. It is
best to work the reader through any algorithm that is presented; too often
papers include only computer code or pseudocode for an algorithm without
sufficient explanation of why and how it works or what it is supposed to
accomplish.

Supporting information is important.

• Figures, tables, and illustrations can help demonstrate ideas, results, and
conclusions and thus help sell your model, but you must refer to these aids
in the text of the paper and explain them. Each such display should have a
caption that tells what is in the display, and the display should indicate
the measurement units of quantities. Graphs should have scales and
axis labels.

• A complete list of references is essential—document where your ideas
come from.

Follow the instructions.

• Answer all the required parts and make it clear that you have done so.
Attempt to address all major issues in the problem. What the judges pay
attention to is whether or not the team engaged the questions asked in
the problem. Some teams tell what they know but don’t consider the
real question—papers missing several elements are eliminated quickly.

• List all assumptions. The problems are deliberately open-ended, and
well-posing them is actually part of the problem. Formulating your
assumptions is where you pose the problem—making it simple enough
to yield to mathematics yet realistic enough to give a credible result.

• State your conclusions and results clearly and make a precise recom-
mendation.
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• Don’t just copy the original problem statement, but provide us with your
interpretation.

Readability Sometimes the quality of writing is so poor that a judge can’t
follow or make any sense out of the report.

• Make it clear where in the paper the answers are.

• Many judges find a table of contents helpful.

• Your paper needs to be well organized—can a triage judge understand
the significance of your paper in 6 to 10 minutes?

• Keep in mind that your audience consists of modeling experts from
academia and industry who have only a short time to get the gist of
what you did.

More is not necessarily better. If your paper is excessively long (we have
had papers over 100 pp long, not including computer program listing), you
should probably reconsider the relevance of all factors that you are dis-
cussing. Depending on the round of judging, judges have between 5 and
30 min to read a paper. Do not include a single figure, table, or graph that is
extraneous to your model or analysis; such additions just distract the judge
from discerning what in your paper is important.

Computer Programs

• Clearly define and explain all variables and parameters.

• For a simulation, a single run isn’t enough! You must run enough times
to have statistically significant output.

• Always include pseudocode and/or a clear verbal description.

Reality Check

• Why do you think your model is good? Against what baseline can you
compare/validate it?

• How sensitive is your model to slight changes in the parameters you
have chosen? Teams should undertake sensitivity analysis precisely to
build credibility in the model,

• Complete the analysis circle: Are your recommendations practical in the
problem context?

• Verify as much as you can. Make sanity checks: Is your answer larger
than the number of atoms in the known universe? If it is, should it be?

• Use real data if possible.

Triage Judge Pet Peeves

• Tables with columns headed by Greek letters or acronyms that cannot
be immediately understood.
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• Definitions and notation buried in the middle of paragraphs of text. A
bulleted format is easier for the judge.

• Equations without variables defined.

• Elaborate derivations of formulas taken directly from some source. It is
better to cite the source and perhaps briefly explain how the formula is
derived. It is most important to demonstrate that you know how to use
the formulas properly.

Non-technical report of results If a CEO memorandum, press release, or
newspaper article is required:

• Be succinct.

• Include “bottom line and managerial results” answers.

• Do not include methods used or equations.

Resources

• All work needs to be original, or else the sources must be cited (including
specific page numbers in documented references). A mere list of books
or URLs at the end is not sufficient!

• Teams are allowed to use only inanimate resources—no real people or
people consulted over the Internet.

• Surf the Web but cite sites for information that you use.

• Use high-quality references. Peer-reviewed journals, books, and gov-
ernment Websites are preferable to individuals’ Websites or blogs.

How to Proceed
• Read the problem statement carefully. Words implying actions (design,

analyze, compare, etc.) are keys to sections that your paper should contain.
Organize the paper into sections corresponding to the parts of the problem;
if certain broad topics are required, begin with an outline based on them.

• Make your paper easy to read. Number the pages, tables, figures, and
equations; check the spelling; and use a large-enough font size.

• Define terms that a reader might find ambiguous, particularly any term
used in the model that also has a common prose meaning.

• Address sensitivity to assumptions as well as the strengths and weaknesses
of the model. These topics should be covered separately in sections of their
own. Go back to your list of assumptions and make sure that each one is
addressed. This is your own built-in checklist aiding completeness; use it.
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• Your summary should state the results that you obtained, not just what
you did. Keeping the reader in suspense (“we will develop another model
later . . . ”) is a good technique in a novel, but it simply frustrates the judges.

• Do more than is asked.

• Write informally, write well. In many student-written papers, as a colleague
puts it, “nobody ever does anything—things just happened.” Too common
is a chronological narrative in the stilted no-person passive past tense (“Then
it was discovered that the data could be fitted by a fifth-degree polynomial
. . . ”). Much better is a story of first-person present-tense activity (“We fit a
fifth-degree polynomial to the data . . . ”).
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1995: The Helix Intersections
Problem

The problem consists of assisting a small biotechnological company in de-
signing, proving, programming, and testing a mathematical algorithm to locate
”in real time” all the intersections of a helix and a plane in general positions in
space (see Figure 1).

Figure 1. Some intersections of a helix with a plane.

Similar programs for Computer Aided Geometric Design (CAGD) enable
engineers to view a plane section of the object that they design, for example,
an aircraft jet engine, an automobile suspension, or a medical device. More-
over, engineers may also display on the plane section such quantities as air
flow, stress, or temperature, coded by colors or level curves. Furthermore,
engineers may rapidly sweep such plane sections through the entire object to
gain a three-dimensional visualization of the object and its reactions to motion,
forces, or heat. To achieve such results, the computer programs must locate
all the intersections of the viewed plane and every part of the designed object
with sufficient speed and accuracy. General “equation solvers” may in prin-
ciple compute such intersections; but for specific problems, special methods
may prove faster and more accurate than general methods. In particular, gen-
eral software for Computer Aided Geometric Design may prove too slow to
complete computations in real time, or too large to fit in the finished medical
devices being developed by the company. The considerations just explained
have led the company to the following problem.

Problem: Design, justify, program, and test a method to compute all the
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intersections of a plane and a helix in general positions (at any locations
and with any orientations) in space.

A segment of the helix may represent, for example, a helicoidal suspension
spring or a piece of tubing in a chemical or medical apparatus.

The need for some theoretical justification of the proposed algorithm arises
from the necessity of verifying the solution from several points of view. This can
be done through mathematical proofs of parts of the algorithm, and through
tests of the final program with known examples. Such documentation and tests
will be required by government agencies for medical use.

Comments
The Outstanding papers were by teams from Harvey Mudd College, Iowa

State University, and Macalester College. Their papers, together with commen-
taries, were published in The UMAP Journal 16 (3) (1995): 209–258.

Problem Origin
The problem was contributed by Yves Nievergelt (Eastern Washington Uni-

versity), from consulting for a small medical technology company in the West-
ern U.S. [1996]. The problem arose in the design of a helicoidal part of a device
that doctors and technicians together manufacture to fit the particular measure-
ments of each patient. With x-ray data from the patient loaded into a computer
and with a program to compute the requested intersections, doctors and tech-
nicians can quickly vary the parameters of the helix, view the helicoidal part
superimposed on a model of the patient, and examine critical locations by
sweeping a plane section through them.

The mathematically accurate yet medically vague description given in the
problem statement typifies a common situation: The small start-up company
did not want anyone to know its identity or the object of its research. Such
secrecy explains, in part, the dearth of real applications of mathematics in
textbooks.

Practitioner’s Comments
Pierre J. Malraison (then at Autodesk, Inc.) noted that the Macalester Col-

lege team used the usual approach to surface-curve intersections: Implicitize
the surface (the plane) and parametrize the curve (the helix). The intersec-
tions can be found by solving numerically the equation generated when the
parametrized form satisfies the implicit equation. The main differences in the
Outstanding teams’ solutions are in root-finding strategies.

An alternative to numerical solution is to use a rational quadratic parametriza-
tion (instead of trigonometric) for the helix and end up with a polynomial
function to solve.
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The team from Harvey Mudd College used a different approach: Intersect
the plane with the cylinder on which the the helix lies, get an ellipse, and then
intersect the helix with the ellipse.

Judge’s Comments
Contest judge Daniel Zwillinger (Zwillinger & Associates) noted that a

plane and a helix can have no intersections, any finite number, or an infinite
number (for an infinite helix or a degenerate helix with zero pitch). A program
to find all intersection points must respond appropriately in each case.

It is straightforward to write down the parametric equations for the helix,
depending on one variable, and the equation of the plane. Substituting the
parametric equations into the equation for the plane gives an equation in a
single variable. Finding its roots is far simpler than finding the roots of a
multiple-variable equation (as some teams proposed).

Bisection is guaranteed to find a zero if endpoints are given—but it is slow.
The much-faster Newton’s method is the method of choice for nonlinear prob-
lems. However, the judges preferred a bisection technique, with provable
bounds on the results, to a Newton iteration with no mention of possible conver-
gence problems (for example, near multiple roots). The team from Macalester
College used both a Newton iteration and a bisection method (when the New-
ton method failed).

The papers addressed computational speed in various ways: computer
time per intersection point, computer time saved compared to a more general
mathematical solver (such as Mathematica), or computational complexity of
the algorithm.

Several teams restricted the problem to a finite helix, including those from
Harvey Mudd College and Iowa State University. Using a finite-area sweeping
plane was considered by the team from Harvey Mudd College. Additionally,
one team considered more general helices, such as a spiral drawn on a cone.

References
Nievergelt, Yves. 1996. Intersections of planes and helices, or lines and sinu-

soids. SIAM Review 38 (1)(March 1996): 136–145.
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Introduction
We are asked to design, implement, and test a mathematical algorithm that

locates in real time all of the intersections of a helix and a plane located in
general positions in space. In addition, we must prove that our algorithm is
mathematically and computationally correct.

Assumptions
• “Real time.” We assume that “real time” means that the time to solve a

reasonably “difficult” problem must be very small. For example, an algo-
rithm that is used for the back end of a Computer Aided Geometric Design
program must not impose unacceptable delays on the user. When the user
repositions the helix or plane, the user expects an immediate refresh of the
screen—usually in only a fraction of a second. For other applications, our
algorithm should take little time compared to the calling program. To meet
these requirements, the algorithm must have a time complexity linear in the
number of intersections; our algorithm is indeed linear.

• Helix/Plane. We assume the strict mathematical definition of a single helix:
that it is infinite and nonelliptical, and that it “wraps around” a cylinder.
We believe that our algorithm will work for other “helices,” such as those
having elliptical bases; but we have not tested these cases to any extent. We
also assume that the plane extends infinitely.

• Correctness. We assume that twelve digits of precision is acceptable for
all calculations. This is sufficient for most biotechnological applications.
Twelve digits means that we have error less than the radius of some atoms
[Chang 1994]. For some applications, engineers often expect fewer digits of
accuracy; so our program allows the user to change the desired precision.
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Summary of Approach
Our approach to the problem involves

• definition of design requirements,

• development of a mathematical model for the problem,

• design and implementation of an algorithm,

• debugging and testing, and

• evaluation.

Definition of Design Requirements
The algorithm will be used as a support routine for mission critical pro-

cesses, where its failure to produce correct results, or failure to produce results
on time, could have dire consequences. This fact leads us to the following
design requirements, in decreasing order of importance:

• Correctness. The algorithm must produce correct results.

• Robustness. The algorithm must handle exceptions well and not terminate
abnormally.

• Performance. The algorithm must execute in real time.

• Efficiency. The algorithm must spare system resources, as long as the above
three requirements are not adversely affected.

• Flexibility. The algorithm must allow users to formulate the problem in
different ways, e.g., it must allow more than one way of defining a plane
or a helix. Also, users must be able to fine-tune the algorithm to improve
performance.

• Portability. The algorithm must be machine-independent, written in a com-
mon programming language, and easy to transfer to a different program-
ming language of choice (e.g., to include it in an embedded system).

Because algorithms execute on physical entities (computers) that have some
finite working precision, it is possible that a computationally correct algorithm
may produce incorrect results due to roundoff and compound errors. In our
case, two types of errors are possible: skipping an existing root and reporting
a root that does not exist. It is difficult to claim that one type of error should
be preferred to another; we choose, if possible, to minimize the second kind of
error given the possibility of some error of the first type.
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Development of a Mathematical Model

Initial Development
The General Case

Having examined the problem in general Cartesian coordinates, we found
that a graphical or vector analysis–related approach would fail us, in the sense
that it would be incredibly hard to program. Hence, we attempted to reduce
the problem to an algebraic problem, since algebraic techniques are generally
much more suited to programming. In effect, we “projected” the helix onto the
plane in the following manner.

Consider the general parametric equations of a helix in space (for derivation,
see the Appendix):

x = a11 cos αt + a12 sinαt + a13t + a14

y = a21 cos αt + a22 sinαt + a23t + a24

z = a31 cos αt + a32 sinαt + a33t + a34.

The equation of a plane in space may be written as

ax + by + cz − d = 0.

Our transformation replaces x, y, and z on the left-hand side in this equa-
tion with the corresponding parametric forms of the helix, thus returning an
expression in t, which we call f(t):

f(t) = A cos t + B sin t + Ct − D,

where A, B, and C are appropriately transformed coefficients. The α in the cos
and sin terms has been incorporated into C via a change of parameter from t
to t/α.

The task now is to solve the equation f(t) = 0. After perusing relevant lit-
erature, we concluded that this equation must be solved numerically [Plybon
1992]. Hence, we developed a numerical technique that, given the parame-
ters A, B, C, and D, attempts to locate all the roots of the equation. Many
well-documented algorithms guarantee convergence to roots—given certain
bounds on the problem—and give an easily computable bound on the error in
the result. The numerical technique that we employ is heavily influenced by
information that we have about the equation f(t) = 0. For instance, we know
that the extrema of the function (if any) occur periodically, and we use this
fact at several stages of our method, hence ensuring an efficient algorithm. We
essentially built a robust, strong equation solver (one that uses problem-specific
information to maximize the efficiency of the algorithm).

The first step in our approach is to examine the general form of the function,
as in Figure 1. We note that all roots must be located between two extrema that
are on opposite sides of the t-axis (assuming a continuous function). The only



1995: The Helix Intersections Problem 41

-25 -20 -15 -10 -5 5
t

-4

-2

2

4

6

y=f(t)

Figure 1. General functional form.

other case, which we handle separately, is when a root and an extremum or
inflection point occur simultaneously.

We begin by locating the minima and maxima of the function f(t), which
are periodic with period 2π. These are found by solving the equation

f ′(t) = −A sin t + B cos t + C = 0.

From
cos t =

A sin t − C

B
,

by using cos2 t + sin2 t = 1 we find

sin t =
ac ± b

√
a2 + b2 − c2

a2 + b2
.

However, this method returns some extraneous roots because of the squar-
ing (just as does squaring t = 1 and solving t2 = 1). These are discarded
via a simple test, namely, substituting the values back into f ′(t) and checking
whether or not the derivative is indeed zero.

We then interpolate the root by connecting the two extrema via a line seg-
ment (as in Figure 2) and pass the interpolated value to our root-finding algo-
rithm.

We must now judiciously choose a value of t that guarantees roots in its
immediate neighborhood. We choose the value t0 = D/C, as we are ensured
that—if roots exist—there is one within 2π of this value of t (see the Appendix
for a detailed argument).



42 The MCM at 21

-10 -7.5 -5 -2.5 2.5 5 7.5
t

-4

-2

2

4

y=f(t)

Figure 2. The interpolation method.

Certain Special Cases
If the coefficient C is 0, then the function f(t) is periodic and oscillates to

within
√

A2 + B2 (the maximum possible value of A cos t + B sin t) about the
line g(t) = D. Thus, if |D| >

√
A2 + B2, then the function never intersects the

t-axis and we have no roots; the plane is parallel to the helix and outside the
“reach” of its radius. In such a case, our program returns the message “No
Roots.” If, on the other hand, |D| ≤ √

A2 + B2, then we have infinitely many
roots; this case is handled appropriately.

Another important case is that of only one root (see Figure 3). This occurs
when a2 + b2 − c2 ≤ 0. Then the equation has either one real solution or none.
If a solution is found, it is at an inflection point. This condition is recognized
by our algorithm and appropriately dealt with by calling the bisection method
instead of the usual Newton-Raphson (which exhibits very slow convergence
when dealing with simultaneous occurrence of roots and extrema/inflection
points). The bisection method guarantees convergence as long as we bracket
the root properly. We are confident that we do so, as we give bisection an
interval of radius 2π about the point t0 = D/C. The bisection method achieves
our prescribed goal of 12-digit accuracy in no more than 44 iterations.

Algorithm Description
To facilitate understanding, we provide four levels of abstraction in the

description of our algorithm. At the top level, we use a linearized flowchart
that shows the main subproblems that need to be solved. [EDITOR’S NOTE:
Because of space considerations, we do not reproduce the flowchart.] Parallel
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Figure 3. The single-root case.

to the flowchart, at the second level of abstraction, we offer comments that
provide more detail of the workings of the algorithm. They refer to the third
level of abstraction, mathematical proofs and detailed explanations. Finally, at
the lowest level of abstraction is the C++ code of our program, which includes
many comments with Mathematica code and references to relevant literature.

Before we go into the details of the algorithm implementation, we mention
some general conventions.

• Input

– Planes can be defined by the user in three ways: by general Cartesian
equation of the form ax + by + cz = d, by two vectors and a point, or by
three points.

– Helices can be defined by the user in two ways: by general parametric
equations, or by the three Eulerian angles and the translation vector that
map the z-axis to the central axis of the helix.

• Output

– If the helix does not intersect the plane, no roots are returned.

– If there are infinitely many solutions (a case in which the plane is parallel
to the helix axis), sufficient information is provided so that the user can
generate all of the intersection points.

– Otherwise, a structure containing the x, y, and z coordinates of the points
of intersection is produced.
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• Accuracy of Estimation.
The default working precision of calculation in our C++ program is
twelve digits, but it can be changed by modifying a single variable in
the code. The maximum working precision is limited by the floating
point precision of the computer.

• Portability.

– Our algorithm is implemented in ANSI C++, ensuring portability across
most computing platforms. The code does not use machine-dependent
features, and it could be translated to any procedural language.

Testing and Quality Control
We devoted more than half of our algorithm design and implementation

efforts to testing. We checked the correctness of ideas and implementations at
four different levels:

• Math Model. All transformations and function forms that we used were gen-
erated symbolically using Mathematica’s standard features and the Vector
AnalysisandRotationspackages. All symbolic solutions to equations were
checked using Mathematica. Whenever possible, we simplified expressions,
sometimes by applying trigonometric substitution rules manually.

• Algorithm Design. Our root-finding procedure was carefully chosen always
to find a bracketed root (if necessary, by invoking bisection).

• Implementation. We applied the function CForm to convert Mathematica ex-
pressions to C code when transferring expressions to our implementation.
That minimized the chances of erroneous expression entry. The root-finding
procedure that we use was taken from Plybon [1992]. The procedure was
independently tested against the built-in Mathematica routine FindRoot,
which implements a combination of Newton-Raphson and the secant meth-
ods [Wolfram 1991]. Our procedure never failed to find a root and never
reported a root where there was none. In several cases where FindRoot
failed, our procedure correctly managed to find a root.

• Runtime. We performed three different types of checks on the output of our
program:

– We generated more than 50 functions of the form f(t) = A cos t+B sin t+
Ct − D and checked whether our program correctly found their roots.
We implemented a set of Mathematica routines that finds the roots of the
equation f(t) = 0 by the same algorithm as our program but with higher
accuracy. In all test cases, the output of our program agreed with Math-
ematica’s output, suggesting that roundoff error is not a major problem
in our implementation. In most cases, we visually inspected the graph
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of f(t) to ensure than no roots were missed and that no false roots were
introduced. The tests included a mix of test cases including none, one,
many, and infinitely many roots. We considered potentially problem-
atic cases, such as roots at tangency points and roots at inflection points.
We explored and tested all control paths of the algorithm. Debugging
output was generated and investigated carefully.

– We inputted more than fifty helices and planes in various input formats
and used our algorithm to find the coordinates of the intersection points
between them. Then for each test run we used Mathematica to do a 3-D
plot of the plane, the helix, and the intersection points (see Figure 4). We
inspected the 3-D plots from various viewpoints to ensure that no inter-
section points were missed and that no extraneous points were plotted.
Our program passed all tests.

– In the testing, often we were uncertain about the actual location of the
intersection points. So we designed an additional battery of tests to check
the results of our program against a known (sub)set of the intersection
points. We obtained the known intersection points by starting with an
arbitrary helix and defining an intersecting plane either by choosing
three points on the helix or by choosing a point on the helix and an
arbitrary vector. In the first case, we knew the coordinates of at least
three intersection points. In the second case, we could position the
plane so as to experiment with different patterns of intersection. We
then checked the results of our program against subset of known roots.
In all of the more than 50 test cases, our algorithm performed correctly.

In all test cases, our program performed successfully. This result—added to
the fact that our algorithm is closely based on a rigorously proven mathemat-
ical model—gives us a high degree of confidence that our program is indeed
computationally correct. Also, we have seen no evidence that roundoff or
compound errors are a significant source of error.

Evaluation

Correctness
Our tests have shown that mathematically and computationally our algo-

rithm is correct. Numerically, however, problems can arise. The possibility of
compounding error and loss of precision is inevitable in some cases (though
rare).

Compounding error is introduced in routines that map our original helix
onto a helix located about the z-axis (i.e., computing the coefficients A, B, C,
and D, for f(t)). We are uncertain of the error bounds on these calculations,
but comparisons with high-precision Mathematica runs show that the error is
small (less than 10−12).
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Figure 4. Our solutions plotted on the given helix and plane.

Fortunately, given correct values of A, B, C, and D, we can guarantee that
the roots found are accurate to the desired working precision. This is because we
use Newton-Raphson and the bisection method as our root-finding techniques.
With Newton’s method, it is possible to get some idea of absolute error of a
root x0 simply by looking at the value of f(x0) (it should be 0 if we have a root).
Also, error is not compounded with Newton’s method; each iteration actually
decreases the error. Newton-Raphson converges quadratically [Plybon 1992],
and near a root the number of significant digits approximately doubles with
each step.

Detrimental error can also enter the problem when calculating the brackets
for each root. If error in numerical computation places a bracket on the wrong
side of a root, that root may be lost. We have never encountered such a case but
expect that cooked-up data could produce such an error. A possible remedy
(not guaranteed to work in all cases) is first to approximate the bracket using
our exact formulas and then to run a root-finding method on them to reduce
the error. We did not implement this strategy, because we feel that the chance
of this error occurring does not warrant the loss in speed that will occur.

Further, in searching for solutions of f(t) = 0, if two roots are extremely
close, they can unfortunately be mistaken as one. However, if two extremely
close roots are found, it may not even make sense to consider them as distinct,
since they may be the product of numerical error.

Robustness
Our algorithm checks extensively for exception cases and will not termi-

nate abnormally due to a computation error or lack of system resources. We
implemented checks for special cases that in effect trap errors. One example:
We check for an infinite number of roots before we search for roots. We handle
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“special” cases such as tangencies, inflection points, double roots, etc.
Our algorithm ensures that all roots are bracketed. This prevents Newton’s

method from accidentally going off and finding another root. Our implemen-
tation of Newton’s method incorporates the bisection method in cases where
Newton’s does not converge fast enough or Newton’s method departs the
bracketed interval. The bisection method is guaranteed to find a root within a
bracketed interval [Plybon 1992].

In our algorithm, there is an inherent limit on the number of possible roots;
but this limit can be easily increased or even eliminated (allowing memory of
the computer to be the only limitation).

Performance/Efficiency
The performance of our algorithm is linear in the number of intersections.

This is because we do a single root-find for each intersection (including brack-
eting). The complexity of a root-finding method is dependent on the how the
function is shaped and the number of digits desired. Typically, when New-
ton’s method is used, 5 or 6 iterations are required to find each root to 12 digits
of precision, while the bisection method can be shown to take fewer than 44
iterations.

For mapping the helix, finding first-order roots, etc., the time required is rel-
atively constant. Therefore, the time complexity of the algorithm is dominated
by the number of intersections.

In addition, our code is efficient in use of space, since the space complexity
is also linear in the number of intersections.

Suggestions for Improvement
As the general organization of our algorithm is closely based on a mathemat-

ical model, we believe that it is not possible to improve it without a thorough
revision of the underlying methodology. However, the implementation of the
algorithm can be improved in several ways:

• One can attempt to modify the evaluation of expressions so as to reduce the
compound and roundoff errors. This often necessitates understanding and
use of architecture-specific features of the processor on which the algorithm
is executing, thus limiting portability.

• One can attempt to find bounds for the error introduced during the cal-
culation of the A, B, C, and D coefficients for f(t). An estimation of the
relationship between this error and the error generated by the root-finding
algorithm will also be helpful.

• A useful yet hard-to-implement feature would be the inclusion of internal
validation routines that improve correctness and robustness by monitor-
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ing for unacceptable computational errors while the algorithm is executing.
Such routines would adversely affect performance.

• The input procedures could potentially be extended to include alternative
definitions of a helix. However, our explorations of the relevant literature
yielded no definitional forms different from the ones that we use.

• The Mathematica routines used in the testing process could be extended to
infinite-precision calculation, running in batch mode to check at random the
correctness of solutions provided by the real-time algorithm.

• The algorithm could be extended to handle other types of helices: alpha
helices, double helices, etc. The underlying methodology of the algorithm
should remain unchanged.

Appendix

General Parametric Equations for a Helix
Consider a general 3 × 4 rotation-translation matrix: a11 a12 a13 a14

a21 a22 a23 a24

a31 a33 a34 a34


and the “unit” helix (in vector form)

(cos(αt − t0), sin(αt − t0), t).

Applying the matrix produces any general helix:

 a11 a12 a13 a14

a21 a22 a23 a24

a31 a33 a34 a34.




cos(αt − t0)
sin(αt − t0)

t
1

 ,

giving the general parametric equations of a helix in space:

x = a11 cos(αt − t0) + a12 sin(αt − t0) + a13t + a14

y = a21 cos(αt − t0) + a22 sin(αt − t0) + a23t + a24

z = a31 cos(αt − t0) + a32 sin(αt − t0) + a33t + a34.

Upon expanding the sin and cos terms, we obtain the same format as presented
in the text of the paper.
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Why t0 = D/C ?
The equation

f(t) = a cos t + B sin t + Ct − D

can be thought of as the intersection of a helix with parametric equations

x = cos t, y = sin t, z = t

with a plane with equation

Ax + By + Cz = D.

As far as the root-finder is concerned, we have a “vertical” helix with radius 1
and the plane as above. Thus, we say that the point at which the helix’s central
axis (also the z-axis for the root-finder) meets the plane Ax + By + Cz = D is
the point around which the roots are distributed almost symmetrically.

The justification for this claim is as follows. The intersection of a plane and
a cylinder in space is an ellipse; as the helix lies on a cylinder, its intersections
with a plane must lie on an ellipse. The center of the ellipse is the point of
intersection of the plane and the helix’s central axis. In Figure 5, we show the
cylinder that the helix sits on, the ellipse of intersection with the plane, and the
helix itself. The curve represents the ellipse of intersection and the lines are the
helix. The whole picture shows the cylinder “unfolded.”

Figure 5. Representation of the intersection of the helix and the plane.

It can be shown that if any roots exist, they must do so within one complete
rotation of the center of the ellipse. Hence, we use the center as the starting
point for our root-finder.
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1996: The Contest Judging
Problem

When determining the winner of a competition like the Mathematical Con-
test in Modeling, there is generally a large number of papers to judge. Let’s say
that there are P = 100 papers. A group of J judges is collected to accomplish
the judging. Funding for the contest constrains both the number of judges that
can be obtained and the amount of time that they can judge. For example, if
P = 100, then J = 8 is typical.

Ideally, each judge would read all papers and rank-order them, but there
are too many papers for this. Instead, there are a number of screening rounds
in which each judge reads some number of papers and gives them scores.
Then some selection scheme is used to reduce the number of papers under
consideration: If the papers are rank-ordered, then the bottom 30% that each
judge rank-orders could be rejected. Alternatively, if the judges do not rank-
order the papers, but instead give them numerical scores (say, from 1 to 100),
then all papers falling below some cutoff level could be rejected.

The new pool of papers is then passed back to the judges, and the process
is repeated. A concern is that the total number of papers that each judge reads
must be substantially less than P . The process is stopped when there are only
W papers left. These are the winners. Typically, for P = 100, we have W = 3.

Your task is to determine a selection scheme, using a combination of rank-
ordering, numerical scoring, and other methods, by which the final W papers
will include only papers from among the “best” 2W papers. (By “best” we
assume that there is an absolute rank-ordering to which all judges would agree.)
For example, the top three papers found by your method will consist entirely
of papers from among the “best” six papers. Among all such methods, the one
that requires each judge to read the least number of papers is desired.

Note the possibility of systematic bias in a numerical scoring scheme. For
example, for a specific collection of papers, one judge could average 70 points,
while another could average 80 points. How would you scale your scheme to
accommodate for changes in the contest parameters (P , J , and W )?

Comments
The Outstanding papers were by teams from Fudan University (Shanghai,

China), Gettysburg College, St. Bonaventure University, University of Science
and Technology of China (Hefei, China), and Washington University. Their
papers, together with commentaries, were published in The UMAP Journal 17
(3) (1996): 283–348.
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Problem Origin
The problem was contributed by Daniel Zwillinger (Zwillinger & Asso-

ciates).

Practitioner’s Comments
Veena Mendiratta (Lucent Technologies) noted that what made the problem

interesting and challenging were the less well-defined aspects of the problem:
How was bias of judges handled? How was it ensured that the best 2W papers
were not screened out early? For a “best” selection scheme, teams used methods
such as rank-ordering, numerical scoring, and bias estimation.

Almost all papers developed a basic model for the ideal case of no judge
bias: Every judge rank-orders or scores the papers in accord with an overall
absolute rank-ordering. This model sets a lower bound for the total number of
reads. The stronger papers went significantly beyond the ideal case to include:

• Explicit modeling of judges’ bias, addressing the issues of systematic bias
and the variance of accidental errors in scoring.

• Estimating statistical bounds on the probability of failure to pick the best W
papers out of the top 2W papers.

• Realizing the importance of more judges reading the papers remaining in
the later screening rounds and including this factor in their models.

• Clear statement of results in terms of total number of paper readings, confi-
dence level of the results, and sensitivity of results to the model parameters.

The Gettysburg College team minimized the probability of eliminating the
W best papers in the first round by having two judges read each paper in that
round. This team modeled judge error through a functional relationship be-
tween the probability of judge error in ranking (with respect to the absolute
ranking) and the distance between papers on the absolute scale. The team from
the University of Science and Technology of China used Bayesian estimation
to address systematic bias in scoring and modeled the error probability as a
function of the percentage of papers eliminated in each round. The Fudan
University team showed statistically the conditions under which the “ideal”
model can work. The Washington University team modeled the judge bias
and error and, after each round of judging, used new bias estimates to calcu-
late confidence intervals that determine the number of papers rejected. The
St. Bonaventure team implemented a distribution scheme to ensure that judges
do not receive the same paper more than once and that one judge does not
receive the top 2W papers.

Judge’s Comments
Contest judge Don Miller (St. Mary’s College, IN) cited other common ap-

plications for the techniques developed by the teams: awarding scholarships
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and screening applicants for a position.
Assuming absolute rank-ordering made the problem seem deceptively easy.

With 100 papers and 8 judges, there are methods to find the top 3 papers (in
order) with each judge reading at most 14 papers and with at most 109 papers
read. Some papers simply developed a heuristic solution; others recognized
that the assumption was unrealistic but chose to model the problem as stated,
since that is what was requested. Some who used this assumption clearly didn’t
believe it, since they rejected a simple merge-sort in favor of more complicated
algorithms that denied existence of the assumption. Still others attempted to
refine the problem using theories ranging from graph theory to fuzzy sets.
Some of the better bias-elimination refinements included matrix reduction, re-
gression with error terms, and scoring normalization with specified probability
distributions.

Common in problems are unrealistic assumptions that would make any
model based on them of minimal use. Thus, a modeler must evaluate critically
all assumptions and, if necessary, refine the problem to a realistic one. Judges
viewed absolute rank-ordering as such an assumption. In the absence of an
opportunity to ask for elaboration, the modeler should answer the question as
stated and then refine it with realistic assumptions.

The judges felt that the best models solved the basic problem for 100 papers,
8 judges, and 3 winners, then produced a refinement with adequate complexity
to model the process accurately but with enough simplicity for the model to
be useful. The ideal paper would solve the basic problem and demonstrate
that the solution was optimal (or close to optimal). It would then generalize
to accommodate different numbers of papers, judges, and winners. It would
address judge bias and measure the success rate of the algorithm as a function
of some quantitative measure of judge bias. It might then examine alternative
algorithms, finding a relation between levels of judge bias and the success
rate of the algorithms. It would assess the strengths and weaknesses of these
methods, while addressing all the points requested in the problem statement.

The Outstanding papers were distinguished by how they addressed judge
bias. The team from the University of Science and Technology of China used
Bayesian statistics, with a normal prior, to adjust for judge bias, then ran sim-
ulations to test for sensitivity. Normal distributions, a common assumption,
were also used by the Washington University team for both the intrinsic score
of the paper and judge bias. A distinguishing feature of the paper from Fudan
University was its stability analysis for different levels of judge bias.

Contest Director’s Comments
Contest Director Frank Giordano (COMAP) discusses current practice in

handling MCM submissions on pp. 11–14.
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Select the Winners Fast

Haitao Wang
Chunfeng Huang
Hongling Rao
Center for Astrophysics
University of Science and Technology of China
Hefei, China

Advisor: Qingjuan Yu

Summary
Assuming that judges are ideal, we provide a model to determine the top

W papers in almost the shortest time. We use a matrix record the orderings
that we get from judges, and we reject as many papers as possible after each
round.

We then consider real-life judges and estimate the probability that the final
W papers contain a paper not among the best 2W papers.

Furthermore, considering the possibility of systematic bias in a scoring
scheme, we improve the model by using a Bayesian estimation method, which
makes it possible to some extent to compare different judges’ scores.

We performed many computer simulations to test the feasibility of our
model. We find that our model would be improved by increasing the num-
ber of papers selected from the first round. We also made a stability analysis
by altering P , J , W and got an empirical formula to predicts the total time of
judging.

We used data from real life to test our model and got a perfect result: For
P = 50, J = 3, and W = 2, we get the first- and third-best papers with our
scheme; with W = 3, we got the top three papers.

We conclude by summarizing a practicable and flexible scheme and offering
some suggestions, and estimating the budget with an empirical formula.

Assumptions
• The judges are equal. None is more authoritative than the others.

• When a judge is evaluating a paper, the judging result is not influenced by
adventitious factors, such as taking bribes.

• The time that a judge takes is proportional to the number of papers to read.
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• There exists an objective criterion with which we can tell which of two papers
is “better.” Therefore, we can use an absolute rank-order or absolute scores
to describe the quality of the papers measured by the criterion.

• The absolute rank-order is transitive: If A is better than B and B is better
than C, we can say A is better than C.

Analysis of Problem
Our primary goal is to include the top W papers among the “best” 2W

papers.
A subsidiary goal is that each judge read the fewest possible number of

papers. We interpret this goal into two points:

• It is the duration of the whole judging process, the total time for all rounds,
that is constrained by funding. If the time for a round is how long it takes
the judge who has the most papers to read, it is wise to distribute the papers
to the judges as evenly as possible in each round.

• We want to get as much information as possible.

The two usual methods of judging are rank-ordering and numerical scoring.
Systematic bias is possible in a scoring scheme, that is, each judge may have a
subjective tendency in scoring, which results in incomparability among scores
given by different judges. However, it is reasonable to believe that the scores
that the same judge gives to different papers are comparable, even if they
are obtained in different rounds. Therefore, compared with a rank-ordering
method, scoring is a more meaningful way to record the results for papers
judged in earlier rounds. We use a scoring scheme instead of a rank-ordering
scheme in our later model, so a paper need not be read more than once by the
same judge. Note that we do not compare the scores of different judges directly,
that is, we mainly use scores to obtain a rank-ordering.

We first consider the simplified problem with the significant assumption
that the ordering from each judge’s evaluation coincides with the absolute
ordering. In this event, we can definitely find the best W papers. Furthermore,
we can optimally adjust the allocation of papers in every round to get an efficient
scheme.

But judges in real life cannot rate the papers with perfect precision. For
example, a paper with absolute rank 7 (we denote it P(7)) may get a higher
score than P(6) from a judge. We call that misjudgment. Misjudgments prevent
us from getting the best W papers, so their effect must be taken into account.

There are also subjective differences among the scorings of different judges.
For example, for the same two papers, one judge may give 80 and 83, while
another gives 65 and 72. If we know the distribution of each judge’s scores,
we can to some extent compare scores given by different judges. The real
distribution for each judge is unknown, so we have to use estimates.
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Table 1.

Notation.

Symbol Meaning

P total number of papers
W number of winners
J number of judges
T total judging time (or number of papers that can be judged in the time)
Pi paper i
P(i) paper with the absolute rank of i
Si the absolute score for paper i
Pi > Pj paper i is better than paper j in absolute rank-order
Pi(A) > Pj(A) paper i is better than paper j in judge A’s opinion
Ri number of papers currently known to be better than Pi

ORD matrix of currently known relations between pairs of papers
�x� the smallest integer not less than x
N(µ0, σ2

0) normal distribution with mean µ0 and standard deviation σ0

σ1 standard deviation of the judges’ scoring
µj , σj mean and standard error of judge j’s scoring
µ̂j , σ̂j estimated values of µj , σj

Perror probability of error occurring

Design of the Model

Top W in the Least Time
Ideally, the ordering in each judge’s opinion coincides with the absolute

ordering, expressed mathematically by

Pi(A) > Pj(A) ⇔ Pi > Pj .

So, based on the transitivity of the absolute score, if Pi(A) > Pj(A) and Pj(B) >
Pk(B), we can say that Pi > Pk.

To find the top W as soon as possible, as many papers as possible should
be rejected after each round. So if there are W papers or more in the current
paper pool that are better than Pi , reject Pi.

In the first round, P papers are dispatched to J judges evenly. After per-
forming the above rejection rule, each judge selects W papers. In later rounds,
how do we dispatch the remaining W ·J papers to judges to obtain the greatest
number of new orderings from each round?

Let us consider the simple case in which W = 2, with P1 > P2 and P3 > P4

known after the first round. If we compare P2 with P4 (or P1 with P3), no matter
what the result is, we can always gain an extra relation (if, say, P2 > P4, the
extra relation is P1 > P4). If we compare P1 with P4 (or P2 with P3), on some
occasions no extra relations can be obtained. A similar result holds for W = 3.

This example indicates a fact: If we use current rank Ri to denote the number
of papers known to be better than Pi from current known information, we
should try to distribute the papers with close current rank to the same judge in
order to get more relations in a round.
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Use matrix ORD to describe known orders. Define ORDij by

ORDij =


1, if Pi > Pj ;

−1, if Pj > Pi;
0, if Pj = Pi;

∞, if Pi and Pj have not been compared by any judge.

At the beginning of a round, we dispatch papers to judges and judges give
each paper a score. We then find every Pi and Pj that have scores from the
same judge in the finished rounds and fill ORDij and ORDji. We replace ORD
with its transitive closure [Wang 1986], which, put simply, adds all the indirect
order gained from ORDij into the matrix ORD. At the end of each round, for
each paper Pi, calculate Ri from ORD and reject Pi if Ri ≥ W . Repeat the above
process until the final W papers are left.

Consider Misjudgment
By misjudgment, we mean that the final W papers are not the best W . If the

final W papers contain a paper not among the best 2W , an error occurs.
Assume that for a paper with an absolute score of µ1, the score given by a

certain judge is a random number following a normal distribution N(µ1, σ
2
1).

The standard deviationσ1 is the parameter that describes the degree of precision
in a measurement. Misjudgment originates from the deviation of a judge’s
scoring from the absolute score, as Figure 1 shows. The shaded area in Figure 1
shows the misjudgment area.

Figure 1. Possible score distributions for two papers.

There must be a distribution of the absolute scores of all the papers. We
assume that it is a normal distribution N(µ0, σ

2
0), so that the ratio σ1/σ0 reflects

the judge’s ability to distinguish the quality of these papers and also determines
the probability of misjudgment. Using the basic model, given P , J , W , and
σ1/σ0, we can estimate the probability of error (Perror). If the probability is
small enough, we can expect the model to provide the desired result.

Taking the random feature of scoring into account, some conflict is likely
to happen, such as ORDij = 1 but judge A’s scores show Pj(A) > Pi(A). One
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way to solve the conflict is to find all judges who have read both Pi and Pj , sum
up the scores given to Pi and Pj by these judges, and determine a new ORDij

by comparing the two sums.

Systematic Bias Among Judges
Considering differences among the scoring tendencies of different judges

(systematic biases), it is undesirable that each judge select out the same number
of papers in the first round, for then it will be more likely that excellent papers
will be rejected in the first round.

Instead, when the first round of judging is over, we input the scores of
each group of papers into computer, which gives the estimate of each judge’s
parameters (mean score and standard deviation) and computes each group of
papers’ score threshold for rejecting papers corresponding to a certain absolute
level. This way, excellent papers have less possibility of being rejected in the
first round. Estimating the parameters of all the judges enables us to compare
the scores from different judges to some extent.

We use Bayesian estimation [Box and Tiao 1973] to determine the estimate
of judge j’s parameters (µj , σj). Suppose that judge j gives scores S1, . . . , Sn

to papers P1, . . . , Pn. We use the method of maximum likelihood to estimate
σj :

σ̂j =
1
n

∑
[S − E(Si)]2.

We then use Bayes’s method to estimate µj . In reality, we may have a priori
knowledge of each judge’s scoring tendency. Even if not, we still have reason
to assume an a priori distribution of each judge’s score. If the prior parameters
are (µ0, σ

2
0), then the posterior parameter is

µ̂j =
n · E(S)

n +
(

σ̂j

σ0

)2 +

(
σ̂j

σ0

)2

· µ0

n +
(

σ̂j

σ0

)2 .

Then we can use quantile(N(µ̂j , σ̂
2
j ), LEVEL) as the score threshold, where

1−LEVEL is the expected proportion of papers should be retained. One suitable
value is

LEVEL = 1 − W · J
P

.

Test of the Model
The most important test is to verify that the model makes sense. We do a

computer simulation to see how our model behaves as the two practical factors
are gradually taken into account. As detailed later, our results agree with our
expectations (Feasibility Test). In addition, a finding in the course of testing
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leads us to make some improvement to the model. A more thorough test is
made by revising the parameters (Stability Test). Lastly, we try to apply our
model to more complicated example in real world. The results meet reality
very well (A Real-Life Example).

Feasibility Test
We fix P = 100, J = 8, and W = 3.

Test of the Basic Model
We assign P papers absolute scores of 1, 2, . . . , 100. These values are used

only to provide the relative order of the papers.
All papers are randomly allocated to 8 judges at the beginning of the sim-

ulation. We calculate the total judging time.
The results of 1,000 iterations of simulation (see Figure 2) show that the basic

model can select the top three in quite a short time, as we analyzed before.

Figure 2. Frequency vs. total judging time.

Take Misjudgment into Account
These two simulations are vital:

• Simulating the distribution of the absolute score. Generally, we have reason to
use a normal distribution. In order to assign the scores of 100 papers, we
generate 100 random numbers following N(60, 302), truncated at 0 and 100.

• Simulating the score given to one paper. We simulate a judge’s scoring by
adding a normal random number to the absolute score of the paper.

The quantity σ1/σ0 should be fairly small (say, ≤ 0.1), because a judge
should have good competence in judgment. We take σ1/σ0 = 1/30, 2/30, and
3/30 as cases in our simulation.

We also did a theoretical estimate for these cases of Perror under the worst of
circumstances. Take σ1/σ0 = 3/30 for example. An error occurs when one or
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more of P(7), P(8), . . . enter the final three. The probability of P(7) entering the
final three contributes the most to Perror. We let Perror(i, j) be the probability
of misjudging papers i and j. We approximate Perror by the probability of P(7)

entering the final three:

Perror ≈ 1
8
Perror(3, 7) +

(
1
8

)2 ∑
Perror(3, i)Perror(i, 7) + · · ·

≈ 1
8
Perror(3, 7) +

(
1
8

)2 6∑
i=4

Perror(3, i)Perror(i, 7).

We computed Perror(i, j) using Mathematica by calculating the area of the
shaded region in Figure 1. In this way, we get the estimate Perror ≈ 0.4%.

The results of the simulations accord with the theoretical estimate (see Ta-
ble 2).

Table 2.

Results of 1,000 trials for each value of σ1/σ0 vs. theoretical estimates.

P = 100, J = 8, W = 3

σ1/σ0 Mean T Max T Errors Observed Perror Estimate of Perror

1/30 17.7 21 0 .000 10−7

2/30 17.7 21 0 .000 .0006
3/30 17.8 21 4 .004 .004

An Extra Improvement to the Model
The simulation results demonstrate that the model behaves reasonably so

far. Surprisingly, a slight modification improves the model remarkably. If in
the first round we select more papers, say W1 instead of W , and select W papers
from the next round, we find that Perror declines greatly but the total judging
time is scarcely affected. The chances of a excellent paper being rejected in the
first round are much more than in the later round, because the papers rejected
after the first round are read by only one judge, while those rejected later are
read by more judges. Table 3 gives simulation results for several values of W1.

Table 3.

Results of 1,000 trials for each value of W1.

P = 100, J = 8, W = 3

W1 Mean T Max T Errors

6 17.9 ± 0.9 20 0
5 17.8 ± 0.8 20 0
3 17.8 ± 0.8 20 1
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Take Judges’ Systematic Biases into Account
We might as well simulate the scores from different judges by using the

normal distribution with randomly generated mean value and variance.
Using the method offered in Design of Model, we get the results of Table 4.

With increasing LEVEL, the total judging time declines but more errors occur;
it is difficult to minimize both time and number of errors.

Table 4.

Results of 1,000 trials for each value of LEVEL.

P = 100, J = 8, W = 3

LEVEL Mean T Max T Errors

50% 22.0 24 0
70% 19.5 23 3
75% 18.7 21 4
80% 18.0 21 4
85% 17.2 20 7
90% 16.3 19 11

Stability Test
We change the parameters P , J , W to test the model’s stability. Table 5

gives the results of 100 iterations for each of several groups of parameters.

Table 5.

Results of 100 trials, for σ1/σ0 = 3/30, for each combination of values of P , J , and W .

P J W Mean T Max T Errors �P/J� + W + 2

50 4 4 18.1 ± 1.2 22 0 19
80 8 3 14.9 ± 0.9 17 0 15

100 7 3 19.5 ± 0.7 21 0 20
8 3 17.7 ± 0.8 20 0 18
8 4 18.8 ± 0.8 21 0 19

5 19.8 ± 0.9 22 1 20
10 3 15.4 ± 0.9 18 1 15

120 8 3 19.8 ± 0.9 22 0 20
140 8 3 23.0 ± 1.0 27 1 23

13 1 14.4 ± 0.7 16 3 14
2 15.8 ± 0.8 18 1 15
3 16.9 ± 0.8 19 0 16
5 18.2 ± 0.9 21 0 18

Analyzing these data, we discover an empirical formula⌈
P

J

⌉
+ W + 2,
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which fits the data for the average value of T wonderfully. Another finding is
that small W/P will cause considerable Perror. So when W/P is too small (say
≤ 1/100), the model does not work well. But properly reducing the number of
papers rejected in each round will reduce Perror.

A Real-Life Example
One idea for testing our model would be to use data from a tennis compe-

tition. The table of international standings can be treated as the absolute order,
and the result of each formal match acts as a “judge.” It is a pity that we have
no data!

So we use a substitute for the data of a real competition. We obtained from
our department real scores of 50 students for three semesters taking the same
three courses. We consider that the sum of each student’s three scores stands for
the student’s level in this major; we take it as an absolute score, and this gives
the absolute ordering. In any one semester, the order of students’ scores can
differ from the absolute order. So we can use these data to simulate a contest,
in which each semester acts as a judge assigning a score.

We use these data in our computer program and get the results of Table 6.

Table 6.

Results of analysis of departmental data (P = 50, J = 3).

W T papers selected

2 19 P(1), P(3)

3 22 P(1), P(2), P(3)

Generalization

How to Budget?
Funding for the contest constrains both the number of judges that can be

obtained and the amount of time that they can judge.
Assume that each judge can mark n papers/day and the judge’s salary is

$s/day. We can hypothesize that funding f is a function of T , n, and J : f =
f(T, n, J), where T is total judging time. Obviously, ∂f/∂J > 0, ∂f/∂T > 0,
∂f/∂n < 0, and T = T (J). Fortunately, we have the an empirical formula⌈

P

J

⌉
+ W + 2.
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A reasonable functional form for f is

f =

⌈
T

n

⌉
· J · s = J · s ·

⌈⌈
P
J

⌉
+ W + 2
n

⌉
.

Since k ≤ �k� ≤ k + 1, we get

(P + (W + 2) · J) · s
n

≤ f ≤ (P + (W + 3 + n) · J) · s
n

,

which allows us to budget for the contest if the number of the judges has been
given (see Table 7).

Table 7.

Cost of the contest, for various combinations of papers per day per judge and number of judges.

n J min f max f

15 8 $3,080 $6,067
20 8 $2,310 $5,250
15 7 $2,987 $5,600
20 7 $2,240 $4,812

On the other hand, we can turn the equation around into the form

f · n
s − P

W + 3 + n
≤ J ≤ f · n

s − P

W + 2
.

According to this, if funding is known, we can decide the number of judges
(see Table 8). Of course, these are rough estimates.

Table 8.

Number of judges that can be hired, for various combinations of number of papers per day per
judge and budget.

P = 100, s = 350, W = 3

n f min J max J

15 $5,000 6 22
10 3 8
15 $7,000 10 40
10 7 20

Applying the Model to Different Kinds
of Competition

For contests that give awards to just a few winners, our model is an effective
and rational scheme. For contests that give various awards at different levels,
we can modify a few parameters in our model. There are two methods.
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• Method 1: Suppose that the contest committee expects to classify the par-
ticipants into different levels in some given proportions, say four levels of
5%, 10%, 35%, and 50%, similar to the MCM. In the first round, we reject
50% as Successful Participation; reject 35% in the 2nd round as Honorable
Mention; reject 10% in the third round as Meritorious; the remaining 5% are
Outstanding.

• Method 2: We set the value of LEVEL as needed in each round to distinguish
participants of different levels. This method is more flexible and fairer than
Method 1.

Final Scheme
We summarize our final scheme:

• Divide the judging process into several screening rounds and follow the
principles below in each round until W papers remain.

• Use a scoring scheme.

• Do not compare the scores from different judges.

• In the first round, distribute papers to all judges evenly. After scoring, select
out the top 2W papers in each group to enter the next round.

• At the end of each round, for each paper, calculate the number of papers
better than it (which we call the current rank of the paper), then reject every
paper whose current rank is more than W − 1.

• At the beginning of each round, dispatch papers with a close current rank
to the same judge, if possible.

• The number of papers distributed to each judge in each round should be as
equal as possible.

Our Suggestions
• Properly reducing the number of rejected papers in the first round would

decrease the error probability.

• Altering the number rejected in each round as needed is helpful in compe-
titions that determine different levels of the participants.

• To be more practical and efficient, we suggest prejudging the papers at first,
that is, rejecting the papers of distinctly poor quality.
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• Between rounds, have some discussion among judges so that they gain some
knowledge of the levels of papers as a whole. Such a feedback mechanism
surely helps reduce the standard deviation of judgment.

• When there are about 2W papers left, all the judges gather to read the re-
maining papers together, if time permits, to select the top W papers.

Strengths and Weaknesses

Strengths
• We have shown how our model provides an efficient scheme in correct se-

lecting winners. The model was not only tested in a computer simulation
but also proved adaptable to real cases.

• Our model is also very stable. All parameters, which we set arbitrarily, can
be changed without changing the quality of the model.

• We obtain from our model an empirical formula for T , based on P , J , and
W .

• We use Bayesian estimation to take into account the differences among
judges.

• Our model is flexible enough to be applied to different kinds of competitions.

Weaknesses
• We are unable to demonstrate that our model is optimal.

• We would like to be able to improve our estimation of the parameters for
each judge.
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1997: The Discussion Groups
Problem

Small group meetings for the discussion of important issues, particularly
long-range planning, are gaining popularity. It is believed that large groups
discourage productive discussion and that a dominant personality will usually
control and direct the discussion. Thus, in corporate board meetings, the board
will meet in small groups to discuss issues before meeting as a whole. These
smaller groups still run the risk of control by a dominant personality. In an
attempt to reduce this danger, it is common to schedule several sessions with
a different mix of people in each group.

A meeting of An Tostal Corporation will be attended by 29 board members
of which nine are in-house members (i.e., corporate employees). The meeting
is to be an all-day affair with three sessions scheduled for the morning and four
for the afternoon. Each session will take 45 minutes, beginning on the hour
from 9:00 A.M. to 4:00 P.M., with lunch scheduled at noon. Each morning
session will consist of six discussion groups with each discussion group led by
one of the corporation’s six senior officers. None of these officers is a board
member. Thus, each senior officer will lead three different discussion groups.
The senior officers will not be involved in the afternoon sessions, and each of
these sessions will consist of only four different discussion groups.

The president of the corporation wants a list of board-member assignments
to discussion groups for each of the seven sessions. The assignments should
achieve as much of a mix of the members as possible. The ideal assignment
would have each board member with each other board member in a discus-
sion group the same number of times while minimizing common membership
of groups for the different sessions. The assignments should also satisfy the
following criteria:

1. For the morning sessions, no board member should be in the same senior
officer’s discussion group twice.

2. No discussion group should contain a disproportionate number of in-house
members.

Give a list of assignments for members 1–9 and 10–29 and officers 1–6.
Indicate how well the criteria in the previous paragraphs are met. Since it is
possible that some board members will cancel at the last minute or that some
not scheduled will show up, an algorithm that the secretary could use to adjust
the assignments with an hour’s notice would be appreciated. It would be ideal
if the algorithm could also be used to make assignments for future meetings
involving different levels of participation for each type of attendee.
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Comments
The Outstanding papers were by teams from East China University of Sci-

ence and Technology (Shanghai, China), Macalester College, Rose-Hulman In-
stitute of Technology, and the University of Toronto. Their papers, together
with commentaries, were published in The UMAP Journal 18 (3) (1997): 297–
350.

Problem Origin
The problem was contributed by Don Miller (St. Mary’s College, IN).

Practitioner’s Comments
Vijay Mehrotra (CEO, Onward Inc.) wrote: As an operations management

consultant, I am used to dealing with difficult problems, incomplete informa-
tion, and unclear objectives. My profession requires

• a willingness to wrestle with such assignments by understanding the key
business goals and issues;

• a desire to solve the problems by finding the right roles for the right people,
models, processes, and information systems;

• and an ability to “sell” our solutions by presenting both our methods and
our results clearly to diverse and demanding audiences.

That’s why I loved this problem. It is a decidedly nontrivial combinato-
rial optimization problem with lots of different dimensions. Because it is not
a cookie-cutter problem, there is no “right” way to solve it. The problem’s
complexity prevents teams from using a standard modeling framework and
turning the crank.

Accordingly, the best papers tackled the problem with varied methods,
including simulated annealing, greedy algorithms, graph theory, and integer
programming. These papers explicitly included analysis of all the desired ele-
ments (minimal common membership, maximal interaction between different
board members, in-house representation, senior officer group restriction).

Another common theme in this year’s winning entries was an understand-
ing of the power of good abstraction. Along with a precise and well-presented
mathematical formulation of the problem, a top paper described how this ab-
stract problem formulation related to the “real” problem. In turn, the quality
of the abstraction is directly related to

• adaptability of the solution to different problems or slightly different condi-
tions, and

• computational feasibility of the selected solution method.
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Among the contest papers were several elegant formulations that couldn’t
be solved and many clever solutions that couldn’t be extended. None of those
papers was denominated Outstanding.

Finally, each of the winning entries took the time to examine critically the
quality of the scheduling solution generated by their modeling methods. It is
challenging to define a standard for what a “best” solution is, yet this type of
yardstick is essential for assessing how well a specific method works.

Author-Judge’s Comments
Problem author and contest judge Don Miller (St. Mary’s College, IN) re-

marked that what makes the situation particularly open-ended is that a “good
mix” of board members is not clearly defined. A team must identify some sort
of measure of “goodness” of a particular solution. Doing so involves making
assumptions, by answering questions such as:

• Is the third meeting of two board members worse than the second?

• Is the second meeting of two in-house members worse than the second meet-
ing of two regular members?

• How should the second meeting of an in-house member with a regular
member be evaluated?

• Does increasing the time between sessions in which two members are in the
same group reduce the ”cost?”

• How does the ”cost” of having two board members fail to meet compare to
that of having them meet more than once?

• Is common membership in the form of A-B-C worse than common member-
ship of the form A-B and C-D?

The quality and justification of such assumptions were weighted heavily by
the judges in their evaluation. Assumptions considered unreasonable include:

• It is better to have a member skip a session than to be in a session with the
same member again.

• To minimize common membership, the number of groups for the afternoon
sessions may be increased from four to five.

• To ensure that everyone meets at least once, there will be only one group for
the seventh session.

The problem statement calls not just for a solution to the An Tostal problem
but also for a simple algorithm usable with other parameter values. Papers
providing only a “brute force” solution for the An Tostal situation were screened
out early.
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The most common methods were simulated annealing and the greedy al-
gorithm. However, few teams addressed the generalized problem for future
meetings with any or all parameters changed. One team that used the greedy
algorithm noted that local optimization—that is, optimization at the session
level—does not guarantee global optimization, and thus it may be desirable to
allow a second encounter of two members early in the day.

Several teams used a different algorithm foir last-minute changes than for
initial assignments. One team doing this made a conscious effort to alter drasti-
cally the schedule of a few people rather than modify slightly a greater number
of schedules. Another team felt it desirable to consider both balance (of mem-
bership of groups) and mixture (pairs that meet a disproportionate number of
times); they minimized the geometric mean of these two measures. Yet another
team decided that if a pair of members must meet twice, doing so is less “costly”
if the time between meetings is maximized.

The four Outstanding papers had many similarities. All decided that it
would be desirable to keep the size of the groups for each session as equal as
possible. Most observed that 532 pairings would be needed, a value achieved
only by the team from East China University of Science and Technology. Some
argued effectively that uneven group sizes increase the number of pairings
needed. All four teams recognized that 406 pairings are necessary if each
board member were to meet each other board member. In fact, all these teams
reported the number of times each of these pairings (handshakes) occurred in
their final or “best” solution, as shown in Table 1.

Table 1.

Occurrences of numbers of pairs in final solutions.

Team Number of pairs
0 1 2 3

East China Univ. of Science and Tech. 26 253 102 25
Macalester College 40 214 138 14
Rose Hulman Institute of Technology 32 218 152 4
University of Toronto 33 226 134 14

The team from Rose-Hulman Institute of Technology got only four groups
meeting three times, since their penalty for this situation was modeled as pow-
ers of four. The team from Macalester College had the largest number of pairs
that never met, 40; they were the only team of the four that looked beyond
individual pairs in developing their objective function. For their solution, “No
two discussion groups have more than two members in common.”

Three of the four Outstanding papers used a form of the greedy algorithm.
The other, from Macalester College, stood out for its explanation of how to
use simulated annealing. Its strong objective function was the sum of four
objectives, with a penalty for more than one repeat pairing in a group. In
addition, the paper contained a nice proof that if no two pairs of board members
are together more than two times, then some pair is never together.
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The paper from the Rose-Hulman team stood out for its writing and for its
statistical comparison of schedules. Schedules made randomly by the greedy
algorithm and by a modified greedy algorithm were used as a baseline for other
methods.

Finally, the University of Toronto team provided excellent proofs on bounds
for solutions, which they applied to the An Tostal situation.

Note: The name “An Tostal” has no real meaning as far as the problem
is concerned. It was the name of the spring-quarter weekend of celebration
just before final exams at Kent State University, where Prof. Miller was an
undergraduate.
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Using Simulated Annealing to Solve
the Discussion Groups Problem

David Castro
John Renze
Nicholas Weininger
Macalester College
St. Paul, MN 55105

Advisor: Karla V. Ballman

Introduction
Our task is to assign 29 corporate board members to a sequence of discussion

groups organized into seven sessions, of which three are morning sessions led
by senior officers and four are afternoon sessions not led by senior officers.
We wish to find a combination of group assignments that best satisfies the
following objectives:

• In the morning sessions, no board member should be in the same senior
officer’s discussion group twice.

• No group should have too many in-house members (there are nine in-house
corporate employees among the 29 members).

• The number of times any two board members are in the same group should
vary as little as possible.

• No two groups should have a large number of common members.

The specific case given assumes that all members will participate in all ses-
sions and that there will be six discussion groups for each morning session and
four for each afternoon session. Our model ought to be capable of produc-
ing good answers quickly under these assumptions and of adjusting to more
general configurations of board members. In particular, it should be able to
adjust to small changes, such as individual additions or subtractions of board
members, without recalculating all assignments from scratch.
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Model Design Considerations
This problem is essentially one of optimization. The different potential

assignments of board members form a solution space, and we must optimize
the “fitness” of our assignments (how well they satisfy our objectives) over
that solution space. Thus we have to consider the issues that come up when
designing any optimizer: time and space efficiency, flexibility, and optimality
of the solution. We also have concerns particular to this problem.

Multiple Objective Satisfaction
Most optimization problems involve maximizing a single objective function;

here we have four objectives. The problem statement doesn’t tell us whether,
for example, to consider minimizing common group membership more im-
portant than minimizing the number of times any two board members meet.
Presumably, we want to use some sort of weighted combination of the objec-
tives as the function to optimize over the solution space—but determining how
to combine and weight them is nontrivial.

Large Solution Space
The number of ways of assigning the board members to the discussion

groups is enormous. Since each board member goes into seven sessions, we
have a total of 29 × 7 = 203 variables; since there are six possible assignments
for each member in the morning sessions and four for the afternoon sessions,
the total number of possible solutions is on the order of 687 × 4116 ≈ 3× 10137.
Furthermore, no matter how we define our objective function, the solution
space will probably contain a large number of local optima. This has two
implications. First, it’s probably impossible to find a global optimum (and it
isn’t absolutely necessary here). Second, we need a solution model that doesn’t
require searching over a significant fraction of the solution space.

Fast Readjustment
Since board members may drop out or in at the last minute, we want a

way of taking a precomputed solution and adjusting it for small changes in the
member configuration. This adjustment should be significantly faster than a
complete recomputation and should also involve fewer changes of assignment.

Simulated Annealing
We chose simulated annealing as the basis for our model, as it offers the

best chance of constructing an effective solution-finding algorithm.
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The Simulated Annealing Process
The simulated annealing algorithm can be described as follows:

1. Start with an objective function that is evaluable for every point in the solu-
tion space, a randomly chosen point in that space, and an initial “tempera-
ture” value.

2. Evaluate the initial point’s objective function value.

3. Perturb the point by a small amount in a random direction.

4. Calculate the objective function value of the perturbed point.

5. If the new function value is better than the old one, accept it automatically,
staying at the perturbed point.

6. If the new function value is worse, decide probabilistically whether to stay at
the perturbed point or go back to the old one. The probability of not staying
at the new point should depend on how low the temperature is and how
much worse the new point is than the old one.

7. Lower the temperature slightly and go to step 3. Iterate until the temperature
is close to 0 or the solution stops changing.

The algorithm essentially does a hillclimb through the solution space, with
occasional random steps in the wrong direction. The temperature controls
how likely the algorithm is to take a step the wrong way; at the beginning, the
algorithm jumps almost completely randomly around the solution space, but
by the end it almost never takes a wrong step. The idea is that the random
steps allow the hillclimber to avoid getting stuck at local minima or maxima.
In most implementations of simulated annealing, the probability of acceptance
of a wrong-way step is e−d/T , where d is the difference between the old and
new objective functions and T is the temperature. The temperature typically
starts at a value sufficient to give almost any degree of wrong-way movement
a significant probability of acceptance, and decreases exponentially from there.

The original idea for simulated annealing comes from statistical mechanics.
The molecules of a liquid move randomly and freely at high temperatures;
when the liquid is cooled and then frozen, the molecules essentially “search”
for the lowest energy state possible. The minimum energy state occurs when
the molecules are arranged in a specific crystalline structure. If you cool the
liquid slowly, the molecules will have time to redistribute themselves and find
this structure; if you cool it quickly, they will typically get “stuck” at a higher-
energy, noncrystalline state.

Reasons to Use Simulated Annealing
A number of factors influenced our decision to apply simulated annealing

to our problem:
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• It’s fast. Simulated annealing requires evaluation of the objective function
over a relatively small number of points to achieve its result.

• It’s simple. Everything except the fitness function evaluation can be done in
well under 100 lines of C code. It isn’t difficult to understand or debug.

• It lends itself well to discrete solution spaces and nondifferentiable objective
functions. As long as you can provide a random jump between solution
points and a way of evaluating the function at any point, it can work; many
other methods require a continuous solution space, or demand that you
evaluate the function’s derivative.

• It has a track record of success. Simulated annealing has been used for ap-
plications as diverse as stellar spectrum analysis and chromosome research.

• We were all well acquainted with simulated annealing, and one of us had
previously used it to solve a similar partitioning problem.

Alternatives

Heuristic Algorithms
One could try to get a solution by using some sort of intuitive rules about

how to rearrange things, much as a human secretary would. This would likely
be too slow for a large number of members, though, and coming up with good
intuitive rules that a computer can implement is difficult.

Gradient Methods
Traditional gradient descent methods are another possibility. These, how-

ever, generally require that the objective function’s derivative be evaluated or
at least estimated, and our objective function is extremely difficult to express
mathematically. Furthermore, they run the risk of getting stuck at local minima.

Integer Programming
Integer programming is commonly used for discrete optimization problems

like this one. But none of us had experience implementing it, and we feared
that the large size of the solution space might make it too slow.

Genetic Algorithms
We could establish a pool of potential solutions that would “evolve” toward

an optimal solution through a process analogous to natural selection. But this,
too, would likely be too slow and complex for our problem.
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Modeling the Solution
We designed and coded in C a program that uses simulated annealing to

solve a general set of discussion-group problems, including the one given.

The Data Structure
Our approach to the problem began with data structure design: We needed

a way to encode the whole list of assignments that would allow us to code
the annealing process straightforwardly, and preserve important testing and
organization data for analysis of the annealing results.

The data structure partition has three levels of organization:

1. The top level, partition. This contains a lot of data pertaining to the whole
solution structure: the number of morning and afternoon sessions, the num-
ber of groups in each type of session, and the total number of members and
of in-house members participating in each session. It also contains some
data relevant to the objectives concerning pairs of members and common
membership (more on that below).

2. The list of groups contained in the partition. Each group corresponds to
one of the discussion groups in one of the sessions and has a size variable.

3. The list of people contained in each group. Each person has a name, a
number and a flag indicating whether they’re in-house. Thus each instance
of person corresponds to one member’s participation in one session. Note
that this allows members to participate in only some of the sessions.

The Objective Function
We chose as the objective function a weighted sum of four subfunctions.

Each subfunction takes a partition and calculates how close it comes to satisfy-
ing one of the objectives given in the problem. The results are all expressed in
terms of “badness,” or the degree to which the partition fails to satisfy an ob-
jective; thus our problem becomes the minimization of the “badness function.”

Senior officer nonrepetition
The first objective we consider is that no board member should be in the

same senior officer’s morning group twice. Our first subfunction simply takes
the morning groups headed by each senior officer and checks for repetitions in
their member lists. The total number of repetitions—that is, the total number
of times a board member is in the same senior officer’s morning group more
than once—is multiplied by one weight to form the first part of the badness
function. Since we want zero repetitions, and want the annealer to stay with
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solutions with zero repetitions once it finds them, we also have a “zero bonus”
that subtracts a given amount from the badness if there are zero repetitions.

In-house members
The second objective states that no group should have a disproportionate

number of in-house members. Our second subfunction calculates the amount
of disproportionality in the distribution of in-house members among groups.
For each session, it uses the number of total members and in-house members
participating in the session to compute ideal floor and ceiling values for the
number of in-house members in each group. (If the number of in-house mem-
bers is a multiple of the number of groups in the session, then the floor and
ceiling are the same; otherwise they differ by one.) Then it goes through each
group in the session and tests to see if the number of in-house members is more
than the floor or less than the ceiling; if so, it adds to the disproportionality
sum the difference between the floor or ceiling and the actual number. So,
if the ideal ceiling were two in-house members per group, a group with four
in-house members in it would add two to the disproportionality sum.

We want the disproportionality sum, like the repetition sum, to be zero, and
so implement a zero bonus; we set this equal to the disproportionality weight
rather than making it separately adjustable, for reasons discussed below.

Pairings of board members
Our third objective is to try to ensure that each board member meets each

other board member approximately the same number of times. Our third sub-
function does this by computing ideal floor and ceiling values for that meeting
number, just as the second does for the proportion of in-house members. In
the partition structure we keep a matrix whose elements correspond to the
number of times each pair of board members are in the same group. The third
subfunction recalculates this matrix by looking at each pairing in each discus-
sion group; derives the ideal floor and ceiling values from the matrix; and then
goes through the matrix again, adding up the instances in which the number
of times a pair of members meets is less than the floor or more than the ceiling.
This sum becomes the pairwise anomaly count.

We also calculate the maximum number of times any two board members
meet, and use that as well as the pairwise anomaly count in the badness calcula-
tion. The reasoning behind this is not only because it’s desirable for most pairs
of members to meet the same number of times, but also to ensure that no pair of
members is in a hugely disproportionate number of groups together. We don’t
want a solution with one pair that is in every group together but with no other
anomalous pairs to be preferable to a solution with many slightly anomalous
pairs but with no hugely anomalous ones.

Here, we have no zero bonus for the anomaly sum, because the meeting
criterion ought to be satisfied “as much as possible,” rather than absolutely,
and because it’s impossible in many cases (including ours) to drive it to zero.
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Common membership
Our final objective is to ensure that no two groups have a disproportionate

number of common members. The fourth subfunction is almost precisely anal-
ogous to the third. Again, we have a matrix in the partition structure, listing
for each pair of groups how many members they have in common; again, we
calculate this matrix, use it to derive an ideal mean, and find the sum of de-
viations from that mean and the maximal deviation. Here, however, we don’t
count as deviant groups those that have fewer than the mean number of com-
mon members. It doesn’t matter if two groups have no members in common,
only if they have too many.

The Annealing Iteration Process
Once we have the “badness function” described above, we perform simu-

lated annealing. The relevant implementation details are:

• The perturbation: A single swap of two members is the unit of random
perturbation. Our program randomly chooses a session, two discussion
groups within that session, and a member in each group, and then swaps
them.

• The initial configuration: The file-reader dumps the members from the file
into the partition in order, giving an extremely bad configuration. Our
program does random swaps on that configuration for a random number of
times (between 1 and 32,767), producing a “shuffled” initial configuration.

• The starting temperature setting and the rate of exponential decay: These
are two key variables that determine how long the annealing takes and what
the temperature profile is.

For the starting temperature, we just use the badness value of the starting
configuration; this means that at the starting temperature, a solution as bad
as our starting one would have a 10% chance of being accepted as a step
away from a perfect (zero-badness) configuration.

For the decay, we used a variety of different rates. Multiplying the
temperature by 0.998 at the end of each iteration tends to give the best
time/accuracy tradeoff. Slower decay makes for long annealing runs that
don’t get much better; faster decay doesn’t give the process enough room to
“jump around” randomly at the beginning, resulting in much worse solu-
tions.
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Setting the Weights
We anneal in an attempt to minimize the following badness function:

badness(partition) = w0 ∗ reptotal− w1 ∗ repzero + w2 ∗ disprop
− w2 ∗ diszero + w3 ∗ pairanom + w4 ∗ maxpair

+ w5 ∗ commanom + w6 ∗ maxcomm
where

• reptotal is the number of times a member is in the same senior officer’s
group twice;

• disprop is the disproportionality sum for in-house members;

• both repzero and diszero are 1 if reptotal and disprop both are 0, and
both are 0 otherwise;

• pairanom and maxpair are the anomaly score for pairwise meetings and the
maximum number of times a pair meets;

• commanom and maxcomm are the anomaly score for group common member-
ship and the maximum number of members a group has in common; and

• w0, . . . , w6 are integer weights.

How should we set the weights? We did so by trial and error. The set
of weights w0 = w1 = 1200, w2 = 1000, w3 = 400, w4 = 4000, w5 = 100,
and w6 = 500 produces extremely good results for a 9,000-iteration annealing
run on the standard problem configuration. Such a run takes about 5 min on
an HP 712/60 workstation. Using these weights, we could repeatedly produce
solutions that had no senior officer repetitions, no instances of in-house member
disproportion, no pair of members that met more than three times, and no pair
of groups with more than three members in common.

We used somewhat different weights for a longer annealing run to produce
our very best solution, and also adjusted the weights to produce solutions for
different session configurations, as we will describe below. But the set of de-
faults above appeared to work remarkably well for a variety of configurations.

Some things to note about the default weights:

• The zero bonus for senior officer nonrepetition equals the minimization
weight. That works so well that we hard-coded in the same equality for in-
house disproportionality, rather than making another adjustable zero bonus.

• The ratio of pairwise minimization weight to pairwise maximum weight
is 1 to 10. That means that the algorithm considers reducing the pairwise
anomaly score by 10 equivalent to reducing the pairwise maximum by 1.
Lower ratios tend not to force the pairwise maximum low enough; higher
ratios tend to prevent the annealer from occasionally making the pairwise
maximum higher by 1 on its way to a much lower pairwise anomaly score.
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• The common membership weights are quite small. We found that good
common membership configurations were strongly correlated with good
pairwise meeting configurations; that is, configurations in which no pair of
members met an inordinate number of times also tended to be configurations
in which no two groups had too many common members.

Our Solution
Using extra-long runs and adjusting the weights by trial and error, we even-

tually produced the solution in Tables 1–2. The in-house members are 1–9 and
the non-in-house members are 10–29.

Table 1.

Assignments by discussion group.

Session Group Members

Morning 1 1 27 22 20 17 1
2 4 28 21 3 13
3 10 11 8 29 18
4 14 19 24 7 23
5 15 9 5 16 12
6 6 25 2 26

Morning 2 1 13 29 2 6 28
2 10 16 9 19 25
3 7 23 20 22 12
4 5 11 26 17 3
5 8 14 20 27 4
6 24 21 1 15

Morning 3 1 16 8 19 21 5
2 2 18 22 1 23
3 15 26 17 9 14
4 12 25 4 29 27
5 2 13 20 11 6
6 28 7 3 10

Afternoon 1 1 27 26 24 2 8 10
2 6 3 22 15 19 4 18
3 11 16 23 5 25 14 1 28
4 21 9 13 17 29 7 12

Afternoon 2 1 23 6 5 21 10 27 12
2 3 15 29 14 2 25 20
3 26 9 1 8 28 19 22 13
4 7 24 4 17 16 11 18

Afternoon 3 1 15 4 1 13 2 10 16
2 5 24 12 25 22 17 8
3 21 28 14 20 7 26 18 6
4 27 23 11 19 3 9 29

Afternoon 4 1 7 25 27 13 19 5 18
2 21 14 22 11 10 2 9
3 12 29 3 6 16 24 26 1
4 4 23 17 15 28 20 8
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Table 2.

Assignments by board member.

Morning Afternoon
1 2 3 1 2 3 4

In-house members
1 1 6 2 3 3 1 3
2 6 1 2 1 2 1 2
3 2 4 6 2 2 4 3
4 2 5 4 2 4 1 4
5 5 4 1 3 1 2 1
6 6 1 5 2 1 3 3
7 4 3 6 4 4 3 1
8 3 5 1 1 3 2 4
9 5 2 3 4 3 4 2

Other members
10 3 2 6 1 1 1 2
11 3 4 5 3 4 4 2
12 5 3 4 4 1 2 3
13 2 1 5 4 3 1 1
14 4 5 3 3 2 3 2
15 5 6 3 2 2 1 4
16 5 2 1 3 4 1 3
17 1 4 3 4 4 2 4
18 3 5 2 2 4 3 1
19 4 2 1 2 3 4 1
20 1 3 5 1 2 3 4
21 2 6 1 4 1 3 2
22 1 3 2 2 3 2 2
23 4 3 2 3 1 4 4
24 4 6 5 1 4 2 3
25 6 2 4 3 2 2 1
26 6 4 3 1 3 3 3
27 1 5 4 1 1 4 1
28 2 1 6 3 3 3 4
29 3 1 4 4 2 4 3

How Good Is This?
In this configuration, no member is ever in the same senior officer’s morning

discussion group twice. No group contains a disproportionate number of in-
house members (the morning groups contain 1 or 2, the afternoon ones 2 or 3).

No pairs of members are in the same group together more than 3 times. Of
the possible pairs of members, 40 never meet; 214 meet once; 138 meet twice;
and 14 meet three times. Thus the pairwise anomaly score is 54, and the vast
majority of members meet one another a “reasonable” number of times (the
mean number of meetings is about 1.3). It is possible to achieve a configuration
in which no two members meet more than twice, but not while preserving the
other objectives.

Also, no two discussion groups have more than two members in common.
This is as low as possible.
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We conclude that this configuration satisfies all the objectives well and three
of the four perfectly; it is likely extremely close to the global optimum.

Typical Results on the Standard Configuration
A typical annealing run, with default weights, will zero out the senior officer

repetition and in-house disproportionality. It will also reduce the maxima of
member-pair meetings and group common membership to 3. It will not usually
reduce maximum group common membership to 2, and it typically gives a
pairwise anomaly score of 50 to 60.

Thus, the standard annealing run’s result isn’t quite as good as our best; but
it’s nearly as good and much easier to achieve. It considers only about 9,000
different sets of assignments in reaching its solution, and takes about 6 min.

Generalizing the Model

More and Different Board Members
We tested the annealing process on data sets with a variety of different

numbers of board members, ranging from 20 to 100. We also tried keeping the
number of members at 29 and adjusting the proportion of in-house members.
Finally, we tried keeping the existing set of 9 in-house and 20 other members but
changed the number of senior officers, the number of morning and afternoon
sessions, and the number of groups in each afternoon session. In all cases, we
annealed with the same default weights used for the standard configuration.

The model responded extremely well in each case. Table 3 shows the times
required for a full annealing run on the standard session configuration with
various numbers of members.

Table 3.

Run-time results.

Members Run-time
In-house Others Total

5 10 15 2:56
9 20 29 6:38

12 27 39 8:25
15 33 48 9:53
18 41 59 22:06
30 70 100 58:01

We also tried changing the profile to 4 in-house and 25 other members, and
to 14 in-house and 15 other members. In both cases, the annealing still drove the
in-house disproportionality to zero and reduced the pairwise and commonality
maxima to 3.
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We tried a total of five different changes in the session/group profile; these
ranged from decreasing the number of groups in each morning session to two
to having only one morning session and six afternoon sessions. In almost all
cases, the annealing produced solutions that were as good as could be expected,
given the limitations of the sessions and groups.

The only exception occurred when we tried having three officer-led groups
for each of the three sessions. Then the default weights failed to minimize the
senior officer nonrepetition criterion, which is much harder to achieve with
three groups than with six. Increasing w0 to 2,000 and rerunning gave much
better results.

Different Levels of Session Participation
The data structure and annealing code are designed to deal transparently

with members who attend some but not all of the sessions, by considering each
member’s participation in each session as a separate variable. We tested our
code on several different session-participation variations, including:

• making the in-house members not attend the afternoon sessions,

• making some of the non-in-house members not attend the morning sessions,
and

• introducing new members who go only to one morning session.

In all cases, the annealing produced good results—zero senior officer rep-
etitions, no more than two instances of in-house disproportionality, maximal
pairwise meetings, and group common memberships at one more than the
ideal mean.

Adjusting Quickly to Last-Minute Changes
Another important consideration is how well our model can deal with small

changes in the configuration of board members—one or two new board mem-
bers added or deleted, say. We investigated two approaches to adjusting an
already-annealed configuration, reannealing and flip-path search. Both are mo-
tivated by the idea that the new configuration’s best solution should be quite
close to the old one’s. We tested these approaches on several small modifica-
tions: single and double additions and deletions to all sessions, plus additions
to only one or two sessions.

Reannealing
Since we want to stay in the neighborhood of the old configuration and to

take less time than the original annealing, we use a much lower starting temper-
ature. Experimentation shows that dividing the regular starting temperature
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by 1,000 works best. The new configuration often is very different from the old
one. This would be undesirable in real-world applications, where you might
want to make as few changes to group assignments as possible.

Greedy path search
The alternative is to try to reduce the badness function with as few changes

as possible. One way is to try all possible single flips in the configuration, then
try all possible combinations of two possible single flips, and so on, always
looking for the flip sequence that produces the lowest badness function value.

This approach quickly becomes too slow. There are 2,310 possible flips in
the standard configuration, and evaluating all of them takes more than 1 min
on an HP 712/60; thus, evaluating all two-flip sequences would take at least
20 h. An alternative, much faster approach is to try all single flips, take the one
that produces the lowest badness function, perform that flip, try all single flips
from the resulting flipped configuration, and so on. We call this a greedy path
strategy, and in our tests it brought the new configuration’s badness function
down acceptably close to the old one’s in seven to ten flips.

Furthermore, we observed during our tests of the greedy path search that
it tended to do best after doing one flip involving groups in each of the seven
sessions. This was especially true when we added a new member to all of
the sessions. This makes sense, because it ought to take one flip to put a new
member in the “right” place in each session.

So we tried the following variation: Perform the best of the possible flips
involving groups in the first session, then perform the best of the flips involving
the second session, and so on, to the last session. This requires considering all
of the 2,310 possible flips only once. This does not work nearly as well as the
original greedy search, probably because this approach fixes the order in which
the best flips in the sessions are taken.

We finally found a workable hybrid approach. This approach starts out by
finding and taking the best flip from all the sessions, then takes the best flip
in each session in order, and finally again finds and takes the overall best flip.
It runs in roughly 5 min for the standard configuration and gives test results
about as good as for the original greedy path search. It doesn’t always work
as well as reannealing, but it never requires more than nine (in the standard
configuration) single-flip changes.

Improving the Model

Complexity
Our algorithm runs in time approximately proportional to the square of the

number n of board members. The pairwise part of the badness calculator goes
through a matrix including all n(n − 1)/2 pairs of members. The run-time is
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also quadratic in the number of groups, because of the pairs-of-groups common
membership matrix.

It would be nice to develop a badness function that runs in linear time and
produces a good approximation to our original function value. We could also
make smaller efficiency improvements, such as developing a way to update
efficiently the pairwise and commonality matrices with each single flip instead
of recalculating them on each iteration. Time considerations prevented us from
doing this (we tried doing it with the pairwise matrix but never got it to run
significantly faster than straight recalculation). We believe that our algorithm
runs remarkably well as it is; finding a near-minimum over a solution space of
10137 points in 6 min is no small task.

Flexibility
The present model allows only two kinds of group sessions—morning and

afternoon—and assumes that all sessions have the same number of groups of
the same size (or differing by only one). It wouldn’t be too difficult to extend
the partition structure to allow for a more complex session structure, such as
one that would allow for different numbers of senior officers at each morning
session.

We could also add different types of board members and specify new ob-
jectives based on them. Perhaps, for example, one might want to stipulate that
some board members are new, and that new board members should all be in
the same discussion groups so that they can get to know each other (or at least
that every new member should meet every other member once).

Finally, we could try to devise a general method for setting annealing
weights, given a configuration. The default standard weights appear to work
well for a large range of configurations, but they are almost certainly not opti-
mal for all configurations.
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1998: The Grade Inflation
Problem

Background
Some college administrators are concerned about the grading at A Better

Class (ABC) College. On average, the faculty at ABC have been giving out
high grades (the average grade now given out is an A−), and it is impossible to
distinguish between the good and the mediocre students. The terms of a very
generous scholarship only allow the top 10% of the students to be funded, so a
class ranking is required.

The dean had the thought of comparing each student to the other students
in each class, and using this information to build up a ranking. For example,
if a student obtains an A in a class in which all students obtain an A, then this
student is only “average” in this class. On the other hand, if a student obtains
the only A in a class, then that student is clearly “above average.” Combining
information from several classes might allow students to be placed in deciles
(top 10%, next 10%, etc.) across the college.

Problem
Assuming that the grades given out are (A+, A, A−, B+, . . . ), can the dean’s

idea be made to work?
Assuming that the grades given out are only (A, B, C, . . . ), can the dean’s

idea be made to work?
Can any other schemes produce a desired ranking?
A concern is that the grade in a single class could change many students’

deciles. Is this possible?

Data Sets
Teams should design data sets to test and demonstrate their algorithms.

Teams should characterize data sets that limit the effectiveness of their algo-
rithms.

Comments
The Outstanding papers were by teams from Duke University, Harvey

Mudd College, and Stetson University. Their papers, together with commen-
taries, were published in The UMAP Journal 19 (3) (1998): 279–336.
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Problem Origin
The problem was contributed by Daniel Zwillinger (Zwillinger & Asso-

ciates).

Practitioner’s Comments
According to Valen E. Johnson (Duke University)1, mentioned that the so-

lutions in the Outstanding papers span the range of previously proposed alter-
natives to GPAs in terms of model complexity, ranging from relatively simple
to highly complex.

Apart from the role of GPA in scholarship allocation, selection to honorary
societies, success in the job market, and admission to professional or graduate
school, a more subtle influence is its impact on course selection. Because GPA is
perceived to play a critical role in a student’s career, students commonly select
courses based on expected grade. Fewer “hard” courses are taken, and probably
fewer courses in science and mathematics. Also, grades spiral up: Students
gravitate to courses graded leniently, and professors soften grading standards
to ensure adequate enrollments and favorable evaluations by students.

Changing the way GPA is computed can solve all of these problems, but
implementing such a change is a difficult proposition. Any change will be
opposed by faculty and students who do not benefit from the change. Any
modification must be logically consistent, fair, and understandable by non-
statisticians. Compromises in these three criteria are inevitable.

The Stetson University team proposed to standardize grades in each class
using either the median or mean grade. But for data taking on only two or
three values, the median can be very uninformative. When grades are inflated,
the median grade is likely to be A or A−, but this says little about their relative
proportions and less still about proportions of other grades. A compromise
between the median and the mean would be a trimmed mean, which offers
some robustness against outliers while maintaining good statistical efficiency.
For example, to to compute the 10% trimmed mean is the mean of the data
remaining when the lowest and the highest 5% of grades are ignored.

In my opinion, such standardization compromises fairness because it does
not account for the quality of students within a class. Standardization would
encourage students to opt out of courses known to be populated by top stu-
dents.

Consistency is also a problem. To see why, consider two students who
take identical courses through their senior years, and receive A+ in all of their
courses. In the last semester of their senior year, the second student develops
an interest in art history and takes an introductory course in that subject (in
addition to the other courses that both he and the first student take). Both
students again receive A+ in all of their courses, but unfortunately everyone

1When he prepared his comments, Prof. Johnson was blinded to the identities of the teams,
which were inserted later in editing, and hence was not aware that an Outstanding paper was from
a Duke University team.
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in the art history course also receives an A+. Which student graduates on top?
According to the Stetson method, the first student beats out the second student
for valedictorian, even though the second student tied the first student in all of
the courses they took together and got an A+ in one additional course. Why?
The standardized grade for an A+ in the art history course is 0, which when
averaged in lowers the adjusted GPA.

The team from Duke University proposed a regression-type adjustment, in
which the grades from each class are adjusted for the difference between the
mean grade in the class and the mean adjusted GPA of students in that class.
This difference is then used to compute new adjusted GPAs, which leads to
new adjustments to the class grades. The team’s least-squares estimate of the
adjusted GPA is based on the assumption that students tend to receive higher
grades in classes taken in their academic majors.

Both adjustment schemes are quite similar to proposals of Caulkin et al.
[1996], Strenta and Elliot [1987], Goldman and Widawski [1976], and Goldman
et al. [1974]. The model of Caulkin et al. [1996] has the form

Gradeij = True GPAi + Course effectj + εij ,

so that studenti’s grade in course j is an additive function of their “true GPA”
plus a course effect plus a (normally distributed) random error. This approach
implicitly accounts for both the grading policies of individual instructors and
the quality of students within each class.

The primary drawback of these regression-type models is the assumption
that grades are intervally scaled. It usually does not make sense to assume that
the difference between an A and A− is the same as the difference between a C
and C−, or that a D plus a B equal two Cs. Typical grading scales assign more As
and Bs than Cs and Ds, and by not taking the ordinal nature of grade data into
account, substantial statistical efficiency is lost. These models also suffer from
the paradox presented above for standardized GPAs. The art history course
would lower the second student’s “true GPA,” though an independent study
course would leave it unaffected.

Both the Duke team and the Harvey Mudd team assume that it is possible to
assign a single ability score to each student. This assumption is not necessary or
appropriate. Each student’s true GPA can instead be interpreted as the ability
score for the student in courses that that student chose to take. The model of Caulkin
et al. [1996] and the Duke team variation can be applied without difficulty to
colleges in which, say, humanities students and engineering students have no
common classes. The grades of engineering students in engineering classes
should not be used to estimate their abilities in humanities classes.

It is important to distinguish difficult courses from courses that are graded
stringently. They are not (always) the same, so it does not follow that students
should be penalized for taking courses that are graded leniently. In fact, a
student who receives the highest grade in all classes that she takes should be
awarded a high adjusted GPA.

The proposal from Harvey Mudd College is surprisingly close to a statistical
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model called the Graded Response Model (GRM). The basic assumption is that
instructors choose thresholds on an underlying achievement scale and assign
grades based on the grade intervals into which achievement is observed to fall.
Details of this model are discussed in Johnson [1997].

A number of assumptions made by the Harvey Mudd team are not nec-
essary, e.g., that one letter grade corresponds to one standard deviation in
student achievement, or that professors do not grade on curves or compare
performances of students within classes, or that professors uniformly adjust
for course difficulty. The assumptions that

• students select courses randomly,

• students do not gravitate to courses that are graded leniently, and

• professors have accurate perceptions of student achievements

are questionable and are not required for the GRM; they could be eliminated.
The Harvey Mudd College model handles the two-student paradox men-

tioned above. Their model also attempts to combine information about the
grading patterns of instructors across classes, an aspect of model fitting not
normally included even in GRMs. The primary disadvantage of their proposal
is its complexity—it is clearly the most difficult model to explain.

Author-Judge’s Comments
Daniel Zwillinger remarks that averaging grades results in systematic bi-

ases against students enrolled in more rigorous curricula and/or taking more
courses. The problem of finding a “better” ranking has no simple “solution.”
Johnson [1997] refers to many studies of this topic and suggests a technique
that was considered—but not accepted—by the faculty at Duke University.

The problem statement suggested that relative rankings of students within
courses should be used to evaluate student performance. With this assumption,
possible approaches include:

• using relative ranking with grade information

(A useful additional assumption might be that faculty would give grades
based on an absolute concept of what constitutes mastery of a course.)

• using relative ranking without grade information

In the latter approach (chosen by most teams), an instructor who assigns As to
all students in a course provides exactly the same information as an instructor
who assigns all Cs to the same students in another course.

Specific items that the judges looked for in the papers included:

• Reference to ranking problems in other fields that use relative performance
results, such as chess and golf.
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• A detailed worked-out example, illustrating the method(s) proposed, even
if there were only 4 students in the example.

• Computational results (when appropriate) and proper consideration of large
datasets. Teams that used only a small sample in their computational anal-
ysis (say 20 students) did not appreciate many of the difficulties with imple-
menting a grade adjustment technique.

• Mention (if not use) of the fact that even though the GPA may not be as
“good” a discriminator as the various solutions obtained by the teams, it
seems reasonable that there be some correlation between the two.

• A response indicating understanding of the question about the changing
of an individual student’s grade. Such a grade change could affect that
student’s ranking; but if it affected many other students’ ranks then the
model is probably unstable.

• A clear, concise, complete, and meaningful list of assumptions. Needed
assumptions included:

– The average grade was A−, as asserted in the problem statement—
amazingly, several teams assumed other starting averages!

– in an {A+, A, A−, . . . } system, not all grades were A−. (Otherwise,
there is no hope for distinguishing student performance.)

Some teams made assumptions that were not used in their solution, were
naive, or needed further justification:

– “Grades form a continuous distribution.” As an approximation of a dis-
crete distribution, this is fine. However, several teams allowed grades
higher than A+, and other teams neglected to convert to a discrete grade
when actually simulating grades.

– “Instructors routinely turn in a percentage score or course ranking with
each letter grade.” This would be very useful information but is not
realistic.

– “Low grades in a course imply that the course is difficult.” A course
could be scheduled only for students who at “at risk.” Likewise, a list-
ing of faculty grading does not necessarily allow “tough” graders to be
identified: An instructor may teach only “at risk” students.

The most straightforward approaches to solving this problem were use of
information about how a specific student in a course compared to . . .

• . . . the statistics of a course. For example, “Student 1’s grade was 1.2 stan-
dard deviations above the mean, Student 2’s grade was equal to the mean,
. . . .” The numbers {1.2, 0, . . . } can be used to construct a ranking.
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• . . . other specific students. For example, “in Course 1, Student 1 was better
than Student 2, Student 1 was better than Student 3, . . . .” This information
can be used to construct a ranking.
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Abstract
We develop a ranking method that corrects the student’s grades to take into

account the harshness or leniency of the instructor’s grading tendencies.
We simulate grade assignment to a student based on the student’s inherent

ability to perform well, the student’s specific aptitude for the course, the diffi-
culty of the course, and the harshness or leniency of the instructor’s grading.

We assume that we have access to a instructor’s previous grading history,
so that we can judge how harsh or lenient a grader each instructor is. After
making this determination, we adjust each grade given by that instructor to
systematically correct for that instructor’s bias.

After correction, the student body has an aggregate GPA of approximately
2.7, corresponding to an uninflated grade of B−. The corrected GPA values do a
considerably better job of accurately ranking the students by ability, especially
for students in the bottom eight deciles.

Assumptions
1. We wish to evaluate students purely based on their ability to perform well

in courses.

2. Each student has a quality attribute that is not directly measurable but in-
fluences the ability to do well in courses. The ideal ranking of students is by
highest quality attribute.

3. The instructor has an accurate perception of each student’s performance in
a course.

4. The cause of high grades is lenient grading practices by the average instructor
at ABC College.
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5. A more lenient instructor tends to grade all students higher, not just students
of a certain ability level.

6. Scholarship selection is completed in the first half of a student’s undergrad-
uate career, to allow her to enjoy the scholarships while she is still in school.

7. Because the students are early in their careers at ABC College, they are
still taking primarily general education courses, rather than courses in their
major. Therefore, we assume that they select courses randomly, and thereby
we model the breadth of course selection across disciplines.

8. Since the students know that their grades are going to be adjusted to filter
out the harshness of their instructors’ grading, they do not gravitate toward
courses taught by lenient instructors.

9. Each student has a varying aptitude for each course. Presumably, a stu-
dent has more aptitude for courses in her major. But since general course
requirements tend to be broad and these are the courses we are examining,
we assume that a student’s aptitude for a course is random.

10. Each course has an inherent difficulty. In an easy course it is difficult to
differentiate the high ability students from the rest, whereas tougher material
produces a greater spread of performances.

11. Instructors know when a course is difficult. Presumably all students (even
the top ones) will attain a lesser mastery of more difficult material, but the
instructor will take this into account when assigning grades.

12. The college is on a semester system and each student takes four courses per
semester.

13. A student’s performance in a course is not influenced by which other stu-
dents are taking the course. Neither is the student’s grade, since we assume
that instructors do not grade the students in a given course on a curve but
rather on some absolute standard of performance.

14. An instructor’s harshness in grading does not depend on the course and
remains constant over a period of several years. Data on instructors’ grading
histories are available.

15. All instructors rate a student’s performance the same, but they have different
standards for what grade that performance should earn.

Practical Considerations
The concept of a single quality attribute that describes each student is not

one that plays well politically and in the media. Not many people would
advocate that a student’s overall ability to do well in courses can be accurately
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characterized by a single real number. Therefore, our adjusted measure of
student ability should be some sort of adjusted GPA, which will be easier for
a general audience to accept and understand. This does not present a problem
from the modeling point of view, as long as we know how quality rankings
correspond to GPA values, and vice versa.

Ultimately, as we construct our model, we will run into a fundamental grad-
ing problem. The average grade at ABC College is an A−, which corresponds
to a 3.67 GPA. Grade point averages that are this high result in very uninter-
esting grade distributions. The majority of the grades must be A+, A, or A−.
In other words, if we look at the transcript of any above-average student at
ABC, we will probably see a page full of A+, A, and A− grades. In this kind
of environment, it will be extremely difficult to pick out the top few students,
because the top half of the school is separated by only about 0.6 grade points. In
contrast, the bottom half of the school is spread over the remaining 3.67 grade
points, so it will be much easier to rank them by ability.

One radical solution to this dilemma is to require additional feedback on
student performance from the instructors. We outline one possible system here,
before we move on to a less radical approach. In addition to giving grades on
the usual A to F scale, we could require an instructor to give each student a
ranking between 1 and 10. At least one student in each course must receive
a 1, and at least one student must receive a 10. This forces a spread in the
instructor’s rankings, so that even an easy-grading instructor (all A+ grades)
must rank the better-performing students above the less able students. Next,
the instructor is allowed to give a context to the scale. If the instructor has
taught that course before, she would be asked to rate the current course in
terms of previous ones. We ask the instructor to identify, on some absolute
scale of ability, which interval corresponds to the 1 to 10 relative scale for the
course. For example, if the instructor felt that her best student was about as
competent as a student at the 90th percentile, then she would identify the right
endpoint of the scale with the 90th percentile of absolute student ability. If she
felt that her worst student was the poorest student to attend the college over
an entire five-year span, then she would identify the left end of the relative
scale with that point on the absolute scale. This two-stage evaluation system
forces the students to be differentiated by performance puts the measures of
performance into an absolute (rather than instructor-dependent) context.

What Characterizes a Good
Evaluation Method?

As we attempt to rank the students at ABC College, we assume that the
students have underlying quality scores that are reflected in their grades. We
try to approximate the ranking induced by the hidden quality values. It may
be inappropriate (for political reasons) to refer to our rankings as “estimated
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student qualities,” so we instead calculate an adjusted GPA.
As we calculate adjusted GPA values, we keep in mind several goals:

• We wish to allocate correctly the available scholarships to the top 10% of
the student body. To test whether or not we succeed, we must compare
the ranking induced by our adjusted GPA values with the actual ranking
of the students by intrinsic quality. Our first measure of the accuracy of
our adjusted GPAs will just be the number of scholarships that we correctly
allocated to deserving students.

• If the top-ranked student somehow fails to receive a scholarship, this is con-
siderably more unjust than if a student who just barely deserves a scholarship
misses out. Thus, we compute a second measure of accuracy by summing
the severity of the mistakes made in awarding scholarships.

• It is important for all of the student rankings to be accurate, not just the
top 10%, because they are used for much more than just scholarship deter-
mination. For instance, class rank is often cited in graduate school and job
applications. Therefore, we consider a third measure of accuracy that gives
a total error measure for our entire set of adjusted GPA rankings, rather than
for just the top decile.

Modeling College Composition and Grade
Assignment

According to Assumption 13, we do not need to consider the other students
in a course when we determine a student’s performance in the course and the
grade the student receives; in other words, the composition of students in the
course does not significantly affect the students’ ability to learn, and none of the
instructors grades on a curve. Thus, we model a student’s grade as a function
of

• her inherent quality,

• her aptitude for the specific course,

• the difficulty of the course, and

• the harshness of the instructor grading the course.

We treat each of these quantities as real-valued random variables and generate
their values by computer.

We let qi denote the inherent quality of student i. We will consider qi to be
distributed normally with mean 0 and standard deviationσq. This is reasonable,
since we know that the normal distribution gives a good approximation for
many characteristics of a large population.
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We let ci,j represent the random course aptitude adjustment for student i
when she takes course j. Again, it makes sense to let ci,j be normally distributed
about 0, and we denote the standard deviation of this aptitude adjustment by
σc. We let the net aptitude of student i in course j be qi +ci,j , which is normally

distributed with mean 0 and standard deviation
√

σ2
q + σ2

c . We choose our

unit of measure so that σ2
q + σ2

c = 1. Furthermore, we estimate that a student’s
intrinsic quality influences her success at least five times as much as her aptitude
adjustment for the particular course she is taking. Hence, we choose σc < 0.2.

Next, we consider how the difficulty of a particular course affects the grades
that the instructor gives. We assume (see Assumption 10) that a difficult course
spreads out the distribution of grades given; this means that poor students
tend to do worse in difficult courses, but also that excellent students will do
better, since they are being given an opportunity to excel. Conversely, in an
easy course, the grades tend to bunch closer together, since the poor students
are being given an opportunity to excel and the best students’ performances
are limited by the ease of the subject matter. Let dj denote the difficulty of
course j; then this interpretation leads us to consider a performance rating Ni,j

of student i in course j given by

Ni,j = (qi + ci,j)dj ,

where dj is a positive number, equal to 1 for a course of average difficulty,
greater than 1 for a difficult course, and less than 1 for an easy course. Note
that we are assuming the performance of a student in a course is random only in
that the student’s inherent ability is modified by a random aptitude adjustment
factor. Once this factor is applied, the student’s performance is determined,
given the difficulty of the course.

Finally, we must take into account the grading philosophy of the instructor.
Notice that a difficult course does not shift the performance distribution to the
left, because the performance is measured relative to the instructor’s expec-
tation. We assume that the instructor is aware of the difficulty of the course
and compensates accordingly in grading. This brings up a delicate distinction.
An instructor’s harshness does not reflect her expectation level but only her
tendencies in grading. That is, we assume that the instructor’s harshness does
not pertain to her assessment of a student’s performance but rather to what
grade she thinks that performance deserves.

Let hk denote the harshness of instructor k; then we should let the student’s
grade depend on Ni,j − hk, since the harshness causes a systematic bias in all
of the grades that the instructor gives. We let a harshness of 0 correspond to an
average instructor at an institution without grade inflation. At Duke University
and presumably at other institutions, 2.7 was the average GPA prior to the grade
inflation that began to appear in the 1970s [Gose 1997]. Therefore, letting G
denote the grading function that maps real numbers to discrete letter grades,
we should center G(0) on a grade of B−. Furthermore, among instructors
who grade on a curve, an interval of one letter grade is often equated with
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one sample standard deviation in the course scores. So, we let one standard
deviation for a course of average difficulty correspond to a whole letter grade
in our model. Thus, the instructors in our model are grading on a virtual curve;
that is, they grade on an absolute standard that simulates grading on a curve
in a hypothetical course in which the full distribution of students is enrolled.

This analysis leads to a grading function

G : R → {0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}
defined by

G(x) =



0, if x ≤ − 11
6 ;

3, if − 11
6 < x ≤ − 9

6 ;
4, if − 9

6 < x ≤ −7
6 ;

...
12, if 7

6 < x ≤ 9
6 ;

13, if x > 9
6 ,

where the values 0, . . . , 13 represent the letter grades F, D, D+, C−, C, C+, B−,
B, B+, A−, A, A+. To convert the numeric value to grade points, we divide by
3; thus, an A− average means a GPA of 3.67. If student i takes course j taught
by instructor k, she will receive a grade of

G(Ni,j − hk) = G
(
(qi + ci,j)dj − hk

)
.

For convenience, we define l(g) and r(g) to be the left-hand and right-hand
endpoints of the interval on which G = g. For instance, r(13) = ∞ and l(12) =
7
6 .

A simple calculation reveals that in a course where d = 1 and h = 0, the
expected grade is 2.63 (see Table 2 and Figure 1). We intend harshness 0 to
represent a reasonable level of strictness in grading. It centers the grades at
B−, which is the exact middle of all passing grades, and yields a GPA in line
with the “reasonable” historical number of 2.7 at Duke University.

We can visualize the grading method by graphing a normal(0, 1) density
function, which represents N (in the case where difficulty is 1), with the x-axis
partitioned into intervals representing grades according to the grading function
G (see Figure 2). A difficult course spreads out the distribution, resulting in
more Fs (because the poor students cannot keep up) and more As (because the
top students have an opportunity to shine). A positive (negative) harshness
effectively shifts the grade intervals to the right (left).

Since we have no data on the students, courses, instructors, or grades at
ABC College, we generated a random set of students, courses, and instructors.
Since we don’t know the exact composition of the college, we generated various
scenarios.

• We assigned each instructor to teach five courses per year, which is a typical
teaching load at many colleges.
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Table 1.

Symbol table.

ci,j course aptitude adjustment for student i taking course j
d estimate of course difficulty
dj difficulty of course j
G grading function, from performance rating to letter grade
g average grade given by instructor, from historical data
gadj adjusted grade that an instructor of harshness zero would give
hk harshness of instructor k
I interval in which student’s performance value is estimated to lie
l(g), r(g) endpoints of performance rating interval corresponding to letter grade g
Ni,j performance rating of student i in course j
Nest estimate of student performance value
Ni,est estimate of student i’s performance value
Φ standard normal cumulative distribution function
qi inherent quality of student i
qi,est estimate of inherent quality of student i
σq SD of inherent quality of student i
σi SD of course aptitude adjustment of student i taking course j
σ(d, h) SD of grades given by a professor of harshness h in a course of difficulty d
t0 left endpoint for performance rating interval corresponding to grade of A+
t1 right endpoint for performance rating interval corresponding to grade of F

Table 2.

Expected grade on a 4-point scale as a function of course difficulty d and instructor harshness h.

d

h 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

−3.0 4.33 4.33 4.32 4.31 4.30 4.29 4.27 4.25 4.23 4.20 4.18
−2.8 4.33 4.32 4.31 4.30 4.28 4.27 4.24 4.22 4.19 4.16 4.13
−2.6 4.32 4.31 4.30 4.28 4.26 4.24 4.21 4.18 4.15 4.12 4.08
−2.4 4.31 4.30 4.28 4.25 4.22 4.19 4.16 4.13 4.10 4.06 4.03
−2.2 4.29 4.27 4.24 4.21 4.18 4.14 4.11 4.07 4.03 4.00 3.96
−2.0 4.26 4.22 4.19 4.15 4.11 4.08 4.04 4.00 3.96 3.92 3.88
−1.8 4.19 4.15 4.11 4.07 4.03 3.99 3.95 3.91 3.87 3.83 3.79
−1.6 4.10 4.06 4.02 3.98 3.94 3.90 3.86 3.82 3.78 3.73 3.69
−1.4 3.97 3.94 3.90 3.86 3.82 3.78 3.74 3.70 3.66 3.62 3.58
−1.2 3.82 3.79 3.76 3.72 3.69 3.65 3.62 3.58 3.54 3.50 3.46
−1.0 3.64 3.62 3.60 3.57 3.54 3.51 3.48 3.44 3.41 3.37 3.33
−0.8 3.45 3.44 3.43 3.41 3.38 3.35 3.32 3.29 3.26 3.23 3.19
−0.6 3.26 3.25 3.24 3.23 3.21 3.19 3.16 3.13 3.10 3.07 3.04
−0.4 3.06 3.06 3.05 3.04 3.03 3.01 2.99 2.96 2.94 2.91 2.88
−0.2 2.86 2.86 2.86 2.85 2.84 2.82 2.80 2.78 2.76 2.74 2.72

0.0 2.66 2.66 2.66 2.65 2.64 2.63 2.61 2.60 2.58 2.57 2.55
0.2 2.46 2.46 2.46 2.45 2.44 2.43 2.42 2.41 2.40 2.39 2.38
0.4 2.26 2.26 2.25 2.24 2.23 2.23 2.22 2.21 2.21 2.20 2.20
0.6 2.06 2.05 2.04 2.03 2.03 2.02 2.02 2.02 2.02 2.02 2.02
0.8 1.85 1.84 1.83 1.82 1.81 1.81 1.82 1.82 1.83 1.84 1.85
1.0 1.63 1.62 1.61 1.60 1.60 1.61 1.62 1.63 1.64 1.66 1.67
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Figure 1. Expected grade on a 4-point
scale as a function of instructor harshness
h, given that course difficulty d = 1.
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Figure 2. The probability density of the
performance variable N . The vertical
bars represent the grade ranges for an in-
structor of zero harshness. For h > 0, the
ranges shift to the right by h, making it
harder to earn a high grade.

• We computed a quality variable q for each student by sampling randomly
from a normal(0, σq) distribution.

• We assigned each student to eight courses per year (also a standard load for
many colleges), for either one or two years, using a uniform probability of
selecting each course.

• We generated course aptitude adjustments c for each course that a student
enrolled in by sampling from a normal(0, σc) distribution.

• We assigned difficulties to each course by sampling from a symmetric beta
distribution centered at 1. A typical choice would be beta(3, 3) on [0.7, 1.3]
(see Figure 3).

• We assigned harshnesses to instructors by sampling from an asymmetric beta
distribution skewed and translated towards leniency (to represent the ten-
dency to inflate grades at the college). A typical choice would be beta(2, 3) on
[−2, 0] (see Figure 4). One can use Table 2 to guide the choice of distribution
according to the average GPA that we desire.

We did not restrict ourselves to considering the case where the average
GPA at the college is 3.67. In early 1997, Duke University considered revising
its calculation of GPAs to take into account the difficulty of the course in which
a grade was received, the quality of the other students in the course, and the
historical grading tendencies of the instructor. The reason for this move was
alarm that the average GPA at the University had risen from 2.7 in 1969 to 3.3
by fall 1996 [Gose 1997]. If an average GPA of 3.3 is considered evidence of
rampant grade inflation, then 3.3 is a more likely estimate of the average GPA
at ABC College than 3.67 is.
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Figure 3. Typical course difficulty distri-
bution: beta(3, 3) on [0.7, 1.3].
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Figure 4. Typical instructor harshness
distribution: beta(2, 3) on [−2, 0].

Some word on our rationale for choosing distributions is in order here. The
normal distribution is a standard choice for representing abilities in a popu-
lation. Our model of how course difficulty affects student performance and
grades loses validity for d outside the range of approximately [0.5, 2], and of
course a negative difficulty makes no sense at all. Thus, the normal distribu-
tion is not an appropriate choice. We chose a beta distribution because it takes
values on a finite interval. Similarly, any harshness value outside the range
[−3, 2] is patently ridiculous (see Figure 1). In fact, a harshness value of −2
is fairly ridiculous; but to obtain a school-wide average GPA of 3.67, we have
to allow that some instructors are that lenient. In any event, it behooves us
to choose a distribution over a finite interval. We also desire an asymmetric
distribution, to represent the tendency at the college toward lenient grading.
Thus, a beta(a, b) distribution with a < b is appealing for our purposes.

Our model indicates that the ABC College administrators’ concerns about
being unable to distinguish among the top students are justified. Indeed, when
we generate an incoming freshman class of 500 students and make the instruc-
tors lenient enough to yield a 3.64 average GPA, 60 of these students still have
a straight A+ average after two years! In this environment it is clearly necessary
to search for a better evaluation method than simple GPA.

The Modified GPA algorithm
Our algorithm for establishing a class rank involves a number of distinct

stages. We first attempt to gain additional information from the instructor’s
historical grade awards and use this information to refine our knowledge of
the courses and instructors that the students are taking currently. Using an
estimate of the instructor’s harshness based on the grades that he has given
historically, we correct the grades awarded in a particular course by estimating
the mean value by which any leniency or harshness changed a student’s letter
grade. Incorporating this correction factor allows us to provide an adjusted
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GPA measure that represents more fully the actual performances and, hence,
the quality of the students.

We assume that the instructors have been teaching at the college for at least
two years and that we have access to the grades that they assigned during
those years. We simulate these data just as we generated the data for the
students, as described in section Modeling College Composition and Grade
Assignment. New students are generated randomly as in the original student
data. Given the actual harshness of the instructors and the difficulties of the
courses taught, numerical performances and grades for all of each instructor’s
courses are generated as above.

From these historical data, we compute the average grade g granted by
each instructor. One can calculate the expected grade granted in a course as a
function of difficulty d and harshness h (see Table 2 and Figure 1). For a given
value of d, this function decreases monotonically with h, so we can calculate the
inverse function. Assuming that d = 1 we estimate the instructor’s harshness
hest by evaluating this inverse function at g.

Notice that we never even try to estimate the difficulty or take the actual
grade distribution into account. Despite this crude method of estimating harsh-
ness, we achieve surprisingly good results. Using courses of 40 students each,
the harshness that we estimate is usually within about 0.05 of the actual harsh-
ness, though it is not too uncommon to err by as much as 0.12. The error tends
to decrease the closer the actual harshness is to zero.

We can now adjust the grades of the students in each of an instructor’s
courses based on our harshness estimate hest for that instructor. For simplicity
we assume d = 1 for the course. The fact that a student receives a grade g in a
course with a instructor of harshness h means that the student’s performance
value N lies in the interval

(l(g) + h, r(g) + h] .

Thus we estimate that N lies in the interval

I = (l(g) + hest, r(g) + hest] .

We estimate N to be the expected value of the distribution of N given that N
lies in I . For grades other than A+ and F, this interval has width 1

3 . Assuming
d = 1, the a priori distribution of N is standard normal. Given that it lies in
I , the probability density function is just the indicator function for I times the
standard normal density times a constant factor. Since the density function for
the standard normal distribution is almost linear over any interval of width 1

3 ,
we estimate N as

Nest = hest +
l(g) + r(g)

2
.

If the grade is A+ or F, we can calculate the expected value analytically, with



1998: The Grade Inflation Problem 101

0

0.2

0.4

0.6

0.8

1

Std. Dev. of Grade

-4 -2 2 4
Harshness

Figure 5. Standard deviation of grade distribution as a function of h, assuming difficulty d = 1.

the following results:

E[N |N > t0] =
e−t20/2

√
2π(1 − Φ(t0))

(1)

E[N |N ≤ t1] = − e−t21/2

√
2πΦ(t1)

(2)

where Φ is the standard normal cumulative distribution function and the rele-
vant t values are t0 = l(A+) and t1 = r(F ). So when the student’s grade is A+
or F, we set Nest to (1) or to (2), respectively.

Now that we have a value for Nest, we assign the student an adjusted grade
for the course. The adjusted grade gadj is the grade that an instructor of zero
harshness would have given, except that we assign a real number grade instead
of an integer. Specifically,

gadj = 3Nest + 8.

To avoid a discontinuity at Nest = r(F ), we treated an F as a grade of 2 for this
purpose.

Since the grades given by a lenient grader exhibit a smaller spread and hence
do not differentiate the students as well as those given by a strict grader, we
grant them less import when calculating a student’s adjusted GPA. Specifically,
the student’s GPA is a sum of the grades received weighted by σ(1, hest), where
hest is the estimated harshness of the instructor who assigned the grade and
σ(d, h) is the standard deviation of grades given by a instructor of harshness h
in a course of difficulty d (see Figure 5).

If we wished to refine this method, we might use the spread of grades in a
course to estimate its difficulty both when examining the instructors’ grading
histories and when adjusting grades at the end. However, even without this
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enhancement, the basic method that we have just outlined performs well, as
we demonstrate in Results of the Model. One has to be very clever to estimate
the difficulty of a course in a way that is numerically stable. The most obvious
method is to note that for student i, we have Ni = qid, then use Ni,est and some
estimate qi,est of qi that we pull from some other source to estimate

d ≈ Ni,est

qi,est
.

The difficulty is that qi is likely to be near zero, so the error |qi − qi,est| is
magnified when we divide.

Results of the Model
We generated a number of scenarios to elucidate the features both of our

simulated data and of the modified GPA algorithm. We ran these simulations
on a test student population of 500 students, each of whom took 16 courses,
with average course size 40.

We use a number of these scenarios to demonstrate the results of our simula-
tions. Plots of actual quality ranks vs. rank by GPAs or adjusted GPAs demon-
strate the effectiveness of each ranking method over all tiers of students. For a
perfect ranking of students, this plot would lie along the line y = x.

We define three error metrics to aid in the comparison between the ranking
generated by our revised GPA method and the raw GPA ranking.

• We define a misassigned scholarship candidate to be a student who either re-
ceived a scholarship but was not in the top 10% in quality, or who was in
the top 10% of quality but did not receive a scholarship. A simple count of
the number of misassigned scholarship candidates measures the method’s
effectiveness at identifying the highest caliber of student. We refer to this
quantity as the MS (Missed Scholarship) metric for a given estimated rank-
ing.

• For each student who is ranked incorrectly, the rank errs by some number
of places. Summing these rank errors over all students gives us a measure
of how our ranking compares to the actual quality ranking across the entire
spectrum of students. We refer to this as the SE (Scaled Error) metric.

• Finally, to determine the injustice with which scholarships are assigned, we
sum over all misassigned scholarship candidates the distance between their
quality ranking and the scholarship cutoff rank. We refer to this measure of
error as the SI (Scholarship Injustice) metric.

The first scenario has difficulty scaled to be between 0.7 and 1.3, while the
harshness distribution is relatively lenient, with values ranging between −2.1
and −0.1. The variation due to course material is set to be 0. This yields, as one
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might expect, a student population with rampant grade inflation. Overall GPA
is 3.64, with 60 students receiving perfect A+ averages. Figure 6 plots GPA rank
against actual quality rank, where we observe significant discrepancies between
the estimated and actual rankings. At this level of grade inflation, the top tiers
of students are almost entirely indistinguishable by GPA. Attempting to correct
for harshness by using the corrected GPA does not significantly improve the
results at the high ranks. It does, however, improve the SE number from 9,124
to 5,352, representing a superior evaluation of the middle and lower tiers of
students (see Figure 7).

We now alter the parameters in our model to fit what we feel is a far more
realistic situation. Harshness is set to vary between −1.569 and .431, yielding
a scenario that has an average GPA of 3.34. Now only 38 students have perfect
A+ averages. The effect of ranking based on the adjusted GPA is definitely
apparent, in Figures 8–9. The discrepancies are clearly less for middle-ranked
and low-ranked students. The SE measure improves from 6,916 using simple
GPAs to 4,842 using adjusted GPAs.

Note the loss of ranking accuracy at high quality levels. The two methods
of ranking perform nearly identically, with raw GPA giving an MS of 6 while
the adjusted GPA rank gives an MS of 7.

Table 3 summarizes results for a sampling of the scenarios, all of which use
the usual range of difficulty from 0.7 to 1.3.

As our simulations show, the modified GPA ranking fares well against the
raw GPA method, with SE numbers significantly lower in each trial. This means
that the students in the lower deciles are ranked much more accurately in each
case. This suggests a certain robustness and indicates that judgments based on
the modified GPA rank will be more fair.

As in all other trials performed, both the raw and adjusted GPA ranking
methods performed poorly at the high end of the ability curve, according to all
three measures.

Strengths and Weaknesses
One weakness of our model is that it does not allow for a completely analytic

solution to the scholarship selection problem. Computer simulation is the only
means we have to test and evaluate our methods against the simple-minded
raw GPA ranking method.

Potentially the greatest weakness in our model and techniques is the lack of
a good ranking of the top two deciles. Whether or not a robust method exists
is, we believe, debatable. Nothing we have seen indicates that the information
required to form a confident ability ranking is even contained in the GPA in-
formation we have. It is likely that complete rank-ordering cannot be achieved
given the information our model provides. We do not know this to be true, but
it is certainly consistent with the results we have witnessed.

Another weakness is that our model cannot take into account the effect of
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Figure 6. Wild grade inflation resulting
in an average GPA of 3.64. The raw GPA
estimate makes significant mistakes in the
entire range but is especially inaccurate in
the top two deciles.
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Figure 7. The same scenario as Figure 6
with rank determined by GPAs modified
for instructor harshness.
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Figure 8. A more reasonable scenario.
The raw GPA rank maintains some level
of inaccuracy throughout the spectrum of
student ability.
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Figure 9. Same scenario as Figure 8 but
with ranks determined by the modified
GPAs.

Table 3.

The relevant information for several simulations. Note how the modified GPA ranking produces
smaller SE numbers in all cases, representing greater overall accuracy.

Trial Harsh Harsh Raw Raw Adj. Raw Adj. Raw Adj.
low high GPA MS MS SE SE SI SI

1 −2.1 −0.1 3.64 9 16 9124 5352 139 118
2 −1.55 0.35 3.22 8 10 7178 3122 247 596
3 −1.569 0.331 3.34 6 7 6916 4842 215 197
4 −1.9 0.1 3.48 8 10 8896 5424 101 226
5 −1.49 0.51 3.19 8 5 7454 4410 153 81
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curved grading systems and the possibility of student grades being altered
by the performances of the fellow students in the course. Similarly, other
interactions between the entities in our model, such as the formation of study
groups, can affect the performance (as distinguished from grade) of a student in
a course in a way that is dependent upon the other members of the course. Our
model also includes parameters, namely, the course difficulties, that are difficult
to estimate accurately, and thus remain a complete unknown throughout our
attempts to rank based on ability.

In spite of these features, our model has a number of compelling features.
By changing just a few parameters, one can generate an entirely new scenario
that has a plausible distribution of grades and GPAs. Furthermore, it takes into
account the three functional parts of any educational experience: the students,
the instructors, and the courses. Arguably, no model could be complete without
accounting for variations of each of the three parts.

Despite all of our problems in classifying the scholarship winners, the ad-
justed GPA method we use is almost uncannily good at identifying the lower
deciles, which in a real context is important to the students and the school.

From a practical standpoint, our model and methods are fairly simple to
implement. The number and size of the calculations performed is linear in the
size of the student body and could be executed with modest computer resources
at even a large institution.

To sum up, it would behoove ABC College to use our ranking system,
since it more accurately identifies the bottom eight deciles of student ability.
However, if the administration seeks to accurately rank the top tier of students,
it must realize that a bloated aggregate GPA from excessively lenient grading
can quickly lead to a situation where no amount of calculations and statistics
can recover the desired information about the intrinsic quality of the students.
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1999: The Asteroid Impact
Problem

For some time, the National Aeronautics and Space Administration (NASA)
has been considering the consequences of a large asteroid impact on the earth.

As part of this effort, your team has been asked to consider the effects of
such an impact were the asteroid to land in Antarctica. There are concerns
that an impact there could have considerably different consequences than one
striking elsewhere on the planet.

You are to assume that an asteroid is on the order of 1,000 m in diameter,
and that it strikes the Antarctic continent directly at the South Pole.

Your team has been asked to provide an assessment of the impact of such
an asteroid. In particular, NASA would like an estimate of the amount and
location of likely human casualties from this impact, an estimate of the damage
done to the food production regions in the oceans of the southern hemisphere,
and an estimate of possible coastal flooding caused by large-scale melting of
the Antarctic polar ice sheet.

Comments
The Outstanding papers were by teams from Harvey Mudd College (two

papers), Pacific Lutheran University, the University of California–Berkeley, and
the University of Puget Sound. Their papers, together with a judge’s commen-
tary, were published in The UMAP Journal 20 (3) (1999): 211–271.

Problem Origin
The problem was contributed by Jack Robertson (then at Georgia College

and State University, currently at Georgia Military College).

Judge’s Comments
Pat Driscoll (U.S. Military Academy) remarked that there seemed to be only

a handful of approaches.
Using the Internet as a source of information proved to be a two-edged

sword. Sites such as those at Sandia Laboratories or the Jet Propulsion Labora-
tory provided interesting and in some cases accurate and relevant information
dealing with asteroid impacts with Earth. Unfortunately, teams extracting in-
formation from these sites without first thinking about and discussing the prob-
lem soon found themselves under the spell of the siren, lulled into a mathemat-
ical approach that they could not bring to successful closure in the time allotted
for the competition. Moreover, to judge from their lack of direct supporting
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documentation and reasoning, in the end they found themselves unprepared
to explain clearly and sufficiently the underlying assumptions and reasoning
of the mathematics presented at the sites. As in most modeling efforts, this
provided an all-too-fatal flaw.

Each Outstanding team chose one or two techniques (e.g., partial differen-
tial equations, kinetic energy modeling, etc.) to develop within the context of
a complete modeling effort. They provided conclusive evidence that they had
dedicated a substantial amount of time thinking about the problem prior to the
quest for supporting information. This choice enabled them to weigh the cost
and benefit of identifying exact modeling parameters versus making reason-
able assumptions and working with approximate, in-range values. The many
facts directly associated with the problem—such as the geological composition
of both the asteroid and Antarctica, the typical source of Earth-bound asteroids,
the angle of incidence upon impact, the human population distribution, and at-
mospheric currents and circulation—mandated such a strategy. Papers failing
to provide evidence of having considered important problem characteristics,
whether implicit or explicit, were eliminated from further consideration. As
a minimum, it would have been better to identify and explain the impact of a
particular feature (e.g., upper atmospheric wind currents) and then to choose
explicitly not to include this factor for reasons of mathematical tractability.

Modeling assumptions fell into two broad categories:

• physical assumptions requiring justification with discussion, and

• numerical parameter values from citations noted.

The plausibility and applicability of either type directly depended on how well
teams linked a particular assumption to the problem as stated in the MCM,
rather than to some problem stated in the reference source document. Regard-
less of a paper’s calculations, a 10-m instantaneous rise in all of the Earth’s
oceans is a bit too far-fetched of a result for the problem presented, even for the
most devout of science fiction followers to accept.

The exceptional papers all conveyed a clear link to verifiably credible infor-
mation sources. Lesser-quality papers showed a reliance on Internet sites for
supporting information and failed to include necessary explanations of why
certain parameter values were valid and what assumptions their methods were
based on. Although the temptation to “cut-and-paste” directly from Internet
sources is recognizably strong, doing so most often resulted in a paper that was
predominantly statements of unsupported “facts” rather than one showing that
the team had a clear understanding of the model. Additionally, dedicating an
inordinate amount of time to display the derivation of known relationships
(e.g., Kepler’s law of gravitational attraction) added little value to a paper.



108 The MCM at 21

The Sky is Falling!

Daniel Forrest
Garrett Aufdemberg
Murray Johnson
University of Puget Sound
Tacoma, WA 98416

Advisor: Perry Fizzano

Assumptions
1. The diameter (D) of the asteroid at impact is 1,000 m. Heat and stress while

traveling through the Earth’s atmosphere would cause some portion to va-
porize or burn before impact. However, for an object this large traveling
at speeds typical of cosmic objects impacting the earth, one can ignore the
deceleration and ablation (loss of mass from the surface of an object due to
frictional forces) due to the atmosphere [Steel 1995, 178].

2. The asteroid strikes the earth at the geographic South Pole.

3. The asteroid is spherical.

4. The asteroid is homogeneous with uniform density ρ = 2.5 g/cm3; uniform
density allows for simple estimates of the mass. The value of ρ is typical of C-
type (carbonaceous) asteroids, which make up the majority of the asteroids
in the solar system and therefore are the most likely type to strike earth, and
also within the typical range of densities of S-type (stony) asteroids, which
make up a majority of the asteroids with orbits that cross the Earth’s orbit
[Morrison and Owen 1996, 103–132].

Preliminary Calculations

Mass of the Asteroid
The mass of the asteroid (Ma) is its density (ρ) multiplied by its volume (V ).

For a spherical asteroid, the mass is given by
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Ma = V ρ =
4
3

π

(
D

2

)3

ρ.

For our asteroid, D = 1,000 m and ρ = 2.5 g/cm3, thus

Ma = 1.3 × 1012 kg.

Upper and Lower Bounds on Impact Speed
A planet’s escape velocity (vesc) is the minimum speed that an object must

have to escape the planet. It is calculated by determining the change in potential
energy caused by moving an object from the planet’s surface to “infinity.” To
escape the planet, the object’s initial kinetic energy must be greater than or
equal to the change in potential energy. By symmetry, the escape velocity is also
the minimum velocity that an object from beyond the planet can have when it
reaches the planet’s surface. Thus, the Earth’s escape velocity, vesc = 11.2 km/s,
is a lower bound on the asteroid’s impact speed (vimp).

There is also an upper bound on the impact velocity, “a combination of
escape velocity, heliocentric orbital velocity, and the velocity of an object just
barely bound to the sun at the planet’s orbital position.” For Earth, this max-
imum is 72.8 km/s [Melosh 1989, 205]. Thus, the impact velocity is bounded
by

11.2 km/s ≤ vimp ≤ 72.8 km/s. (1)

Energy Released on Impact
The energy of the collision (Eimp), drawn from the kinetic energy of the

asteroid, is

Eimp =
1
2
Mav2

imp.

The impact velocity is bounded and the asteroid’s mass is fixed. Applying (1),
we have

8.2 × 1019 J ≤ Eimp ≤ 3.4 × 1021 J. (2)

Effects of Impact

Crater Size
The crater from the impact would be roughly parabolic in shape, with a

diameter of approximately 10 km and a depth of approximately 1 km [Koeberl
and Sharpton 1998]. The pressure is so great in impacts of this sort that the crater



110 The MCM at 21

forms partially from the vaporization of the target material. At the South Pole,
the asteroid would be impacting in ice about 2,600 m thick. It takes considerably
lower energies to vaporize ice than rock or soil, therefore we expect that the
impact crater would be larger than similar impact craters in other locations.

Melting and Vaporization of Antarctic Polar Ice Cap
Could an asteroid impact at the South Pole melt the Antarctic polar ice cap

and drastically changing global sea levels? The ice cap covers 1.32 × 1013 m2

with average thickness 2,440 m [Ronne 1997]. Thus, there is 3.2 × 1016 m3 of
ice, with mass 2.9 × 1019 kg.

At most, the asteroid impact could create 3.4× 1021 J. If all the energy were
to melt ice, how much ice could be melted?

Assuming that the ice is at 0◦ C, it would take 3.33 × 105 J/kg to melt 1 kg
of ice [Wilson and Buffa 1997]. So, at most

3.4 × 1021

3.3 × 105
≈ 1 × 1016 kg

of ice could be melted. This translates to 1 × 104 km3 of liquid water. The
area of the world’s oceans is approximately 3.61 × 106 km2; so if the melted
water were evenly distributed across the world’s oceans, sea level would rise
less than 3 cm. This is not enough to endanger human lives or displace human
settlements.

This estimate is an upper bound, since some energy goes into destroying the
asteroid on impact; vaporizing part of the asteroid; vaporizing ice; excavating
the crater; creating sound, shock, and seismic waves; and heating the air around
the impact site. The impact would probably vaporize much of the ice from the
impact crater. Assuming that the volume of ice vaporized is equal to the volume
of ice in the largest cone that fits in the roughly parabolic crater, the impact
would vaporize 2.6×1010 m3 of ice, or 2.4×1013 kg of ice. The energy required
to melt a kilogram of ice, heat the kilogram of resulting water to 100◦ C, and
vaporize the water is 3×106 J. Vaporizing so much ice would require 7.2×1019 J.
This value is within the bounds on the impact energy in (2).

Earthquakes and the Risk of Tsunami
We can estimate the magnitude (Q) of the seismic disturbance (as measured

on the Richter scale) from the formula [Melosh 1989, 67]

Q = 0.67 log10(Eimp) − 4.87. (3)

The seismic disturbance due to a cosmic impact is not the same as from normal
seismic activity. The effect of impact-generated seismic waves is estimated
to be an earthquake of one magnitude less than the approximate magnitude
generated by impact [Melosh 1989, 67].
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For our asteroid, equation (3) (using the energy range from (2)) tells us that
the impact would generate a seismic disturbance ranging in magnitude from
8.5 to 9.6 on the Richter scale (Figure 1). Even if the effects are discounted by
one magnitude, such an earthquake would cause many human casualties if
located in a more-populated part of the world than the South Pole. However,
human casualties are negligible because the continent is mostly uninhabited
and because Antarctica is large enough that any damage would be limited to
Antarctica.

Figure 1. Seismic magnitude vs. impact speed.

Because the impact is at least 500 km from the closest shoreline and 1,500 km
from most of the shoreline, the risk of a catastrophic tsunami being generated
is negligible. A large percentage of the coast of Antarctica is lined with sheer
walls of ice (on the order of 30 m in height). There is indeed a very real danger
that the seismic disturbance could cause large fragments to break off, fall into
the water, and cause tsunamis. Landslide-generated tsunamis can be large; the
1936 tsunami in Lituya Bay, Alaska, reached a height of 150 m [Hamilton 1998a].
However, they dissipate quickly and are unable to cross the great, transoceanic
distances associated with earthquake-generated tsunamis. The greatest risk
would be to coastal areas on the southern tip of South America.

Atmospheric Effects
Upon impact, the asteroid would disintegrate. Approximately 10% of the

mass, 3.1 × 1011 kg, would be vaporized into submicron particles that would
rise to the stratosphere (an altitude of 16 to 48 km) and would remain there
for months [Steel 1995, 67]. If dust made up of 1-micron particles were spread
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evenly in a 1-micron-thick spherical layer at height H above the surface of the
earth, it would cover approximately 10% of the surface area of the imaginary
sphere and would block 10% of incoming solar radiation. On a very cloudy
day, the intensity of light reaching the surface of the earth is roughly 10% of
the intensity of light on a clear day [Steel 1995, 66]. A 10% drop in intensity
would allow 9 times the intensity of light to reach earth as on a very cloudy
day; but over a period of months, such a drop would be significant enough to
cause global temperature change.

The ice vaporized on impact would rise into the atmosphere and form
clouds. The water vapor in these clouds would eventually fall to earth as
rain, increasing the amount of liquid water on the Earth by 8.1 × 1010 m3. If it
all ended up in the world’s oceans, the global sea level would rise about 2 cm.

Conclusions
Fear that the ice cap would melt and cause global flooding is unfounded.
Because the asteroid would impact at the South Pole, the dust levels are far

less than if the same asteroid impacted in soil and/or rock. Still, enough dust is
lifted into the stratosphere to block up to 10% of the sunlight—enough to impact
global temperature but far from the threshold where photosynthesis becomes
impossible. Reduced light levels and temperature would affect agricultural
production, but the impact on the world’s food supply would be small; food
surpluses in industrialized countries should be able to make up for agricultural
losses in other nations.

The ice vaporized from the crater would form clouds and eventually fall
to earth in liquid form. But the volume of the water is not large enough to
cause large-scale coastal flooding, unless it all falls in a limited area in a limited
amount of time. The dust that is larger than a micron and does not reach the
stratosphere could still have detrimental effects, such as acid rain. But our
model has no way of estimating the amount, location, or effects of possible
acid rain.

Because the asteroid hits in Antarctica, the death toll directly due to impact
is limited to the few hundred researchers stationed there. These casualties
could be eliminated by evacuation if there is enough advance warning.

Strengths and Weaknesses
Our model is successful in that we have quantitative estimates of many of

the effects associated with the impact, such as the range of possible impact
velocities, the range of possible impact energies, the size of the impact crater,
the effect of dust raised by impact in the atmosphere, and the magnitude of
seismic disturbance generated by impact. Our model is simple enough that all
calculations were performed without resorting to a computer.
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The simplicity of our model also brings about some weaknesses. We have
no accurate method to estimate how the total impact energy is distributed. We
are also unable to determine long-term environmental consequences. Because
of the unpredictable nature of atmospheric dynamics, we are unable to develop
a model that would show specific locations and amounts of crops affected by
dust raised from the impact. Our model predicts no direct loss of human life,
but we are unable to take into account human life lost due to effects on food
production.

Our model, while not sophisticated, offers intuitive results. Our estimates
of crater size, impact energy, and magnitude of seismic disturbance correlate
nicely to other models’ predictions, such as those of Hamilton [1998b].
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2000: The Air Traffic Control
Problem

Dedicated to the memory of Dr. Robert Machol,
former chief scientist of the Federal Aviation Agency

To improve safety and reduce air traffic controller workload, the Federal
Aviation Agency (FAA) is considering adding software to the air traffic control
system that would automatically detect potential aircraft flight path conflicts
and alert the controller. To that end, an analyst at the FAA has posed the
following problems.

• Requirement A: Given two airplanes flying in space, when should the air
traffic controller consider the objects to be too close and to require interven-
tion?

• Requirement B: An airspace sector is the section of three-dimensional airspace
that one air traffic controller controls. Given any airspace sector, how do we
measure how complex it is from an air traffic workload perspective? To what
extent is complexity determined by the number of aircraft simultaneously
passing through that sector

– at any one instant?

– during any given interval of time?

– during a particular time of day?

How does the number of potential conflicts arising during those periods
affect complexity? Does the presence of additional software tools to au-
tomatically predict conflicts and alert the controller reduce or add to this
complexity?

In addition to the guidelines for your report, write a summary (no more
than two pages) that the FAA analyst can present to Jane Garvey, the FAA
Administrator, to defend your conclusions.

Comments
The Outstanding papers were by teams from Duke University, Maggie

Walker Governor’s School, the U.S. Military Academy, and the University of
Colorado. Their papers, together with commentaries, were published in The
UMAP Journal 21 (3) (2000): 241–310.
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Problem Origin
The problem was contributed by Robert Rovinsky (Federal Aviation Agency).

Practitioner’s Comments
Jack Clemons (Senior Vice President of Strategic Programs, Lockheed Mar-

tin’s Air Traffic Company) examined the papers from their relevance to the
problems facing real air traffic controllers:

• Thoughtfulness: How well did the team think through the problem state-
ment before addressing it?

• Realism: How close does the proposed solution come to addressing a real-
world problem?

• Usefulness: Is the proposed solution itself applicable to address the world
of the air traffic controller?

The entry from the University of Colorado team evaluated best. This team
spent appreciable time understanding the FAA. The selection of the Denver
International Airport as the system model and obtaining the relevant airport,
airspace, and ATC parameters from this airport were done extremely well. The
team accurately represented the details of the air traffic and correctly asserted
that conclusions drawn should translate into other regions. Second, the team
used the Federal Aviation Regulations (FARs) as the guidance for resolving
technical assumptions. Once again, this shows a real understanding of FAA
procedures. FARs are indeed the governing standard for assessing safety.

The use of a “corrected random walk” to validate the FAA’s minimum
aircraft separation standard was clever. It ignores standard approaches like the
computation of minimum maneuver time required for two aircraft approaching
head on. However, the model used by this team provides an insight for parallel
flight that is novel and confirms the FAA separation standard as well.

The approach taken to quantify stress as a parameter was good. The team
researched the available literature to develop a baseline for ATC stress and
built the model from there. The model used is both simple and probably ap-
plicable. Though arbitrary, the measure of complexity should demonstrate a
logical relationship between traffic patterns and workload stress that can pro-
vide insight into underlying causes. Of course, the motivation was to allow
the team to transform the automation problem into a queueing problem, thus
greatly simplifying the model and still providing insights. The simple queue-
ing model that the team proposed overlooked a significant factor in runway
access, gate availability—even though all runways are clear, traffic may still
have to hold because there are no available passenger gates. However, their
model can easily accommodate this factor.

The results are intuitive and appear to be correct. Further, for the problem
of airport terminal approach and landing at least, they correctly identify which
elements of ATC need remain under the control of humans and which have
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potential for automation. “I would recommend taking [this paper] forward
as is to Ms. Garvey [FAA Administrator] and her staff for review and further
evaluation.”

Reference
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Judge’s Comments
Many papers recognized that aircraft conflict occurs in pairs and proceeded

to assess the maximum number of possible conflicts for a given scenario. Some
papers divided the overall airspace into vertically separated layers and then
developed conflict algorithms for the 2-D problem on a particular layer as
opposed to using a 3-D model from the start. However, several papers fell
back on a tacit 3-D model for complexity without realizing that their earlier
results did not extend to this case. The most common approach to address the
3-D problem directly was to create an inner collision space (either a sphere or
rectangle) around the aircraft and then use a larger alert space (containing this
inner collision space) for early warning. The difference in radii between the
two spaces was used as a measure for air traffic control conflict reaction time,
so that a controller could adjust one of the aircrafts’ courses without causing
excessive internal forces on the aircraft, its passengers, or its cargo.

There was a wide range of techniques used by teams to represent and iden-
tify potential conflicts along aircraft flight paths. Some reduced this problem to
a time-parameterized vector-intersection problem in the 2-D plane, and others
did the same for the 3-D case as well.

There were several more extensive approaches worth noting:

• One paper assumed that a drift error exists from wind effects, weather, and
turbulence along an aircraft flight vector; applied a probability distribution
to this error; and constructed a stochastic simulation to test their model.

• Still another paper incorporated both straight and curved parametric flight
paths into their methodology. If the flight paths of two aircraft drifted suf-
ficiently close to cause an alert space violation, a controller was presumed
to take corrective action. The number of alerts occurring for a given aircraft
density in traffic then became a component of complexity measurement.

Teams that dismissed portions of the problem claiming that “FAA ATC con-
flict software already exists” missed the point: The FAA knows their repertoire
of tools; they are seeking other ideas and approaches that might facilitate a
better solution than the current one.
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You Make the Call: Feasibility of
Computerized Aircraft Control

Richard D. Younger
Martin B. Linck
William P. Woessner
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Advisor: Anne M. Dougherty

Introduction
We investigate whether some of the work done by air traffic controllers

(ATCs) could be handled by computers. Automated systems could act as
watchdogs, heading off crises before they become catastrophes. Specifically,
we investigate at what point an ATC must take charge of a situation to avoid
catastrophe, what sort of decision must be made to remedy the situation, and
how much stress is involved.

Objectives
• Define a minimum safe distance between aircraft.

• Develop a numerical model of air traffic around a busy airport.

• Assess system complexity and corresponding ATC workload under a variety
of circumstances.

• Develop aircraft guidance algorithms that minimize controller stress.

The System
An ATC has three main tasks as an aircraft approaches an airport, all of

which must be carried out as quickly as possible [Wood 1983]:

• Ensure that the aircraft does not collide with another aircraft or any other
obstacle.

• Ensure that the approaching craft is inserted smoothly into the traffic around
the airport, with a minimum of disruption to the flight paths of other aircraft.
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• Guide the aircraft onto a runway, again with a minimum of disruption to
the rest of the traffic around the airport.

Special cases, such as aircraft experiencing mechanical malfunctions, medical
crises, or fuel shortages, must be dealt with, and changing weather conditions
must be taken into account.

To make the simulation concrete, we model Denver International Airport
(DIA); our methods could be extended to nearly any air traffic control center.

Each ATC is assigned a specific type of task. Thus, one set of controllers
assigns flight paths to incoming aircraft, another guides those aircraft to holding
patterns or landing approaches, and yet another guides planes to a safe landing.
As an aircraft passes from one controller to another, the pilots switch radio
frequencies. Each frequency belongs to a specific controller, and each ATC
watches a radar screen on which icons represent flights for which that ATC is
responsible. The tower controllers, who are in charge of landings, can see the
aircraft and so are not as dependent on radar information [FAA 1999].

At DIA, it is common practice to route all incoming flights on north-south
and east-west vectors, since prevailing wind conditions usually favor these
approaches [Wood 1983]. Departing flights must use the same runways as in-
coming flights but once airborne are routed out of DIA airspace on northeast-
southeast and northwest-southwest vectors, to minimize conflicts between in-
coming and outbound aircraft. Figure 1 shows a diagram of the general ap-
proach and departure vectors. To make its final approach and land on a runway,
each aircraft has to pass a point in space approximately 5 mi from the end of
the landing runway and approximately 2 mi (10,000 ft) above ground level.

Figure 1. Airspace approach and departure diagram.
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Assessing Safety
We use real data wherever possible; we consult the Federal Aviation Regu-

lations (FAR) [FAA 1999] whenever technical questions arose.
Federally regulated Instrument Flight Rules (IFR) state that the minimum

safe distance between adjacent aircraft is 1,000 vertical feet and 3 mi of horizon-
tal distance, when aircraft are moving at landing speeds in close proximity to
each other and to the airport. Since the runways at DIA are 4,330 ft apart, this
minimum safe distance must be ignored on final approach and on runways.

Assessing Complexity, ATC Workload and Stress
Goode and Machol [1957], writing about large-scale queueing systems, de-

scribe complexity as “the extent to which any given attribute of a system will
affect all the others if it is changed.” In a complex system, all the variables are
tightly linked; one could not, for example, change the position of an aircraft
without immediately having to change some characteristic of most of the other
aircraft in the system. Unfortunately, measuring this type of complexity is dif-
ficult, since there is no obvious set of measurable system variables for assessing
how closely each variable depends on all the others.

Further, we are interested not merely in the complexity of the system but in
the stress and fatigue that the system is likely to cause its ATCs. Surprisingly,
there is no accepted set of factors that cause ATC stress, fatigue, and error.
Some researchers, such as Redding [1992], have concluded that the number of
incidents was highest when ATC workload was actually moderate to interme-
diate. On the other hand, Morrison and Wright [1989], reviewing NASA data,
report that ATCs make more mistakes when the workload is at its highest. One
innovative study of the phenomenon of ATC fatigue is that by Brookings et al.
[1996]. Their test subjects were Air Force ATCs who were asked to play an
air traffic control simulation and were exposed to scenarios of varying diffi-
culty. One scenario was an “overload scenario,” in which they were asked to
coordinate the movements of 15 aircraft at once. As the ATCs attempted to
deal with each scenario, their heart rates, blink rates, and brain activity were
monitored. Brookings et al. concluded that there was a correlation between
workload and operator stress and that the likelihood of error—in the form of
separation errors (not enough room between planes), fumbled approaches, and
botched handoffs—was directly linked to ATC stress. As a result, we assume
for our simulation that ATC stress should be minimized and that there is no
“optimal stress level” [Redding 1992] at which ATCs should operate.

Based on our literature survey, we conclude that there are four measurable
factors that influence ATC stress levels:

• n, the number of total planes in the airspace around the airport.

• f , the number of separation errors currently occurring in the airspace around
the airport. We assume that a single separation error causes as much stress
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as 20 extra aircraft in the airspace.

• d, the smallest distance between planes currently on the map.

• a, the average distance between aircraft. If all the aircraft are well distributed
throughout the airspace of the airport, the ATCs are likely to experience less
stress than they would if they were all clustered together.

Our formula for the stress-causing complexity experienced by ATCs is

C = n + 20f + 100/d + 100/a.

Queueing Theory, Stochastic Input, and Algorithm
Design

The airport is a queueing system. A queueing system has servers that handle
input, perform some function on the input, and then pass the input to some
other part of the system. Input is not created or destroyed in the system. The
servers are usually referred to as channels. The five active runways of DIA are
the channels of the system.

When the number of servers is inadequate to the amount of input they are
called upon to handle, a queue develops. In the case of an airport, the holding
patterns in which aircraft wait for clearance to land are the queues of the system.

When the amount of traffic is stochastic (determined by a probabilistic dis-
tribution) and the input is discrete, the input density is often described by a
Poisson distribution. The amount of time for each channel to process an input
need not be constant. The standard numerical approach to modeling would
involve setting up an input generator, which would send us airplanes accord-
ing to a density function. We would then set up our channels, and the amount
of time to process each plane would vary, probably according to a normal dis-
tribution. We would also set up holding patterns, to which our planes could
be sent when there are no runways available. We could then let the program
run and see how queues develop as time passes.

Unfortunately, this simple approach doesn’t allow us to investigate all the
questions posed by the problem statement. The objective of the simulation
should be to develop and test algorithms to monitor the position and speed of
aircraft and to alter flight paths to minimize the workload and stress of ATCs. If
we treat airplanes simply as inputs, without them becoming objects maneuver-
ing in space, we cannot adequately test those algorithms. So, a more ambitious
approach is called for, one that allows us to “create airplanes” stochastically,
maneuver them, send them to holding patterns, land them, and assess the value
of stress-causing complexity as the simulation runs.
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The Model
An airport is a continuous system; each airplane continuously changes po-

sition and velocity. However, there are discrete events that characterize the
system, such as takeoffs, landings, and handoffs. Both continuous and discrete
characteristics of the system can be described by a discrete model provided the
time resolution is fine enough. Recognizing this, we develop three numerical
simulations of aircraft behavior, which test:

• the minimum-safe-distance assumption,

• guidance algorithms on aircraft landing, and

• guidance algorithms for aircraft entering and maintaining a holding pattern.

Minimum-Safe-Distance Simulation
Consider two aircraft traveling on parallel flight paths at an airspeed of

300 mph, well below the cruising speed of commercial airliners. Let the vertical
axis be the z-axis, the axis parallel to the flight path be the x-axis, and the axis
perpendicular to both be the y-axis. Wind and other factors perturb the velocity
vectors of the planes according to (we assume) a normal distribution with mean
zero. A large standard deviation might correspond to the planes flying in heavy
weather, a small one to calm weather.

Figure 2. Aircraft separation simulation.

If we did not correct the aircraft’s course, the plane would diverge from its
flight path and move in a random walk as time passes. Our program determines
the distance between the aircraft and its flight path and changes the velocity
vector to bring the plane back on course. Airplanes have maximum rates
of acceleration in any direction, and we assume that the aircraft can change
velocity in any direction by no more than 10 mph/s. The result is a corrected
random walk, with the step size normally distributed and a finite correction to
each step.
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Since the wingspan of an airliner is approximately 200 ft and turbulence
effects surround the aircraft, we assume that if the airliners come within 250 ft
of one another, they collide. We assume for the sake of simplicity that this
holds true in the vertical direction as well. To test our minimum-safe-distance
assumption, we fly planes next to each other for 100 h; if the likelihood of
collision is less than 0.05%, we consider the distance safe for the given weather
conditions.

Developing Aircraft Guidance Algorithms
A flow diagram for our airport is shown in Figure 3.

Figure 3. Flow diagram for an airport.

Airplanes enter the airspace according to a stochastic distribution. If a
landing approach is free, they proceed towards it. If no runway is clear or if
the airspace is too crowded, they are sent to a holding pattern (our queue). The
amount of time in the holding pattern depends on the rates at which planes
land and planes enter the airspace.

We assume that the scheme used to select the next aircraft cleared for ap-
proach to landing is FIFO (first in, first out). If we wished to take into consid-
eration factors such as fuel or other flight emergencies, each plane would have
to be assigned a priority and planes would be pulled from the queue according
to priority.

Once an aircraft has been cleared for approach, it must select a runway. If
the nearest runway is not free, the aircraft must circle until one is. Once it finds
a clear runway, it may land. The runway is then occupied for some (perhaps
stochastic) amount of time. The aircraft then spends some (perhaps stochastic)
amount of time on the ground and takes off again.

The process can be divided into boxes, or areas. How much stress airplanes
in a given area cause to the ATCs depends on the number of airplanes and the
extent to which guidance algorithms manage to control the aircraft. Aircraft just
entering or just leaving the airspace are unstressful, since they are presumably
spaced out along a very large circumference. Aircraft within 5 mi of a runway
that are coming in to land are admitted only when a runway is clear; they are
handled by ATCs who monitor those flights visually as well as via radar. The
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consequences of a mistake in this function are so high that we can safely assume
that humans will handle this task for the foreseeable future.

There remain two areas in which our algorithms might ease controller stress:

• aircraft that have received clearance and must line up for a landing. Figure 4
shows runway checkpoints, through one of which an aircraft must pass to
land.

• aircraft that have not been cleared to land and must be sent to a queue.
Figure 5 shows the set of checkpoints that comprise the holding pattern.
An aircraft can enter the holding pattern at any checkpoint, and, if properly
guided, proceeds to the next checkpoint in the sequence. It cycles through
the sequence until given clearance to approach. All aircraft move through
the sequence in the same direction, to avoid head-on collisions.

We design algorithms to maintain aircraft spacing while guiding those aircraft,
either toward a runway checkpoint, or through the circular set of checkpoints
that form the queue.

Figure 4. Runway checkpoints. Figure 5. Queue checkpoints. Arrow in-
dicates flight direction.

The Algorithms
Single-Avoidance

This algorithm determines the distance between each aircraft and that air-
craft’s next checkpoint and orients the aircraft toward the checkpoint. It also
evaluates the distance between that aircraft all other aircraft; if any distance
is equal to or smaller than the minimum distance (3 mi horizontal, 1,000 ft
vertical), it then orients the aircraft directly away from the dangerously close
airplane (the aircraft in the airspace longer changes course) without changing
speed. Once the distance again exceeds the minimum safe distance, the aircraft
that had to change its course looks for its nearest objective (which need not be
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the same objective that it was originally approaching) and changes course to-
ward that objective. An example of aircraft being guided toward a landing
checkpoint by the single-avoidance algorithm is shown in Figure 6.

Figure 6. Aircraft converging on run-
way checkpoints while guided by the Sin-
gle-Avoidance Algorithm.

Figure 7. Aircraft moving toward landing
checkpoints under the Double-Avoidance
Algorithm.

Double Avoidance
If the distance between two aircraft drops below the minimum safe dis-

tance, both aircraft head away from each other, changing courses equally and in
opposite directions without changing speeds. Figure 7 shows an aircraft being
guided toward a landing checkpoint by the Double-Avoidance Algorithm.

Single-Vector Repulsion
Unlike the first two algorithms, this algorithm constantly measures the dis-

tance between the aircraft under its control and that aircraft’s nearest neighbor.
It alters the course of that aircraft before a separation error can occur. The
scheme used to correct the aircraft’s flight path is as follows.

In each time step, the algorithm determines the direction in which the air-
craft must fly to reach the nearest checkpoint. It thus establishes a velocity
vector �V for the aircraft, whose magnitude cannot change but whose direction
is corrected in every time step. It then finds the vector �D that connects the craft
under guidance with its nearest neighbor and calculates a correction vector �A

whose direction is the same as that of �D but whose magnitude is

|| �A|| =
b

|| �D||2 ,

where b is a scaling constant. If b is large, the correction is severe, even at large
distances; if b is very small, we run the risk that flight paths will not be adjusted
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quickly enough and the aircraft will come to close to each other.
The velocity vector �V is corrected to �Vc = �V − �A. The result is that every

aircraft is repelled by the aircraft nearest to it, with increasing intensity as the
distance between the adjacent aircraft becomes smaller. At the same time, the
aircraft remains attracted to its objective.

If there are only two aircraft in the simulation, and both are headed for the
same objective, they behave like a pair of negatively charged ions approaching a
large positively charged sphere (this analogy breaks down when there are more
than two aircraft). Figure 8 shows aircraft maneuvering toward an objective
while guided by the Single-Vector Repulsion Algorithm. Note that most of the
aircraft maintain much better spacing than with the previous algorithms.

Figure 8. Aircraft maneuvering toward
landing checkpoints under the guidance
of the Single-Vector Repulsion Algorithm.

Figure 9. The Multiple-Vector Repulsion
Algorithm.

Multiple-Vector Repulsion
The Multiple-Vector Repulsion Algorithm has the same vector mechanics

as the Single-Vector Repulsion Algorithm, but each airplane is repelled not
just by its nearest neighbor but by every other airplane in the airspace. The
behavior of a number of aircraft headed toward a single objective would be
roughly analogous to a group of negatively charged ions heading toward a
large positively charged sphere. With more than one objective, however, the
analogy is less apt, since each “ion” is attracted only to the nearest sphere.
Figure 9 shows 10 aircraft approaching a checkpoint under the guidance of the
Multiple-Vector Repulsion Algorithm.
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Testing the Algorithms
The Landing Approach Test

In this test, aircraft enter the airspace according to a normal distribution with
mean 120 s and a standard deviation of 60 s. The points on the circumference
of the airspace are evenly and randomly distributed. The airspace is centered
on the airport and has a radius 50 mi. Each aircraft enters the airspace at an
altitude of 6 mi (close to cruising altitude) and descends to one of 10 runway
checkpoints (each of the 5 runways can be approached from either end), each
located 5 mi from the end of a runway and at an elevation of 2 mi. Once
an airplane reaches a runway checkpoint, its velocity instantly becomes zero.
This ensures that no further aircraft can reach that checkpoint while the plane
remains in place. After a set period of time (1 min in our simulation, based on
the FAR [FAA 1999]), the airplane disappears and can be described as having
landed. The runway is then clear and a new aircraft can occupy that checkpoint.
The value for ATC stress is calculated at each time step.

The Queueing Test
Aircraft enter the airspace just as they do in the landing approach test.

They descend to a set of queueing checkpoints and maneuver around those
checkpoints in a holding pattern. Each holding pattern has a saturation level
of airplanes, equal to the perimeter of the pattern divided by twice the minimum
allowable distance between aircraft. Aircraft are added to the holding pattern
stochastically until saturation is reached. We calculate the amount of ATC stress
that the holding pattern generates. Figure 10 shows 10 aircraft descending
toward and entering the holding pattern under the control of the Single-Vector
Repulsion Algorithm.

Figure 10. Aircraft being maneuvered in to a holding pattern by the Single-Vector Repulsion
Algorithm.
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Simplifying Assumptions in Testing the Algorithms
• All aircraft behave like commercial air carrier aircraft.

• The velocity of all aircraft is 300 mph.

• The minimum vertical separation between aircraft is 1,000 ft.

• The minimum horizontal separation between aircraft is 3 mi.

• The turning radius of all aircraft is negligibly small compared to the overall
airspace.

• An aircraft has reached a checkpoint when it has passed within 1 mi of that
checkpoint.

• Weather conditions do not affect the behavior of aircraft and are not consid-
ered.

• No aircraft is given any special priority over any other; fuel and emergency
considerations are therefore ignored.

• There is no coordinating intelligence at work. The human ATCs can watch
the simulation (and be stressed by it), but all actions of the aircraft are deter-
mined by the algorithm being tested.

• Aircraft are incapable of acting without instructions from the control algo-
rithms. In essence, the pilot of each aircraft blindly and unquestioningly
follows the orders given by the algorithm.

The following assumptions apply only to the Landing Approach test for all
algorithms:

• A runway approach checkpoint remains occupied for 1 min.

• Any aircraft that reaches an approach checkpoint lands; there are no failed
landing attempts.

• Once an aircraft has landed, it ceases to interact with any other aircraft and
disappears from the simulation.

• Outbound aircraft do not interact with inbound aircraft and hence do not
appear in the simulation. Figure 11 shows that with our current checkpoint
system, corridors develop in which there is no inbound traffic. So we as-
sume that outbound traffic passes through these corridors and need not be
accounted for.
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Figure 11. Typical traffic pattern when aircraft head toward the checkpoints from the periphery.
Note the open corridors, along which outbound traffic can be routed.

Results and Commentary

Minimum-Safe Distance Simulation
Figure 2 shows the flight paths of two aircraft as they travel next to each other

for 5 min, together with ideal flight paths that are separated by 3 mi. The results
of many such simulations are given in Figure 12. Each data point represents
the average of 150 runs, with each run lasting 100 h. The components of each
aircraft’s velocity are each disturbed by components with a mean of zero and
with standard deviations as noted in the legend. The disturbances correspond
to moderate, heavy, and severe weather conditions.

Figure 12. Probability of collision in a 100 h run as a function of initial separation.
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The likelihood of collision is well under our 0.05% criterion when the sep-
aration distance is 3 mi. In fact, in the course of all 450 runs of 100 h, over
all three disturbance levels, no collisions occur. The likelihood of collision
increases exponentially as the horizontal separation distance decreases and be-
comes appreciable at 1.8 mi, where the first collision occurs. We conclude that
FAA regulations give a secure safety margin and so abide by them for the rest
of the simulation.

Holding Pattern and Landing Approach Simulations
There are no statistically significant differences among the stress levels for

our four test algorithms, neither for holding pattern nor landing approach
simulations. The holding pattern simulation achieves equilibrium with little to
no stress and then the stress levels out. Since the landing simulation is much
more complicated, one would expect sharp spikes and peaks in the stress, and
this is what we see. Figures 13 (generated using the Single-Vector Repulsion
Algorithm) and 14 (generated using the Multiple-Vector Repulsion Algorithm)
show sample graphs of stress vs. time for the queueing and landing simulations,
respectively.

In Figure 13, the stress rises as planes are added; when the pattern is satu-
rated, the stress level becomes steady. There are few collision warnings; the rise
in stress is caused by the decreasing proximity of the planes as they approach
the holding pattern.

Figure 14, however, is fascinating. For 0 < t < 5,000, the graph is piecewise
continuous, but the rest is totally discontinuous. In our definition of stress,
there are two continuous terms and two discrete terms. Over the first 5,000 s
of the simulation, the continuous terms play an important role in stress; but
during the latter 5,000 s, the continuous terms die off, leaving the discrete terms
to determine the stress.

Figure 13. Stress vs. time for a queueing
simulation.

Figure 14. Stress vs. time for a landing
simulation.

Table 1 gives summary statistics for both simulations run with each of the
controlling algorithms. Each scenario was repeated 100 times. The seed for
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the pseudorandom number generator was held constant across the controlling
algorithms, so that each algorithm received the same input.

Table 1.

Descriptive statistics from the simulations.

Landing Simulation Queueing Simulation

Mean SD Mean SD

Single Avoidance 12.8 0.8 4.1 1.9
Double Avoidance 14.2 1.7 4.1 1.9
Single-Vector Repulsion 14.2 1.7 4.1 1.9
Multiple-Vector Repulsion 13.2 1.6 4.8 2.2

The most interesting result is that the Single Avoidance Algorithm performs
better than the other more clever algorithms. Here we can draw a parallel to
the phenomenon from computer science known as deadlock. Deadlock occurs
when two or more processes cannot continue executing because each process
is requesting resources owned by the other process [Nutt 1999]. Despite much
research and many clever algorithms, the standard way to handle deadlock
in a computing environment is to just pick a winner, usually the process that
has been waiting the longest. The Single Avoidance Algorithm is analogous:
When two planes request the same airspace, only one can be awarded it; the
algorithm picks a winner and vectors the loser away.

To make the Multiple-Vector Repulsion Algorithm more efficient, we in-
crease the repulsion factor between planes; if planes are kept farther apart,
they will not incur collision warnings. The idea is good but the results are not
encouraging. Figure 15 is a plot of stress vs. time for the landing simulation
using the Multiple-Vector Repulsion Algorithm with increased repulsion.

Figure 15. Stress vs. time for the landing simulation using the Multiple-Vector Repulsion Algorithm
with increased repulsion.
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We see a monotonically increasing stress level—certainly not the desired
result. We can explain this phenomenon too in terms of deadlock. Imagine
that two airplanes approach a checkpoint on opposite approach vectors. When
they get close enough to each other, the repulsion factor makes them turn
around. When they again get far enough away from each other, they turn
around and fly back toward the checkpoint; and the cycle repeats. The planes
become deadlocked, so very few planes can land. Hence, the number of planes
in the airspace increases, leading to increasing stress.

The queueing simulations generate very little stress. Hence, software should
be able to take control of a plane, vector it into a holding pattern, and keep it
there.

Strengths and Weaknesses
More factors contribute to this system than we are able to consider in a

weekend. However, our model is modularized to the point where modules
can be run independently of each other, making it easy to focus on specific
parts of the model.

It took our workstation approximately two hours to generate the data for
our limited model, but parallel processors could each handle a set of planes.

Our model covers all of the major elements of an airport simulation; while
it is based on DIA, it can easily be generalized.

Conclusions and Recommendations
We conclude from our simulation that FAA guidelines for aircraft separation

give a generous margin for navigational, technical, and pilot error. Perhaps they
could be relaxed, especially for well-controlled parallel landing situations in
good to moderate weather.

The air traffic control problem exhibits many traits common to NP-complete
problems:

• There is no deterministic way to pick the best solution.

• Humans appear to control air traffic much more effectively than computers
could.

• Changes in the control algorithm for our simulation do not seem to impact
the quality of the solution at all.

These features lead us to speculate that this problem is indeed NP-complete.
The computer does, however, handle the queueing problem fairly well;

planes are vectored into the queue and held there with minimal stress. These
results are promising; they suggest that though computers should not replace hu-
mans as the primary means of air traffic control, computers might be capable of handling
the more mundane tasks.
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2001: The Hurricane
Evacuation Problem

Evacuating the coast of South Carolina ahead of the predicted landfall of
Hurricane Floyd in 1999 led to a monumental traffic jam. Traffic slowed to
a standstill on Interstate I-26, which is the principal route going inland from
Charleston to the relatively safe haven of Columbia in the center of the state.
What is normally an easy two-hour drive took up to 18 hours to complete. Many
cars simply ran out of gas along the way. Fortunately, Floyd turned north and
spared the state this time, but the public outcry is forcing state officials to find
ways to avoid a repeat of this traffic nightmare.

The principal proposal put forth to deal with this problem is the reversal
of traffic on I-26, so that both sides, including the coastal-bound lanes, have
traffic headed inland from Charleston to Columbia. Plans to carry this out
have been prepared (and posted on the Web) by the South Carolina Emergency
Preparedness Division. Traffic reversal on principal roads leading inland from
Myrtle Beach and Hilton Head is also planned.

A simplified map of South Carolina is shown in Figure 2. Charleston has
approximately 500,000 people, Myrtle Beach has about 200,000 people, and
another 250,000 people are spread out along the rest of the coastal strip. (More
accurate data, if sought, are widely available.)

The interstates have two lanes of traffic in each direction except in the
metropolitan areas, where they have three. Columbia, another metro area of
around 500,000 people, does not have sufficient hotel space to accommodate
the evacuees (including some coming from farther north by other routes); so
some traffic continues outbound on I-26 towards Spartanburg, on I-77 north to
Charlotte, and on I-20 east to Atlanta. In 1999, traffic leaving Columbia going
northwest was moving only very slowly.

Construct a model for the problem to investigate what strategies may re-
duce the congestion observed in 1999. Here are the questions that need to be
addressed:

1. Under what conditions does the plan for turning the two coastal-bound
lanes of I-26 into two lanes of Columbia-bound traffic, essentially turning
the entire I-26 into one-way traffic, significantly improve evacuation traffic
flow?

2. In 1999, the simultaneous evacuation of the state’s entire coastal region was
ordered. Would the evacuation traffic flow improve under an alternative
strategy that staggers the evacuation, perhaps county by county over some
time period consistent with the pattern of how hurricanes affect the coast?

3. Several smaller highways besides I-26 extend inland from the coast. Under
what conditions would it improve evacuation flow to turn around traffic on
these?
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Figure 2. Highways in South Carolina.

4. What effect would it have on evacuation flow to establish additional tempo-
rary shelters in Columbia, to reduce the traffic leaving Columbia?

5. In 1999, many families leaving the coast brought along their boats, campers,
and motor homes. Many drove all of their cars. Under what conditions
should there be restrictions on vehicle types or numbers of vehicles brought
in order to guarantee timely evacuation?

6. It has been suggested that in 1999 some of the coastal residents of Georgia
and Florida, who were fleeing the earlier predicted landfalls of Hurricane
Floyd to the south, came up I-95 and compounded the traffic problems. How
big an impact can they have on the evacuation traffic flow?

Clearly identify the measures of performance that are used to compare
strategies.

Required: Prepare a short newspaper article, not to exceed two pages, ex-
plaining the results and conclusions of your study to the public.
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Comments
The Outstanding papers were by teams from Bethel College, Duke Uni-

versity, Maggie Walker Governor’s School, Harvey Mudd College, Lawrence
Technological University, and Wake Forest University. Their papers, together
with a judge’s commentary, were published in The UMAP Journal 22 (3) (2001):
257–343.

Problem Origin
The problem was contributed by Jerrold R. Griggs (University of South

Carolina).

Judge’s Comments
Mark Parker (Carroll College, MT) divided the teams’ approaches into two

general categories:

Macroscopic: Traffic on a particular highway or segment of highway was con-
sidered to be a stream, and a flow rate for the stream was characterized.
Among the successful approaches in this category were fluid dynamics and
network flow algorithms.

Microscopic: These can be considered car-following models, where the spacing
between and the speeds of individual vehicles are used to determine the
flow. Among the successful approaches were discrete event simulations
(including cellular automata) and queuing systems.

By far, the most common approach was to determine that the flow q, or flux,
is a function of the density ρ of cars on a highway and the average speed v of
those cars: q = ρv. Successful approaches identified the following characteris-
tics of the basic traffic flow problem:

• When the vehicle density on the highway is 0, the flow is also 0.

• As density increases, the flow also increases (up to a point).

• When the density reaches its maximum, or jam density ρ0, the flow must be 0.

• Therefore, the flow initially increases, as density does, until it reaches some
maximum value. Further increase in the density, up to the jam density,
results in a reduction of the flow.

At this point, many teams either derived from first principles or used one of the
many resources available on traffic modeling (such as Garber and Hoel [1999])
to find a relationship between the density and the average speed. Three of the
common macroscopic models were:
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• a linear model developed by Greenshield:

v = v0

(
1 − ρ

ρ0

)
, so q = ρv0

(
1 − ρ

ρ0

)
;

• a fluid-flow model developed by Greenberg:

v = v0 log
ρ

ρ0
, so q = ρv0 log

ρ

ρ0
;

or

• a higher-order model developed by Jayakrishnan:

v = v0

(
1 − ρ

ρ0

)a

, so q = ρv0

(
1 − ρ

ρ0

)a

,

where v0 represents the speed that a vehicle would travel in the absence of
other traffic (the speed limit). By taking the derivative of the flow equation
with respect to speed (or density), teams then found the optimal speed (or
density) to maximize flow.

Many teams took the optimal flow from one of the macroscopic approaches
and used it as the basis for a larger model. One of the more common models
was simulation, to determine evacuation times under a variety of scenarios.

To make it beyond the Successful Participant category, teams had to find a
way realistically to regulate traffic density to meet these optimality conditions.
Many teams did this by stipulating that ramp metering systems (long term) or
staggered evacuations (short term) could be used to control traffic density.

A number of mathematically rigorous papers started with a partial differ-
ential equation, derived one of the macroscopic formulas, determined appro-
priate values for the constants, calculated the density giving the optimal flow,
and incorporated this flow value into an algorithm for determining evacuation
time. In spite of the impressive mathematics, if no plan was given to regulate
traffic density, the team missed an important concept of the MCM: the realistic
application of a mathematical solution to a real-world problem.

To survive the cut from Honorable Mention to Meritorious, a paper had to
have a unique aspect on some portion of the problem, such as a unique model-
ing approach or some aspect of the problem analyzed particularly well. Thus,
papers that failed to address all questions or had a fatal weakness that pre-
vented their model from being extended could still be considered Meritorious.
The Meritorious papers typically had very good insight into the problem but
deficiencies as minor as missing parameter descriptions or model implemen-
tation details.

To be Outstanding, a paper had to meet the minimum requirements of:

• addressing all 6 questions,

• including all required elements (e.g., the newspaper article), and
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• including some sort of validation of the model.

We were also particularly interested in how teams modeled the I-26/I-95 inter-
change and the congestion problem in Columbia. Many teams chose to treat
Columbia as the terminal point of their model and assumed that all cars arriving
there would be absorbed without creating backups.

The six Outstanding papers:

• developed a solid model that allowed them to address all six questions, and
analyze at least one very thoroughly;

• made a set of clear recommendations;

• analyzed their recommendations within the context of the problem; and

• wrote a clear and coherent paper describing the problem, their model, and
their recommendations.

The INFORMS prizewinner, from Lawrence Technical University, combined
Greenshield’s model with a discrete event simulation: a solid paper with logical
explanations and good analysis. The team’s model handled bottlenecks, and
the team used a simulation of the actual 1999 evacuation to validate their model.
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Blowin’ in the Wind

Mark Wagner
Kenneth Kopp
William E. Kolasa
Lawrence Technological University
Southfield, MI

Advisor: Ruth G. Favro

Introduction
We present a model to determine the optimal evacuation plan for coastal

South Carolina in the event of a large hurricane. The model simulates the
flow of traffic on major roads. We explored several possible evacuation plans,
comparing the time each requires.

Traffic flow can be significantly improved by reversing the eastbound lanes
of I-26 from Charleston to Columbia. By closing the interchange between I-26
and I-95 and restricting access to I-26 at Charleston, we can reduce the overall
evacuation time from an original 31 h to 13 h.

However, a staggered evacuation plan, which evacuates the coastline county
by county, does not improve the evacuation time, since traffic from each coastal
population center interferes little with traffic flowing from other areas being
evacuated. Although reversing traffic on other highways could slightly im-
prove traffic flow, it would be impractical. Restrictions on the number and
types of vehicles could speed up the evacuation but would likely cause more
problems than improvements.

Theory of Traffic Flow
We require a model that simulates traffic flow on a large scale rather than

individual car movement. We take formulas to model traffic flow from Beltrami
[1998]. Although traffic is not evenly distributed along a segment of road, it
can be modeled as if it were when large segments of road are being considered.
We can measure the traffic density of a section of road in cars/mi. The traffic
speed u at a point on the road can be calculated from the density according to
the formula

u(r) = um

(
1 − ρ

ρm

)
,

where ρ is the traffic density, um is the maximum speed of any car on the road,
and ρm is the maximum traffic density (with no space between cars). We define
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the flow of traffic at a point on the road as the number of cars passing that point
in a unit of time. The flow q can be easily calculated as

q(ρ) = ρu.

It is the flow of traffic that we desire to optimize, since greater flow results in a
greater volume of traffic moving along a road.

Assumptions
• During an evacuation, there is an average of 3 people per car. This is rea-

sonable, since people evacuate with their entire families, and the average
household in South Carolina has 2.7 people, according to the 1990 census.

• The average length of a car on the road is about 16 ft.

• In a traffic jam, there is an average of 1 ft of space between cars.

• The two above assumptions lead to a maximum traffic density of

5280 ft/mile
17 ft/car

= 310 cars/mile/lane.

• The maximum speed is 60 mph on a 4-lane divided highway, 50 mph on a
2-lane undivided country road.

• Vehicles follow natural human tendencies in choosing directions at intersec-
tions, such as preferring larger highways and direct routes.

• The traffic flow of evacuees from Florida and Georgia on I-95 is a continuous
stream inward to South Carolina.

• When vehicles leave the area of the model, they are considered safely evac-
uated and no longer need to be tracked.

• There will not be traffic backups on the interstates at the points at which they
leave the area of the model.

• A maximum of 30 cars/min can enter or exit a 1-mi stretch of road in a pop-
ulated area, by means of ramps or other access roads. Up to the maximum
exit rate, all cars desiring to exit a highway successfully exit.

• The weather does not affect traffic speeds. The justifications are:

– During the early part of the evacuation, when the hurricane is far from
the coast, there is no weather to interfere with traffic flowing at the
maximum speed possible.
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– During the later part of the evacuation, when the hurricane is approach-
ing the coast, traffic flows sufficiently slowly that storm weather would
not further reduce the speed of traffic.

• There is sufficient personnel available for any reasonable tasks.

Objective Statement
We measure the success of an evacuation plan by its ability to evacuate

all lives from the endangered areas to safe areas between announcement of
mandatory evacuation and landfall of the hurricane; the best evacuation plan
takes the shortest time.

Model Design

The Traffic Simulator
Our traffic simulator is based on the formulas above. Both space and time

are discretized, so that the roads are divided into 1-mi segments and time is
divided into 1-min intervals. Vehicles enter roads at on-ramps in populated
areas, leave them by off-ramps, and travel through intersections to other roads.

Each 1-mi road segment has a density (the number of cars on that segment),
a speed (mph), and a flow (the maximum number of cars that move to the
next 1-mile segment in 1 min). Each complete road section has a theoretical
maximum density ρm and a practical maximum density ρ′m (accounting for 1 ft
of space between cars), which can never be exceeded.

Moving Traffic Along a Single Road
The flow for each road segment is calculated as

q(ρ) =
ρu

um
.

If the following road segment is unable to accommodate this many cars, the
flow is the maximum number of cars that can move to the next segment.

Moving Traffic Through Intersections
When traffic reaches the end of a section of road and arrives at an inter-

section, it must be divided among the exits of the intersection. For each inter-
section, we make assumptions about percentages of cars taking each direction,
based on the known road network, the capacities of the roads, and natural hu-
man tendencies. If a road ends at an intersection with no roads leading out (i.e.,
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the state border), there is assumed to be no traffic backup; traffic flow simply
continues at the highest rate possible, and the simulation keeps track of the
number of cars that have left the model.

Conflicts occur when more cars attempt to enter a road section at an inter-
section than that road section can accommodate. Consider a section of road
that begins at an intersection. Let:

qmax = ρ′m − ρ = the maximum influx of cars the road can accommodate at the
intersection,

q1, . . . , qn = the flows of cars entering the road at an intersection, and

qin =
∑

qi = the total flow of cars attempting to enter the road at the intersec-
tion.

If qin > qmax, then we adjust the flow of cars entering the road from its
entrance roads as follows:

q′i =
qi

qin
qmax.

Therefore, q′i is the number of cars entering the road from road i. The flow of
traffic allowed in from each road is distributed according to the flow trying to
enter from each road. Clearly,

∑
q′i = qmax.

Simulating Populated Areas
A section of road that passes through a populated area has cars enter and

leave by ramps or other access roads. We assume that the maximum flow of
traffic for an access ramp is 30 cars/min. We estimate the actual number of cars
entering and leaving each road segment based on the population of the area.

Cars cannot enter a road if its maximum density has been reached. For
simplicity, however, we assume that cars desiring to exit always can, up to the
maximum flow of 30 cars/min per exit ramp.

We desire to know how the population of each populated area changes
during the evacuation, so that we can determine the time required. Therefore,
we keep track of the population in the areas being evacuated, Columbia, and
certain other cities in South Carolina. If all people have been evacuated from
an area, no more enter the road system from that area.

Areas do not have to be evacuated immediately when the simulation starts.
Each area may be assigned an evacuation delay, during which normal traffic is
simulated. Once the delay has passed, traffic in the area assumes its evacuation
behavior.

Completing an Evacuation
The six coastal counties of South Carolina (where Charleston includes the

entire Charleston area) and the roads leading inland from these areas must be
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evacuated. When the population of these areas reaches zero, and the average
traffic density along the roads is less than 5 cars/mi, the evacuation is complete
and the simulation terminates.

Implementing the Model
We implemented the model described above in a computer program written

in C++. The logic for the main function is as follows: For each road, we let traffic
exit, resolve traffic at intersections, move traffic along the rest of the road, and
finally let cars enter the road. We loop until the evacuation is complete.

Traffic flow is considered simultaneous; the traffic flow along every road is
determined before traffic densities are updated. However, exits occur first and
entrances last, to accurately simulate traffic at access ramps.

Model Results

Simulating the 1999 Evacuation
To simulate the evacuation of 1999, we prepared a simplified map that in-

cludes the interstates, other the 4-lane divided highways, and some 2-lane un-
divided roads. We simulated the evacuation of the coastal counties—Beaufort,
Jasper, Colleton, Georgetown, and Horry (including Myrtle Beach)—and the
Charleston metro area. The inland areas we considered are Columbia, Spar-
tanburg, Greenville, Augusta, Florence, and Sumter. In addition, we simulated
large amounts of traffic from farther south entering I-95 N from the Savannah
area. A map of the entire simulation is shown in Figure 1.

The results of running this simulation with conditions similar to those of the
actual evacuation produced an evacuation time of 31 h to get everyone farther
inland than I-95. This is significantly greater than the actual evacuation time
and completely unacceptable. The increase in time can be explained by two
features of the actual evacuation that are missing in the simulation:

• Only 64% of the population of Charleston left when the mandatory evacu-
ation was announced [Cutter and Dow 2000; Cutter et al. 2000]; our model
assumes that everyone leaves.

• Late in the day, the eastbound lanes of I-26 were reversed, eliminating the
congestion.

Simulating Reversal of I-26
In this simulation, I-26 E was turned into a second 2-lane highway leading

from Charleston to Columbia. The evacuation time was reduced to 19 h. Under
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Figure 1. Map of the simulation.

all conditions tested, reversing traffic on the eastbound lanes of I-26 significantly
reduces evacuation time.

Simulating a Staggered Evacuation
A staggered evacuation of the coastal counties of South Carolina, going from

south to north with 1 h delays, decreases the time for evacuation to 15.5 h—
2.5 longer than the best time (described below). This is because the second-
slowest county to evacuate, Horry County, is the northernmost and the last
to evacuate. An analysis of the evacuation routes used reveals why there is
no improvement: The roads for the large counties do not intersect until they
reach Columbia. Given that the evacuation of Charleston County takes 13 h,
the evacuations of the other large counties (Horry and Beaufort) would need
to be advanced or delayed at least this much to have any effect.

Reversing Other Highways
Reversing traffic on smaller highways might improve traffic flow, but this

is not a practical option. None of the roads besides I-26 is a controlled-access
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road; therefore, it is impossible to ensure that the traffic entering the reversed
lanes would all move in the desired direction. A single vehicle entering and
attempting to travel in the undesired direction would cause a massive jam.

The possible minor highways to Columbia that could be reversed are U.S.
highways 321, 176, 521, 378, 501, and 21. All are non-controlled-access roads,
meaning that there are no restrictions on where vehicles may exit or enter.
Together, they have 450 mi of roadway. A quick examination of U.S. 501, the
highest-capacity of these, reveals two intersections per mile with other roads.
Considering this as typical, there are 900 intersections outside of towns that
would need to be blocked. Factoring in the no fewer than 60 towns along the
way, the blocking becomes prohibitive.

Therefore, reversal of minor highways leading inland is not feasible. The
only road that can be feasibly reversed is I-26.

Adding Temporary Shelters to Columbia
According to our simulation, the population of the Columbia area after the

evacuation (in the best-case scenario) was 1,147,000, a massive number above
the 516,000 permanent residents. If more temporary shelters were established
in Columbia, there would be less traffic leaving the city and therefore more
congestion within the city. This would reduce the rate at which traffic could
enter Columbia and lead to extra traffic problems on the highways leading into
it. The effect of this congestion is beyond our computer simulation.

We investigated buildings for sheltering evacuees. Using smartpages.com
to search for schools, hotels, and churches in the Columbia area, we found the
numbers of buildings given in Table 1. We assumed an average capacity for
each type of building. According to the table, Columbia can shelter 1,058,251;
this leaves a deficit of 89,000.

Table 1.

Post-evacuation sheltering in the two counties (Richland and Lexington) that Columbia occupies.

Buildings People sheltered
Type in Richland in Lexington Total Per building Number

Permanent residents 516,251
Schools—general * 83 113 196 900 176,400
Hotels/motels 80 32 112 500 56,000
Churches 568 386 954 250 238,500
Schools—other** 63 16 79 900 71,100

Total 1,058,251

*We assume that schools average 600 students and can shelter 900.
**Includes academies but excludes beauty schools, trade schools, driving schools, etc.

However, Charlotte NC had only a very small increase in population due to
evacuation (from 396,000 to 411,000). The people that Columbia cannot shelter
can easily find shelter in Charlotte.
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Restricting Vehicle Types and Vehicle Numbers
Restrictions on numbers and types of vehicles would indeed increase the

speed of the evacuation. However, there are no reliable ways to enforce such
restrictions. Consider the following arguments:

• Forbidding camper vehicles may be unsuccessful, since for a sizable fraction
of tourists the camper is their only vehicle.

• Restricting the number of vehicles to one per family:

– The record-keeping involved would be prohibitive.

– For some families, more than one vehicle is needed to carry all of the
family members.

The I-95 Traffic Problem
We assume that if the interchange is not closed, at least 75% of the people

coming up from Florida and Georgia on I-95 will take I-26 to Columbia. This is
because the next major city reachable from I-95 is Raleigh, 150 mi further on. In
our simulation, not closing this intersection (but keeping the eastbound lanes
of I-26 reversed) increases the evacuation time to 19 h.

The Best Simulated Evacuation Plan
By altering various model parameters, we reduced the overall evacuation

time to 13 h:

• Reverse the eastbound lanes of I-26.

• Close the exit on I-95 N leading to I-26 W.

• Limit the flow of traffic from Charleston to I-26 W.

The third item is necessary to reduce congestion along I-26 in the Charleston
area. If too many cars are allowed on, the speed of traffic in Charleston drops
significantly. Although this unlimited access results in a greater average speed
on the section of I-26 between Charleston and the I-95 interchange, the slow-
down in the Charleston area is exactly the type of backup that caused complaints
in 1999 and resulted in a greater total time to evacuate the city.

Conclusions
It is possible to evacuate coastal South Carolina in 13 h. Assuming that a

hurricane watch is issued 36 h prior to landfall, the state can allow an ample
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delay between voluntary evacuation announcement and a subsequent manda-
tory order. However, state agencies must take considerable action to ensure
that the evacuation will go as planned:

• Close the interchange between I-26 and I-95. Traffic on I-26 must remain on
I-26; traffic on I-95 must remain on I-95.

• The two eastbound lanes of I-26 must be reversed immediately upon the
mandatory evacuation order.

• In Charleston, restrict entrance to I-26 to 15 cars/min at each entrance ramp.

Everyone in the areas to evacuate must be notified. Within South Carolina, the
existing Emergency Alert System includes many radio stations that can inform
the public of the incoming hurricane, the steps to take during evacuation, and
which roads to use.

Residents must be more convinced to evacuate than they were during Hur-
ricane Floyd. Appropriate measures must be taken to ensure that residents
evacuate and evacuate far enough inland.

Model Strengths and Weaknesses

Strengths
The model’s predictions have a number of features found in a real evacua-

tion or other high-density traffic flow:

• An initial congested area around the entrance ramps gives way to a high-flow
area when there is no entering traffic.

• Overall traffic speed in high-flow areas is around 35 mph.

• Merging traffic causes a major decrease in flow.

Weaknesses
The model does not take into account

• city streets, which are important in moving people from the highways to
shelter in Columbia.

• accidents. A single accident or breakdown could result in several hours of
delay. Tow trucks should be stationed at regular intervals along major roads.

• local traffic on the non-controlled-access highways, which would slow traf-
fic on those roads.
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Students Develop Optimal
Coastal Evacuation Plan

Southfield, Mich., Feb. 12—
During September 13–15, 1999, Hurri-
cane Floyd threatened landfall along
the coast of South Carolina. In re-
sponse to weather advisories and a
mandatory evacuation order from the
governor, hundreds of thousands of
people simultaneously attempted to
evacuate the coastal regions including
Charleston and Myrtle Beach, causing
unprecedented traffic jams along ma-
jor highways. Although the evacu-
ation was successful in that no lives
were lost (largely since Floyd did not
have as great an impact in the ex-
pected area), the evacuation was a fail-
ure in that it was not executed quickly
nor completely enough to ensure the
safety and well-being of all evacuating
citizens had Hurricane Floyd made
landfall in the Charleston area.

Since that problematic evacuation
in 1999, state officials have been work-
ing on plans for a safe, efficient evac-
uation of the South Carolina coast,
preparing for the event that a hur-
ricane like Floyd threatens the coast
again. They posed the problem to
teams of mathematicians all over the
country.

After working for four days, a
group of talented students evolved
a specific plan to safely and quickly
evacuate every coastal county in South
Carolina (nearly 1 million people)

within 13 hours, using a computer
simulation of their own design. The
plan involves the reversal of the two
coastal-bound lanes on Interstate 26
(the main east-west highway), as well
as traffic control and detours through-
out the major roads heading inland.

The students’ plan guides the mass
traffic flow to areas the students felt
were capable of sheltering large num-
bers of evacuees. The main destina-
tion was Columbia, the capital and
largest inland city in South Carolina.
Other destinations were Spartanburg,
Florence, Sumter, and Greenville in
South Carolina; Augusta in Georgia;
and Charlotte in North Carolina. The
plan also accounted for the possibil-
ity of very heavy traffic coming north-
ward from Georgia and Florida on I-
95, fleeing from the same hurricane,
which could adversely affect the evac-
uation in South Carolina.

Additionally, the students set forth
plans to shelter the more than 1 million
people who would be in Columbia af-
ter the evacuation is complete. By
making use of all the city’s schools,
hotels, motels, and churches as shel-
ters, nearly all the evacuees could be
sheltered. The few remaining evac-
uees could easily find shelter north in
Charlotte, which in 1999 received few
evacuees.

— Mark Wagner, Kenneth Kopp, and William E. Kolasa in Southfield, Mich.
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2002: The Airline
Overbooking Problem

You’re all packed and ready to go on a trip to visit your best friend in New York
City. After you check in at the ticket counter, the airline clerk announces that
your flight has been overbooked. Passengers need to check in immediately to
determine if they still have a seat.

Historically, airlines know that only a certain percentage of passengers who
have made reservations on a particular flight will actually take that flight.
Consequently, most airlines overbook—that is, they take more reservations
than the capacity of the aircraft. Occasionally, more passengers will want to take
a flight than the capacity of the plane, leading to one or more passengers being
bumped and thus unable to take the flight for which they had reservations.

Airlines deal with bumped passengers in various ways. Some are given
nothing, some are booked on later flights on other airlines, and some are given
some kind of cash or airline ticket incentive.

Consider the overbooking issue in light of the current situation:

• fewer flights by airlines from point A to point B;

• heightened security at and around airports,

• passengers’ fear, and

• loss of billions of dollars in revenue by airlines to date.

Build a mathematical model that examines the effects that different over-
booking schemes have on the revenue received by an airline company, in order
to find an optimal overbooking strategy—that is, the number of people by
which an airline should overbook a particular flight so that the company’s
revenue is maximized. Ensure that your model reflects the issues above and
consider alternatives for handling “bumped” passengers. Additionally, write
a short memorandum to the airline’s CEO summarizing your findings and
analysis.

Comments
The Outstanding papers were by teams from Bethel College, Duke Univer-

sity, Harvey Mudd College, University of Colorado, and Wake Forest Univer-
sity (two teams). Their papers, together with an author-judge’s commentary,
were published in The UMAP Journal 23 (3) (2002): 273–370.

Problem Origin
The problem was contributed by William P. Fox (Francis Marion University).
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Author-Judge’s Comments
No paper analyzed every element nor applied critical validation and sen-

sitivity analysis to all aspects of their model. Judges found many papers with
the exact same model (down to the exact same letters used for the variables) and none
of these clearly cited the universal source anywhere in the submission. The failure to
properly credit the original source critically hurt these papers; it was obvious
their basic model was not theirs but came from a published source.

The required elements, as viewed by the judges, were to

• develop a basic overbooking model that enabled one to find optimal values,

• consider alternative strategies for handling overbooked passengers,

• reflect on post-9-11 issues, and

• contain the CEO report of finding and analysis.

Most of the better papers did an extensive literature and Web search concern-
ing overbooking by airlines and used this information in their model building.

The poorest section in all papers, including many of the Outstanding papers, was
the section on assumptions with rational justification.

Many papers just skipped this section and went directly from the problem to
model-building!

Most papers used a stochastic approach for their model. With interarrival
times assumed to be exponential, a Poisson process was often used to model
passengers. Teams moved quickly from the Poisson to a binomial distribu-
tion with p and 1− p representing “shows” and “no-shows” for ticket-holders.
Many teams started directly with the binomial distribution without loss of con-
tinuity. Some teams went on to use the normal approximation to the binomial.
Revenues were generally calculated using some sort of “expected value” equa-
tion. Some teams built nonlinear optimization models, which was a nice and
different approach.

Teams usually started with a simple example: a single plane with a fixed
cost and capacity, one ticket price, and a reasonable value for no-shows based
on historical data. This then became a model from which teams could build
refinements (not only to their parameters) but also to include the changes based
on post-9-11.

Teams often simulated these results using the computer and then made
sense of the simulation by summarizing the results.

Wake Forest had two Outstanding papers. Both papers began using a bino-
mial approach as their base model. The paper entitled “ACE is High” was the
INFORMS winner because of its superior analysis. The team did a superb job in
maximizing revenue after examining alternatives and varying parameters. The
other paper, entitled “Bumping for Dollars,” developed a single-plane model,
a two-plane model, and generalized to an n-plane model.
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The Harvey Mudd team, the MAA winner, had—by far—the best literature
search. They used it to discuss existing models to determine if any could be
used for post-9-11. Their research examined many of the current overbooking
models that could be adapted to the situation.

The University of Colorado team used the real Denver-based Frontier Air-
lines as their airline. They began with the binomial random variable approach,
with revenues being expected values. They modeled both linear and nonlinear
compensation plans for bumped passengers. They developed an auction-style
model using Chebyshev’s weighting distribution. They also consider time-
dependency in their model.

The Duke University team, the SIAM winner, had an excellent mix of liter-
ature search material and development of their own models. They too began
with a basic binomial model. They considered multiple fares and related each
post-9-11 issue to parameters in their model. They varied their parameters and
provided many key insights to the overbooking problem. This paper was the
first paper in many years to receive an Outstanding rating from each judge who
read the paper.

The Bethel College team built a risk assessment model. They used a normal
distribution as their probability distribution and then put together an expected
value model for revenue. Their analysis of Vanguard Airlines with a plane
capacity of 130 passengers was done well.

Most papers found that an “optimal” overbooking strategy overbooks by
between 9% and 15%, and they used these numbers to find “optimal” rev-
enues. Many teams tried alternative strategies for compensation, and some
even distinguished classes of seats on an airplane.
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Models for Evaluating Airline
Overbooking

Michael P. Schubmehl
Wesley M. Turner
Daniel M. Boylan
Harvey Mudd College
Claremont, CA

Advisor: Michael E. Moody

Introduction
We develop two models to evaluate overbooking policies.
The first model predicts the effectiveness of a proposed overbooking scheme,

using the concept of expected marginal seat revenue (EMSR). This model solves
the discount seat allocation problem in the presence of overbooking factors for
each fare class and evaluates an overbooking policy stochastically.

The second model takes in historical flight data and reconstructs what the
optimal seat allocation should have been. The percentage of overbooking rev-
enue obtained in practice serves as a measure of the policy’s value.

Finally, we examine the overbooking problem in light of the recent drastic
changes to airline industry and conclude that increased overbooking would
bring short-term profits to most carriers. However, the long-term ill effects
that have traditionally caused airlines to shun such a policy would be even
more pronounced in a post-tragedy climate.

Literature Review
There are two major ways that airlines try to maximize revenues: over-

booking (selling more seats than available on a given flight) and seat allocation
(price discrimination). These measures are believed to save major airlines as
much as half a billion dollars each year, in an industry with a typical yearly
profit of about $1 billion dollars [Belobaba 1989].

Beckman [1958] models booking and no-shows in an effort to find an optimal
overbooking strategy. He ignores advance cancellations, assuming that all can-
cellations are no-shows [Rothstein 1985]. A method that is easy to implement
but sophisticated enough to allow for cancellations and group reservations was
developed by Taylor [1962]. Versions of this model were implemented at Iberia
Airlines [Shlifer and Vardi 1975], British Overseas Airways Corporation, and
El Al Airlines [Rothstein 1985].
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None of these approaches considers multiple fare classes. Littlewood [1972]
offers a simple two-fare allocation rule: A discount fare should be sold only if
the discount fare is greater than or equal to the expected marginal return from
selling the seat at full-fare. This idea was generalized by Belobaba [1989] to in-
clude any number of fare classes and allow the integration of overbooking. We
use expected marginal seat revenue in predicting about overbooking schemes.

There is a multitude of work on the subject [McGill 1999]—according to
Weatherford and Bodily [1992], there are more than 124,416 classes of models
for variations of the yield management problem, though research has settled
into just a few of these. Several authors tried to better Belobaba’s [1987] heuristic
in the presence of three or more fare classes (for which it is demonstrably sub-
optimal) [Weatherford and Bodily 1992]; generally, these adaptive methods for
obtaining optimal booking limits for single-leg flights are done by dynamic
programming [Mcgill 1999].

After deregulation in 1978, airlines were no longer required to maintain a
direct-route system to major cities. Many shifted to a hub-and-spoke system,
and network effects began to grow more important. To maximize revenue, an
airline may want to consider a passenger’s full itinerary before accepting or
denying their ticket request for a particular leg. For example, an airline might
prefer to book a discount fare rather than one at full price if the passenger is
continuing on to another destination (and thus paying an additional fare).

The first implementations of the origin-destination control problem consid-
ered segments of flights. The advantage to this was that a segment could be
blacked out to a particular fare class, lowering the overall complexity of a book-
ing scheme. Another method, virtual nesting, combines fare classes and flight
schedules into distinct buckets [Mcgill 1999]. Inventory control on these buck-
ets would then give revenue-increasing results. Finally, the bid-price method
deterministically assigns a value to different seats on a flight leg. The legs in
an itinerary are then summed to establish a bid-price for that itinerary; a ticket
request is accepted only if the fare exceeds the bid-price [Mcgill 1999]

The most realistic yield management problem takes into account five price
classes. The ticket demands for different fare classes are randomized and corre-
lated with one other to allow for sell-ups and the recapture of rejected customers
on later flights. Passengers can no-show or cancel at any time. Group reser-
vations are treated separately from individuals—their cancellation probability
distribution is likely different. Currently, most work assumes that passengers
who pay full fare would not first check for availability of a lower-class ticket;
a more realistic model would allow buyers of a higher-class ticket to be di-
verted by a lower fare. A full accounting of network effects would consider
the relative value of what Weatherford and Bodily [1992] terms displacement—
denying a discount passenger’s ticket request to fly a multileg itinerary in favor
of leaving one of the legs open to a full-fare passenger.

Unfortunately, while the algorithms for allocating seats and setting over-
booking levels are highly developed, there has been little work done on the
problem of evaluating how effective these measures actually are. Our solution
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applies industry-standard methods to find optimal booking levels, then exam-
ines the actual booking requests for a given flight to determine how close to an
optimal revenue level the scheme actually comes.

Factors Affecting Overbooking Policy

General Concerns
The reason that overbooking is so important is because of multiple fare

classes. With only one fare class, it would be easier for airlines to penalize
customers for no-shows. However, while most airlines offer nonrefundable
discount tickets, they prefer not to penalize those who pay full fare, like business
travelers, because these passengers account for most of the profits.

The overbooking level of a plane is dictated by the likelihood of cancellations
and of no-shows. An overbooking model compares the revenue generated by
accepting additional reservations with the costs associated with the risk of
overselling and decides whether additional sales are advisable. In addition,
the “recapture” possibility can be considered, which is the probability that a
passenger denied a ticket will simply buy a ticket for one of the airline’s other
flights. Since a passenger is more valuable to the airline buying a ticket on a
flight that has empty seats to fill than on one that is already overbooked, a high
recapture probability reduces the optimal overbooking level [Smith et al. 1992].

No major airline overbooks at profit-maximizing levels, because it could
not realistically handle the problems associated with all the overloaded flights.
This gives the overbooking optimization problem some important constraints.
The total flight revenue is to be maximized, subject to the conditions that only
a certain portion of flights have even one passenger denied boarding (one
oversale), and that a bound is placed on the expected total number of oversales.
Dealing with even one oversale is a hassle for the airline’s staff, and they are
not equipped to handle such problems on a large scale. Additionally, some
research indicates that increased overbooking levels would most likely trigger
an “overbooking war” [Suzuki 2002], which would increase short-term profits
but would probably engender enough consumer resentment that the industry
as a whole would lose business.

While the overbooking problem sets a limit for sales on a flight as a whole,
proper seat allocation sets an optimal point at which to stop selling tickets
for individual fare levels. For example, a perfectly overbooked plane, loaded
exactly to capacity, could be flying at far below its optimal revenue level if
too many discount tickets were sold. The more expensive tickets are not for
first-class seats and involve no additional luxuries above the discount tickets,
apart from more lenient cancellation policies and the ability to buy the tickets
a shorter time before the flight’s departure.
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September 11, 2001
Since the September 11 terrorist attacks, there have been significant changes

in the airline business. In addition to the forced cancellation of many flights in
the immediate aftermath of the attacks and the extreme levels of cancellations
and no-shows by passengers after that, passenger traffic has dropped sharply
in general. The huge downturn in passenger levels has led to large reductions
in service by most carriers.

In terms of the booking problem, there are fewer flights for passengers
to spill over onto, which could increase the loss by an airline if it bumps a
passenger from a flight. On the other hand, since passenger levels have fallen
so far, it is less likely that an airline will overfill any given flight. The heightened
security at airports will likely increase the passenger no-show rate somewhat,
as passengers get delayed at security checkpoints. At the very least, it should
almost completely remove the problem of “go-shows,” passengers who show
up for a flight but are not in the airline’s records.

On the whole, optimal booking strategies have become even more vital as
airlines have already lost billions of dollars, and some teeter on the brink of
failure. Some overbooking tactics previously dismissed as too harmful in the
long run might be worthwhile for companies in trouble. For example, an airline
near failure might increase the overbooking rate to the level that maximizes
revenue, without regard to the inconvenience and possible future resentment
of its customers.

Constructing the Model

Objectives
A scheme for evaluating overbooking policies needs to answer two ques-

tions: how well should a new overbooking method perform, and how well is a
current overbooking scheme already working? The first is best addressed by a
simple model of an airline’s booking procedures; given some setup for allocat-
ing seats to fare classes, candidate overbooking schemes can be laid on top and
tested by simulation. This approach has the advantage that it provides insight
into why an overbooking scheme is or is not effective and helps to illuminate
the characteristics of an optimal overbooking approach.

The second question is, in some respects, a simpler one to answer. Given the
actual (over)booking limits that were imposed on each fare class, and all avail-
able information on the actual requests for reservations, how much revenue
might have been gained from overbooking, compared to how much actually
was? This provides a very tangible measure of overbooking performance but
very little insight into the reasons for results.

The enormous number of factors affecting the design and evaluation of
an overbooking policy force us to make simplifying assumptions to construct
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models that meet both of these goals.

Assumptions
• Fleet-wide revenues can be near-optimized one leg at a time.

Maximizing revenue involves complicated interactions between flights. For
instance, a passenger purchasing a cheap ticket on a flight into a major hub
might actually be worth more to the airline than a business-class passenger,
on account of connecting flights. We assume that such effects can be compen-
sated for by placing passengers into fare classes based on revenue potential
rather than on the fare for any given leg. This assumption effectively reduces
the network problem to a single-leg optimization problem.

• Airlines set fares optimally.

Revenue maximization depends strongly on the prices of various classes
of tickets. To avoid getting into the economics of price competition and
supply/demand, we assume that airlines set prices optimally. This reduces
revenue maximization to setting optimal fare-class (over)booking limits.

• Historical demand data are available and applicable.

The model needs to estimate future demand for tickets on any given flight.
We assume that historical data are available on the number of tickets sold
any given number of days t before a flight’s departure. In some respects, this
assumption is unrealistic because of the problem of data censorship—that is,
the failure of airlines to record requests beyond the booking limit for a fare
class [Belobaba 1989]. On the other hand, statistical methods can be used
to reconstruct this information [Boeing Commercial Airline Company 1982,
7–16; Swan 1990].

• Low-fare passengers tend to book before high-fare ones.

Discount tickets are often sold under advance purchase restrictions, for the
precise reason that it enables price discrimination. Because of restrictions
like these, and because travelers who plan ahead search for cheap tickets,
low-fare passengers tend to book before high-fare ones.

Predicting Overbooking Effectiveness
Disentangling the effects of overbooking, seat allocation, pricing schemes,

and external factors on revenues of an airline is extremely complicated. To
isolate the effects of overbooking as much as possible, we want a simple, well-
understood seat allocation model that provides an easy way to incorporate
various overbooking schemes. In light of this objective, we pass up several
methods for finding optimal booking limits on single-leg flights detailed in, for
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example, Curry [1990] and Brumelle [1993], in favor of the simpler expected
marginal seat revenue (EMSR) method [Belobaba 1989].

EMSR was developed as an extension of the well-known rule of thumb,
popularized by Littlewood [1972], that revenues are maximized in a two-fare
system by capping sales of the lower-class ticket when the revenue from selling
an additional lower-class ticket is balanced by the expected revenue from selling
the same seat as an upper-class ticket. In the EMSR formulation, any number of
fare classes are permitted and the goal is “to determine how many seats not to
sell in the lowest fare classes and to retain for possible sale in higher fare classes
closer to departure day” [Belobaba 1989].

The only information required to calculate booking levels in the EMSR
model is a probability density function for the number of requests that will
arrive before the flight departs, in each fare class and as a function of time.
For simplicity, this distribution can be assumed to be normal, with a mean and
standard deviation that change as a function of the time remaining. Thus, the
only information an airline would need is a historical average and standard
deviation of demand in each class as a function of time. Ideally, the informa-
tion would reflect previous instances of the particular flight in question. Let
the mean and standard deviations in question be denoted by µi(t) and σi(t) for
each fare class i = 1, 2, . . . , k. Then the probability that demand is greater than
some specified level Si is given by

P̄i(Si, t) ≡ 1√
2π σi(t)

∫ ∞

Si

e(r−µi(t))
2/σi(t)

2
dr.

This spill probability is the likelihood that the Sith ticket would be sold if offered
in the ith category. If we further allow fi(t) to denote the expected revenue
resulting from a sale to class i at a time t days prior to departure, we can define

EMSRi(Si, t) = fi(t) · P̄i(Si, t),

or simply the revenue for a ticket in class i times the probability that the Sith
seat will be sold. The problem, however, is to find the number of tickets Si

j that
should be protected from the lower class j for sale to the upper class i (ignoring
other classes for the moment). The optimal value for Si

j satisfies

EMSRi(Si
j , t) = fj(t), (1)

so that the expected marginal revenue from holding the Si
jth seat for class i is

exactly equal to (in practice, slightly greater than) the revenue from selling it
immediately to someone in the lower class j. The booking limits that should
be enforced can be derived easily from the optimal Si

j values by letting the
booking limit Bj for class j be

Bj(t) = C − Sj+1
j −

∑
i<j

bi(t), (2)
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that is, the capacity C of the plane, less the protection level of the class above j
from class j and less the total number of seats already reserved. Sample EMSR
curves, with booking limits calculated in this fashion, are shown in Figure 1.

E
M

SR
($

)

10 20 30 40 50 60
0

50

100

150

200

250
b1b2

Seat Number

Figure 1. Expected marginal seat revenue (EMSR) curves for three class levels, with the high-
est-revenue class at the top. Each curve represents the revenue expected from protecting a par-
ticular seat to sell to that class. Also shown are the resulting booking limits for each of the lower
classes—that is, the levels at which sales to the lower class should stop to save seats for higher
fares.

This formulation does not account for overbooking; if we allow each fare
class i to be overbooked by some factor OVi, the optimality condition (1) be-
comes

EMSRi(Si
j , t) = fj(t) · OVi

OVj
. (3)

This can be understood in terms of an adjustment to fi and fj ; the overbooking
factors are essentially cancellation probabilities, so we use each OVi to deflate
the expected revenue from fare class i. Then

P̄i(Si
j , t) ·

fi(t)
OVi

= fj(t) · fj(t)
OVj

,

which is equivalent to (3). Note that the use of a single overbooking factor for
the entire cabin (that is, OVi = OV ) causes the OVi and OVj in (3) to cancel.
Nonetheless, the boarding limits for each class are affected, because the capacity
of the plane C must be adjusted to account for the extra reservations, so now

C∗ = C · OV
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and the booking limits in (2) are adjusted upward by replacing C with C∗.
The EMSR formalism gives us the power to evaluate an overbooking scheme

theoretically by plugging its recommendations into a well-understood stable
model and evaluating them. Given the EMSR boarding limits, which can be
updated dynamically as booking progresses, and the prescribed overbooking
factors, a simulated string of requests can be handled. Since the EMSR model
involves only periodic updates to establish limits that are fixed over the course
of a day or so, a set of n requests can be handled with two lookups each (booking
limit and current booking level), one subtraction, and one comparison; so all
n requests can be processed on O(n) time. An EMSR-based approach would
thus be practical in a real-world real-time airline reservations system, which
often handles as many as 5,000 requests per second. Indeed, systems derived
from EMSR have been adopted by many airlines [Mcgill 1999].

Evaluating Past Overbookings
The problem of evaluating an overbooking scheme that has already been

implemented is somewhat less well studied than the problem of theoretically
evaluating an overbooking policy. One simple approach, developed by Ameri-
can Airlines in 1992, measures the optimality of overbooking and seat allocation
separately [Smith et al. 1992]. Their overbooking evaluation process assumes
optimal seat allocation and, conversely, their seat allocation evaluation scheme
assumes optimal overbooking. Under this assumption, an overbooking scheme
is evaluated by estimating the revenue under optimal overbooking in two ways:

• If a flight is fully loaded and no passenger is denied boarding, the flight
is considered to be optimally overbooked and to have achieved maximum
revenue.

• If n passengers are denied boarding, the money lost due to bumping these
passengers is added back in and the n lowest fares paid by passengers for
the flight are subtracted from revenue.

• On the other hand, if there are n empty seats on the plane, the n highest-fare
tickets that were requested but not sold are added to create the maximum
revenue figure.

Their seat-allocation model estimates the demand for each flight by calcu-
lating a theoretical demand for each fare class and then setting the minimum
flight revenue (by filling the seats lowest-class first) and the maximum flight
revenue (by filling the seats highest-class first). To estimate demand, we use
the information on the flight’s sales up to the point where each class closed. By
assuming that demand is increasing for each class, we can project the number
of requests that would have occurred had the booking limits been disregarded.

Given these projected additional requests and the actual requests received
before closing, it is straightforward to compute the best- and worst-case over-
booking scenarios. The worst-case revenue R− is determined by using no
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booking limits and taking reservations as they come, and the best-case rev-
enue R+ is determined by accommodating high-fare passengers first, giving
the leftovers to the lower classes. The difference between these two figures is
the revenue to be gained by the use of booking limits. Thus, the performance
of a booking scheme that generates revenue R is

p =
R − R−
R+ − R−

· 100%, (4)

representing the percentage of the possible booking revenue actually achieved.
We select this method for evaluating booking schemes after the fact.

Analysis of the Models

Tests and Simulations
The EMSR method requires information on demand as a function of time.

Although readily available to an airline, it is not widely published in a detailed
form. Li [2001] provides enough data to construct a rough piecewise-linear
picture of demand remaining as a function of time, shown in Figure 2.

Expected Remaining Demand as Flight Time Approaches
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Figure 2. Demand remaining as a function of time for each of three fare classes, with the highest
fare class on top. The curves represent the fraction of tickets that have yet to be purchased. Note
that, for example, demand for high fare tickets kicks in much later than low-fare demand. ( Data
interpolated from Li [2001].)
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This information can be inputted into the EMSR model to produce optimal
booking limits that evolve in time. A typical situation near the beginning of
ticket sales was shown in Figure 1, while the evolution of the limits themselves
is plotted in Figure 3.

Evolution of Booking Limits by the EMSR Method

B
oo

ki
ng

L
im

it

80 60 40 20 0

20

40

60

80

100

Days Until Departure

Figure 3. Booking limits for each class are dynamically adjusted to account for tickets already sold.
For illustrative purposes, the number of tickets already sold is replaced here with the number
of tickets that should have been sold according to expectations. In this case, the booking limits
estimated at the beginning of the process are fairly accurate and require relatively little updating.

The demand information in Figure 2 can also be used to simulate requests
for reservations. By taking the difference between the demand remaining at
day t and at day (t− 1) before departure, the expected demand on day t can be
determined. The actual number of requests generated on that day is then given
by a Poisson random variable with parameter λ equal to the expected number
of sales [Rothstein 1971]. The requests generated in this manner can be passed
to a request-handling simulation that looks at the most current booking limits
and then accepts or denies ticket requests based on the number of reservations
already confirmed and the reservations limit. An example of this booking
process is illustrated in Figure 4.

The results of the booking process provide an ideal testbed for the revenue
opportunity model employed to evaluate overbooking performance. The sim-
ulation conducted for Figure 4 had demand values of {11, 41, 57}, for classes 1,
2, and 3 respectively, before ticket sales were capped. A linear forward projec-
tion of these sales rates indicates that they would have reached {18, 49, 69} had
the classes remained open. Given fare classes {$250, $150, $100}, the minimum
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Total Bookings by Fare Class: First Sale to Flight Time
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Figure 4. The EMSR-based booking limits are used to decide whether to accept or reject a sequence
of ticket requests. These requests follow a Poisson distribution where the parameter λ varies with
time to match the expected demand. Each fare class reaches its booking limit, as desired, so the
flight is exactly full. Incorporating overbooking factors shifts the limits up accordingly.

revenue would be

R− = $100(69) + $150(40) + $250(0) = $12, 900

and the maximum revenue would be

R+ = $250(18) + $150(49) + $100(42) = $16, 050.

The actual revenue according to the EMSR formalism was

R = $100(57) + $150(41) + $250(11) = $14, 600,

so the efficiency is

p =
R − R−
R+ − R−

· 100% =
$14, 600 − $12, 900
$16, 050 − $12, 900

· 100% = 54%,

without the use of a complicated overbooking scheme. This is not close to the
efficiencies reported in Smith et al. [1992], which cluster around 92%. This rela-
tive inefficiency is to be expected, however, from a simplified booking scheme
given incomplete booking request data.
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Strengths and Weaknesses
Strengths
• Applies widely accepted, industry-standard techniques.

Although more advanced (and optimal) algorithms are available and are
used, EMSR and its descendants are still widely used in industry and can
come close to optimality. The EMSR scheme, tested as-is on a real airline,
caused revenue gains as much as 15% [Belobaba 1989].

Our method for determining the optimality of a scheme after the fact is also
based on tried and true methods developed by American Airlines [Smith et
al. 1992].

• Simplicity

Since it does not take into account as many factors as other booking models,
EMSR is easier to deal with computationally. While a simple model may not
be able to model a major airline with complete accuracy, an optimal pricing
scheme can be made using only three fare classes [Li 2001].

Weaknesses
• Neglects network effects

We treat the problem of optimizing each flight as if it were an independent
problem although it is not.

• Ignores sell-ups

In considering the discount seat allocation problem, we treat the demands
for the fare classes as constants, independent of one other. This is not the
case, because of the possibility of sell-ups. If the number of tickets sold in a
lower fare class is restricted, then there is some probability that a customer
requesting a ticket in that class will buy a ticket at a more expensive fare.
This means it is possible to convert low-fare demand into high-fare demand,
which would suggest protecting a higher number of seats for high fares than
calculated by the model that we use. Sell-ups would be straightforward to
incorporate into EMSR, but doing so would require additional information
[Belobaba 1989].

• Discounts possibility of recapture

Similar to sell-ups, the recapture probability is the probability that a passen-
ger unable to buy a ticket at a certain price on a given flight will buy a ticket
on a different flight. Depending on the recapture probability for each fare
class, more or fewer seats might be allocated to discount fares.
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Recommendations on Bumping Policy
In 1999, an average of only 0.88 passengers per 10,000 boardings were in-

voluntarily bumped. Airlines are not required to keep records of the number
of voluntary bumps, so it is impossible to determine a general bump rate.

Before bumping passengers involuntarily, the airline is required to ask for
volunteers. Because there are no regulations on compensation for voluntary
bumps, this is often a cheaper and more attractive method for airlines anyway.
If too few people volunteer, the airline must pay those denied boarding 200%
of the sum of the values of the passengers’ remaining flight coupons, with a
maximum of $400. This maximum is decreased to $200 if the airline arranges
for a flight that will arrive less than 2 hours after the original flight. The air-
line may also substitute the offer of free or reduced fare transportation in the
future, provided that the value of the offer is greater than the cash payment
otherwise required. Alternatively, the airline may simply arrange alternative
transportation if it is scheduled to arrive less than an hour after the original
flight.

Auctions in which the airline offers progressively higher compensation for
passengers who give up their seats are both the cheapest and the most com-
mon practice. As long as the airline does not engage in so much overbooking
that it cannot find suitable reroutes for passengers bumped from their original
itineraries, no alternatives to this policy need to be considered.

Conclusions
The two models presented in this paper work together to evaluate over-

booking schemes by simulating their effects in advance and by quantifying
their effects after implementation.

The expected marginal seat revenue (EMSR) model predicts overbooking
scheme effectiveness. It determines the correct levels of protection for each fare
class above the lowest—that is, how many seats should be reserved for possible
sale at later dates and higher fares. Overbooking factors can be specified sepa-
rately for each fare class, so the model effectively takes in overbooking factors
and produces booking limits that can be used to handle ticket requests.

The revenue opportunity model attempts to estimate the maximum revenue
from a flight under perfect overbooking and discount allocation. This is accom-
plished by estimating the actual demand for seats, then calculating the revenue
that these seats would generate if sold to the highest-paying customers. Sim-
ple calculations produce the ideal overbooking cap and the optimal discount
allocation for the flight. Thus, this model effectively represents how the airline
would sell tickets if they had perfect advance knowledge of demand.

After the September terrorist attacks and their subsequent catastrophic ef-
fects on the airline industry, heightened airport security and fearful passengers
will increase no-show and cancellation rates, seeming to dictate increasing
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overbooking levels to reclaim lost profits.
Airlines considering such action should be cautioned, however, that the

negative effects of increased overbooking could outweigh the benefits. With
reduced airline service, finding alternative transportation for displaced passen-
gers could be more difficult. The effect of denying boarding to more passen-
gers, along with the greater inconvenience of being bumped, could seriously
shake consumers’ already-diminished faith in the airline industry. With air-
lines already losing huge numbers of customers, it would be a mistake to risk
permanently losing them to alternatives like rail and auto travel by alienating
them with frequent overselling.
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Letter to the CEO of a Major Airline
Airline overbooking is just one facet of a revenue management problem that

has been studied extensively in operations research literature. Airlines have
been practicing overbooking since the 1940’s, but early models of overbooking
considered only the most rudimentary cases. Most importantly, they did not
take into account the revenue maximizing potential of price discrimination—
charging different fares for identical seats. In order to maximize yield, it is
particularly critical to price discriminate between business and leisure travelers.
That is, when filling the plane, book as many full fare passengers and as few
discount fare passengers as possible.

The implementation of a method of yield management can have dramatic
effects on an airline’s revenue. American Airlines managed its seat inventory
to a $1.4 billion increase in revenue from 1989 to 1992—about 50% more than
its net profit for the same period. Controlling the mix of fare products can
translate into revenue increases of $200 million to $500 million for carriers with
total revenues of $1 billion to $5 billion.

Though several decision models of airline booking have been developed
over the years, comparing one scheme to another remains a difficult task. We
have taken a two-pronged approach to this problem, both simulating and mea-
suring a booking scheme’s profitability.

In order to simulate a booking scheme’s effect, we used the expected marginal
seat revenue (EMSR) model proposed by Belobaba [1989] to generate near-
optimal decisions on whether to accept or deny a ticket request in a given fare
class. The EMSR model accepts as input overbooking levels for each of the fare
classes that compose a flight, so different policies can be plugged in for testing.

Our approach to measuring a current scheme’s profitability is similar to one
used at American Airlines [Smith et al. 1992]. We compare the actual revenue
generated by a flight with an ideal level calculated with the benefit of hindsight,
as well as with a baseline level that would have been generated had no yield
management been used. By calculating the percentage of this spread earned by
a flight employing a particular scheme, we are able to gauge the effectiveness
of different booking schemes.

It is our hope that these models will prove useful in evaluating your airline’s
overbooking policies. Simulations should provide insight into the properties of
an effective scheme, and measurements after the fact will help to provide perfor-
mance benchmarks. Finally, while it may be tempting to increase overbooking
levels in order to compensate for lost revenues in the post-tragedy climate, our
results indicate this will probably hurt long-term profits more than they will
help.

Cordially,

Michael P. Schubmehl, Wesley M. Turner, and Daniel M. Boylan
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2003: The Gamma Knife
Treatment Problem

Planning
Stereotactic radiosurgery delivers a single high dose of ionizing radiation

to a radiographically well-defined, small intracranial 3D brain tumor without
delivering any significant fraction of the prescribed dose to the surrounding
brain tissue. Three modalities are commonly used in this area; they are the
gamma knife unit, heavy charged particle beams, and external high-energy
photon beams from linear accelerators.

The gamma knife unit delivers a single high dose of ionizing radiation
emanating from 201 cobalt-60 unit sources through a heavy helmet. All 201
beams simultaneously intersect at the isocenter, resulting in a spherical (approx-
imately) dose distribution at the effective dose levels. Irradiating the isocenter
to deliver dose is termed a“shot.” Shots can be represented as different spheres.
Four interchangeable outer collimator helmets with beam-channel diameters
of 4, 8, 14, and 18 mm are available for irradiating different size volumes. For
a target volume larger than one shot, multiple shots can be used to cover the
entire target. In practice, most target volumes are treated with 1 to 15 shots.
The target volume is a bounded, three-dimensional digital image that usually
consists of millions of points.

The goal of radiosurgery is to deplete tumor cells while preserving normal
structures. Since there are physical limitations and biological uncertainties
involved in this therapy process, a treatment plan needs to account for all those
limitations and uncertainties. In general, an optimal treatment plan is designed
to meet the following requirements.

1. Minimize the dose gradient across the target volume.

2. Match specified isodose contours to the target volumes.

3. Match specified dose-volume constraints of the target and critical organ.

4. Minimize the integral dose to the entire volume of normal tissues or organs.

5. Constrain dose to specified normal tissue points below tolerance doses.

6. Minimize the maximum dose to critical volumes.

In gamma unit treatment planning, we have the following constraints:

1. Prohibit shots from protruding outside the target.

2. Prohibit shots from overlapping (to avoid hot spots).
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3. Cover the target volume with effective dosage as much as possible. But at
least 90% of the target volume must be covered by shots.

4. Use as few shots as possible.

Your tasks are to formulate the optimal treatment planning for a gamma knife
unit as a sphere-packing problem, and propose an algorithm to find a solution.
While designing your algorithm, you must keep in mind that your algorithm
must be reasonably efficient.

Comments
The Outstanding papers were by teams from Donghua University (Shang-

hai, China), Peking University (Beijing, China), University of Colorado, Uni-
versity of Washington, and Youngstown State University. Their papers were
published in The UMAP Journal 24 (3) (2003): 319–390.

Problem Origin
The problem was contributed by Jie Wang.
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Abstract

The gamma knife is used to treat brain tumors with radiation. The treatment
planning process determines where to center the shots, how long to expose them,
and what size focusing helmets should be used, to cover the target with sufficient
dosage without overdosing normal tissue or surrounding sensitive structures.

We formulate the optimal treatment planning for a gamma-knife unit as a
sphere-packing problem and propose a new genetic algorithm (GA)-based op-
timization approach for it. Considering the physical limitations and biological
uncertainties involved, we outline a reasonable, efficient and robust solution.

First, we design a geometry-based heuristic to produce quickly a reasonable
configuration of shot sizes, locations, and number. We first generate the skeleton
using a 3D-skeleton algorithm. Then, along the skeleton, we use the GA-based
shot placement algorithm to find a best location to place a shot. By continuously
iterating the algorithm, we obtain the number, sizes, and the locations of all shots.
After that, we develop a dose-based optimization method.

Then we implement simulations of our models in Matlab. We did numerous
computer simulations, using different shape or size targets, to examine the effec-
tiveness of our model. From the simulation results, we know that the geometry-
based heuristic with the GA optimization approach is a useful tool for in the
selection of the appropriate number of shots and helmet sizes. Generally, all of
the optimized plans for various targets provide full-target coverage with 90% of
the prescription isodose.

Moreover, we do sensitivity analysis to our model in the following aspects:

• the sensitive structures;

• at the 30%, 40%, 60%, or 70% isodose level;

• the issue of global versus local optimality;

• conformality; and

• the robustness. We also discuss the strengths and limitations of our model.

The results indicate that our approach is sufficiently robust and effective to be
used in practice. In future work, we would fit ellipsoids instead of spheres, since
some researchers note that the dose is skewed in certain directions.
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Introduction
The gamma knife unit delivers ionizing radiation from 201 cobalt-60 sources

through a heavy helmet. All beams simultaneously intersect at the isocenter,
resulting in an approximately spherical dose distribution at the effective dose
levels. Delivering dose is termed a shot, and a shot can be represented as a
spheres. Four interchangeable outer collimator helmets with beam channel
diameters of 4, 8, 14, and 18 mm are available. For a target volume larger than
one shot, multiple shots can be used.

Gamma knife treatment plans are conventionally produced using a manual
iterative approach. In each iteration, the planner attempts to determine

• the number of shots,

• the shot sizes,

• the shot locations, and

• the shot exposure times (weights) that would adequately cover the target
and spare critical structures.

For large or irregularly shaped treatment volumes, this process is tedious and
time-consuming, and the quality of the plan produced often depends on both
the patience and the experience of the user. Consequently, a number of re-
searchers have studied techniques for automating the gamma knife treatment
planning process [Wu and Bourland 2000a; Shu et al. 1998]. The algorithms that
have been tested include simulated annealing [Leichtman et al. 2000; Zhang et
al. 2001], mixed integer programming, and nonlinear programming [Ferris et
al. 2002; 2003; Shepard et al. 2000; Ferris and Shepard 2000].

The objective is to deliver a homogeneous (uniform) dose of radiation to the
tumor (the target) area while avoiding unnecessary damage to the surrounding
tissue and organs. Approximating each shot as a sphere [Cho et al. 1998]
reduces the problem to one of geometric coverage. Kike [Liu and Tang 1997],
we formulate optimal treatment planning as a sphere-packing problem and we
propose an algorithm to determine shot locations and sizes.

Assumptions
To account for all physical limitations and biological uncertainties involved

in the gamma knife therapy process, we make several assumptions as follows:

A1: The shape of the target is not too irregular, and the target volume is a
bounded. As a rule of thumb, the target to be treated should be less than
35 mm in all dimensions. Its three-dimensional (3D) digital image, usually
consisting of millions of points, can be obtained from a CT or MRI.
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A2: We consider the target volume as a 3D grid of points and divide this grid
into two subsets, the subset of points in and out of the target, denoted by T
and N , respectively.

A3: Four interchangeable outer collimator helmets with beam channel diameters
w = {4, 8, 14, 18}mm are available for irradiating different size volumes. We
use (xs, ys, zs) to denote the coordinates of the center location of the shot and
ts,w to denote the time (weight) that each shot is exposed. The total dose
delivered is a linear function of ts,w. For a target volume larger than one
shot, multiple shots can be used to cover the entire target. There is a bound
n on the number of shots, with typically n ≤ 15.

A4: Neurosurgeons commonly use isodose curves as a means of judging the
quality of a treatment plan; they may require that the entire target is sur-
rounded by an isodose line of x%, e.g., 30–70%. We use an isodose line of
50%, which means that the 50% line must surround the target.

A5: The dose cloud is approximated as a spherically symmetric distribution by
averaging the profiles along x, y, and z axes. Other effects are ignored.

A6 The total dose deposited in the target and critical organ should be more than
a fraction P of the total dose delivered; typically, 25% ≤ P ≤ 40%.

Optimization Models

Analysis of the Problem
The goal of radiosurgery is to deplete tumor cells while preserving normal

structures. An optimal treatment plan is designed to:

R1: match specified isodose contours to the target volumes;

R2: match specified dose-volume constraints of the target and critical organ;

R3: constrain dose to specified normal tissue points below tolerance doses;

R4: minimize the integral dose to the entire volume of normal tissues or organs;

R5: minimize the dose gradient across the target volume; and

R6: minimize the maximum dose to critical volumes.

It also is constrained to

C1: prohibit shots from protruding outside the target,

C2: prohibit shots from overlapping (to avoid hot spots),

C3: cover the target volume with effective dosage as much as possible (at least
90% of the target volume must be covered by shots), and
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C4: use as few shots as possible.

We design the optimal treatment plan in two steps.

• We use a geometry-based heuristic to produce a reasonable configuration of
shot number, sizes and locations.

• We use a dose-based optimization to produce the final treatment plan.

Geometry-Based Heuristic for Sphere-Packing
We model each shot as a sphere, and we use the medial axis transform

(known as the skeleton) of the target volume to guide placement of the shots.
The skeleton is frequently used in shape analysis and other related areas [Wu
et al. 1996; Wu and Bourland 2000b; Zhou et al. 1998]. We use the skeleton just
to find good locations of the shots quickly. The heuristic is in three stages:

• We generate the skeleton using a 3D skeleton algorithm.

• We place shots and choose their sizes along the skeleton to maximize a
measure of our objective; this process is done by a genetic algorithm (GA)-
based shot placement approach.

• After the number of focusing helmets to be included in the treatment plan
is decided, the planning produces a list of the possible helmet combinations
and a suggested number of shots to use.

Skeleton Generation
We adopt a 3D skeleton algorithm that follows similar procedures to Ferris

et al. [2002]. We use a morphologic thinning approach [Wu 2000] to create
the skeleton, as opposed to the Euclidean-distance technique. The first step
in the skeleton generation is to compute the contour map containing distance
information from the point to a nearest target boundary. Then, based on the
contour map, several known skeleton extraction methods [Ferris et al. 2002;
Wu et al. 1996; Wu and Bourland 2000b; Zhou et al. 1998; Wu 2000] can be used.
Since the method in Ferris et al. [2002] is simple and fast, we use it.

Genetic Algorithm-Based Shot Placement
We restrict our attention to points on the skeleton. We start from a special

type of skeleton point, an endpoint (Figure 1): A point in the skeleton is an
endpoint if it has only one neighbor in the skeleton.

Starting from an endpoint, we look for the best point to place a shot and
determine the shot size by using GA [Goldberg 1989; Mann et al. 1997]. In the
GA-based shot placement algorithm, we must solve the following problems:
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Figure 1. Examples of endpoints.

The encoding method. In general, bit-string (0s and 1s)) encoding is the most
common method adopted by GA researchers because of its simplicity and
tractability. However, in this case, if we directly encode the point coordinates
(xs, ys, zs) into a bitstring, crossover and mutation generate some points
that are not in the skeleton. To solve this problem, we build a table of
correspondence between the point coordinates and the point number (1 to
M ); instead of encoding the point, we encode the point number. We select
m points from all points of the skeleton to form a population; a single point
is a chromosome.

Performance evaluation. The key to the GA-based approach is the fitness func-
tion. Ideally, we would like to place shots that cover the entire region without
overdosing within (or outside) of the target. Overdosing occurs outside the
target if we choose a shot size that is too large for the current location, and
hence the shot protrudes from the target. Overdosing occurs within the
target if we place two shots too close together for their chosen sizes.

Before defining a fitness function, we give some definitions:

• Fraction: A target part that is not large enough to be destroyed by the
smallest shot without any harm to the surrounding normal tissue.

• Span: The minimum distance between the current location and the end-
point at which we started.

• Radius: The approximate Euclidean distance to the target boundary.

We would like to ensure that the span, the radius, and the shot size w are as
close as possible. Therefore, we choose a fitness function that is the sum of
the squared differences between these three quantities. The fitness function
can ensure that the generating fraction is the smallest after every shot is
placed on the target [Ferris et al. 2002]:

Fit = φs,r(x, y, z) + φs,w(x, y, z) + φr,w(x, y, z),

where
φs,r(x, y, z) =

[
span(x, y, z) − radius(x, y, z)

]2
, (1)

φs,w(x, y, z) =
[
span(x, y, z) − w

]2
, (2)

φr,w(x, y, z) =
[
radius(x, y, z) − w

]2
. (3)
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• Equation (1) ensures that we pack the target volume as well as possible,
that is, the current span between shots should be close to the distance to
the closest target boundary.

• Equation (2) is used to choose a helmet size that fits the skeleton best for
the current location.

• Equation (3) favors a location that is the appropriate distance from the
target boundary for the current shot size.

Genetic operators. Based on the encoding method, we develop the genetic
operators in the GA: crossover and mutation.

• Crossover/recombination is a process of exchanging genetic informa-
tion. We adopt one-point crossover operation; the crossover points are
randomly set.

• Mutation operation. Any change in a gene is called a mutation; we use
point mutation.

We propose the following GA-based shot placement algorithm:

1. Find a skeleton and all its endpoints. Take one of the endpoints as a
starting point.

2. Randomly search all the points in the skeleton using the GA to find the
location and size of the best shots as follows:
(a) Generate randomly m (= 100) points from all the points (e.g., M =

1000) in the skeleton. The m points are the chromosomes. Set the
crossover rate pc = .95, the mutation rate pm = .05, the desired Fit
function, and the number ng of generations.

(b) Calculate the Fit of all the m points in the skeleton.
(c) If the algorithm has run ng steps, or if one of the m points satisfies

the desired Fit, the GA stops (at this time, the best shot is chosen);
else encode m points into the bit strings.

(d) To do crossover and mutation operation to the m bitstrings, go to 2b.
3. Considering the rest of the target in whole as a new target, repeat Steps

1–2 until the rest of the target are fractions (at this time, all best shots are
found).

Dose-Based Optimization
After we obtain the number, sizes and the locations of shots, we develop a

dose-based optimization method.
We determine a functional form for the dose delivered at a point (i, j, k)

from the shot centered at (xs, ys, zs). The complete dose distribution can be
calculated as a sum of contributions from all of the individual shots of radiation:

D(i, j, k) =
∑

(s,w)∈S×W

ts,wDs,w(xs, ys, zs, i, j, k),
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where Ds,w(xs, ys, zs, i, j, k) is the dose delivered to (i, j, k) by the shot of size
w centered at (xs, ys, zs) with a delivery duration of ts,w. Since Ds,w is a com-
plicated (nonconvex) function, we approximate it by

Ds,w(xs, ys, zs, i, j, k) =
2∑

i=1

λi

(
1 −

∫ x

−∞

1√
π

e−x2
dx

)
, (4)

where x = (t − ri)/σi and λi, γi, and σi are coefficients [Ferris and Shepard
2000].

To meet the requirement of matching specified isodose contours to target
volume at the 50% isodose line, the optimization formulation should impose a
constraint on the 50% isodose line that must surround the target. We impose
strict lower and upper bounds on the dose allowed in the target, namely, for
all (i, j, k) ∈ T , the dose D(i, j, k) satisfies

0.5 ≤ D(i, j, k) ≤ 2. (5)

To meet the requirement (R2) to match specified dose-volume constraints
of the target and critical organ, based on assumption (A3) (which sets out the
size of the beam channel diameters), no more than n shots are to be used; so in
each card (any section of the target) we have

card
[{(s, w) ∈ S × W | ts,w > 0}] ≤ n. (6)

The value of tolerance doses of the normal tissue points is q, D(i, j, k) < q for
all (i, j, k). The number of shots n is no more than 15, so the tolerance doses of
a specified normal tissue point should be q = 15/201 = 7.46%, or

0 ≤ D(i, j, k) < q = 7.46%, (7)

for all (i, j, k) ∈ N .
To meet requirement (R3) (keep the does at normal tissue below a certain

level), based on assumption (A6) (which sets the does levels), the tolerance
dose radio of the total dose deposited in the target and critical organ to the total
dose delivered by a plan is∑

(i,j,k)∈T D(i, j, k)∑
(i,j,k)∈T∪N D(i, j, k)

≥ P, P ∈ [.25, .40]. (8)

We wish to satisfy constraint (C3) (at least 90% of the target volume must
be covered). We set

V = the total volume of target;

Vs = the total effective dosage volume of the target whose dose value at the
point is more than 0.5; and
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f = the effective dosage rate, which satisfies the inequality

90% ≤ f =
Vs

V
≤ 100%. (9)

The exposure time of each shot ts,w should be nonnegative:

ts,w ≥ 0. (10)

We introduce a binary variable δs,w that indicates whether shot s uses width w
or not, i.e.,

δs,w =

{
1, if shot s uses width w;
0, otherwise.

Moreover, we have the constraints (C1) (no shots protrude outside the target),
(C2) (shots do not overlap), and (C4) (as few shots as necessary).

Given all these constraints (5)–(10), and based on the requirement (R4) (min-
imize dose to normal tissue), the goal is to minimize the dose outside of the
target.

Also, to meet the requirement (R5) (minimize the dose gradient across the
target volume), the treatment plan needs to be both conformal and homoge-
neous. It is easy to specify homogeneity in the models simply by imposing
lower and upper bounds on the dose delivered to points in the target T . Typ-
ically, however, the imposition of rigid bounds leads to plans that are overly
homogeneous and not conformal enough—that is, they provide too much dose
outside the target. To overcome this problem, the notion of underdose (UD) is
suggested in Ferris and Shepard [2000]. UD measures how much the delivered
dose is below the prescribed dose on the target points. In our models, we either
constrain UD to be less than a prespecified value or attempt to minimize the
total UD.

In practical application, rather than calculating the dose at every point, it
is easy to estimate accurately the total dose delivered by a plan based solely
on the ts,w variables and other precalculated constants. An upper bound is
also placed on the dose to the target. Given these constraints, the optimizer
seeks to minimize the total underdosage in the target. A point is considered
to be underdosed if it receives less than the prescribed isodose θ, which for
the example formulation is assumed to be 1. We actually use the optimization
process to model UD, which is constrained to be

UD(i, j, k)m = max
[
0, 1 − D(i, j, k)

]
at every point in the target. We can implement this construct using linear
constraints

θ ≤ UD(i, j, k) + D(i, j, k), (11)

0 ≤ UD(i, j, k) (12)
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for all (i, j, k) ∈ T .
Our second minimization problem is

Objective: min
∑

(i,j,k)∈N

UD(i, j, k)

subject to the same constraints (5)–(10) as earlier plus (11)–(12).
To meet the requirement (R6) (minimize maximum dose to critical volumes),

we have the additional optimization problem

Objective: min
∑

(i,j,k)∈N

D(i, j, k) for all (i, j, k) ∈ T for which δs,w = 0

subject to the same constraints (5)–(10) as earlier.
All of the formulations are based on the assumption that the neurosurgeon

can determine a priori a realistic upper bound n on the number of shots needed.
Several issues need to be resolved to create models that are practical, imple-
mentable, and solvable (in a reasonable time frame). Two main approaches are
proposed in the literature [Ferris et al. 2002; 2003; Shepard et al. 2000; Ferris and
Shepard 2000], namely mixed integer programming and nonlinear program-
ming, to optimize simultaneously all of the variables.

Simulation Results and Model Testing
We developed an optimization package to implement the algorithms of our

models in Matlab and perform numerous computer simulations using targets
of different shapes and sizes.

To examine its correctness, we plot a dose-volume histogram for the four
different helmets using (4), as shown in Figure 2. The histogram depicts the
fraction of the volume that receives a particular dose for the target volume. The
fit is best for the small shots and decreases slightly in accuracy for the larger
ones. The lines show the fraction of the target and critical organ that receives
a particular dosage.

Generally speaking, the shape of the target is not too irregular, so we choose
five typical shapes of the targets in different sizes. In Figure 3a, we illustrate the
maximum section of a typical bean-shaped target, whose maximum dimension
is 35 mm. Using the skeleton generation algorithm, we get the corresponding
skeleton shown in Figure 3b. Then, we apply the GA-based shot placement
algorithm, resulting in three shots for the target: one 14 mm helmet and two
8 mm helmets. The locations and sizes of the helmets in 2D are indicated in
Figure 3c, while 3D shot placements are shown in Figure 4.

For this target, we also plot six different isodose lines: 30%, 40%, 50%, 60%,
70%, and 100% (Figure 5). The thick (red) line is the target outline, and the
thin (black) line is the isodose line. In Figure 5c, the 50% isodose line covers all
the points of the target, while in Figure 5f for the 100% isodose line, no point



2002: The Gamma Knife Treatment Problem 179

Figure 2. Dose–volume histograms for four different helmets.

Figure 3a. The maxi-
mum section of the tar-
get.

Figure 3b. The skele-
ton.

Figure 3c. The loca-
tions and sizes of the
helmets, in 2D.
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Figure 4. The 3D shot placements in the target.

of the shots exceeds the boundary of the target. We also present the 3D shot
placements for four other target shapes in Figure 6.

The optimized plans for all of the five shapes of the targets are shown in
Table 1, together with the minimum target doses and the percentage coverages.

Table 1.

Optimized plans for five targets.

Target Maximum section Helmet Number Minimum Coverage (by isodose)
(figure) width (mm) sizes (mm) of shots target dose 50% 80% 100%

6 35 18 1 0.51 100% 97% 90%
4 5

8a 26 8 4 0.52 100% 97% 88%
4 3

8b 20 14 1 0.52 100% 96% 92%
8 1
4 1

8c 10 4 6 0.45 99% 82% 69%

8d 8 4 2 0.67 100% 97% 57%

From all of the results, we know that the geometry-based heuristic with the
GA optimization approach is a useful tool for assisting in the selection of the
appropriate number of shots and helmet sizes. Also, they indicate that our
model exceeds the predefined quality of the treatment planning.
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Figure 5. The specified isodose lines of different values: 30%, 40% 50%; 60%, 70%, 100%.

Sensitivity Analysis
• Can the model be applied to sensitive structures? Yes, by applying more dose

constraints, such as an upper bound on either the mean dose or the maximum
dose to the sensitive structures

• Can we treat the tumor at an isodose level other than 50%? In Figure 5, with a
lower isodose line, the dose outside of the target volume decreases rapidly,
resulting in a reduction in the integral dose to normal tissue. With a higher
isodose line, the isodose line cannot cover all the points of the target. For
the nodular regions or sensitive organs, the higher isodose coverage level
should be specified.

• The outstanding question from an optimization viewpoint is global vs. local opti-
mality. How about our model? First, the GA-based shot placement algorithm
can ensure that the generating fraction is the smallest one after every shot is
placed on the target. For the whole target, it also minimizes the sum of all
fractions.

• When we have several comparably optimization schemes for shot placement, how do
we choose the best one? For example, for a 10 mm-diameter sphere target, we
have two comparably optimization schemes, as shown in Table 1. The first
places one 8-mm shot and the second places six 4-mm shots. If we consider
the treatment merely as a sphere-packing problem, the better choice is the
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Figure 6. Shot placement in four targets.

first one. However, in practical treatment, we should consider the diffuse
regions where no shot is irradiated. Under the first plan, inn these regions
the sum of the dose value at a point is more than 1, resulting in increasing
the total effective dosage; so we adopt the second plan.

• Will there be any points outside the tumor whose dose value is greater than 1? In
Figure 7, though the shots have not protruded outside the target (constraint
(C1)), some points outside the tumor overdose. This occurs due to the very
irregular shape of the target, which is not avoidable. In this case, we should
choose how to choose an optimization planning under some constraints.

• How about the robustness of our model? For the many cases optimized thus far,
high-quality dose distributions have been obtained in all cases.
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Figure 7. The 100% isodose of the target in Figure 6a.

Strengths and Limitations

Strengths
• Our optimization-based automated approach generates more-uniform and

better treatment plans in less time than is currently used.

• The geometry-based approach is based on skeletonization ideas from com-
putational graphics, which can speed the process of shot placement.

• The GA-based shot placement algorithm can guide the planner in selecting
the number of shots of radiation and the appropriate collimator helmet sizes,
it can quickly place a shot, and it can ensure global and local optimality
simultaneously.

• The model parameters can be tuned to improve solution speed and robust-
ness.

• The graphical interface is an intuitive way to demonstrate the isodose curve
and the treatment effects of the planning.

Limitations
• The skeleton is a key factor for the effectiveness of the algorithm; we should

seek better methods to determine it.

• Whether our model can handle very irregular targets needs to be examined.

• We use the function in Ferris and Shepard [2000] to approximate the dose
calculation. Other methods of dose calculation should be examined.

• There is no guarantee that there is not a better treatment plan. Some more-
intelligent algorithms, such as a neural network-based dynamic program-
ming algorithm, could be considered.

• We have not tested our model on actual patient data.
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Conclusions
From the simulation results, we know that the geometry-based heuristic

with the GA optimization approach is a useful tool in the selection of the ap-
propriate number of shots and helmet sizes. Our approach is sufficiently robust
and effective to be used in practice.

In future work, we may fit ellipsoids instead of spheres, since some re-
searchers have commented that the dose is skewed in certain directions.
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2004: The Fingerprints
Problem

It is a commonplace belief that the thumbprint of every human who has
ever lived is different.

Develop and analyze a model that will allow you to assess the probability
that this is true.

Compare the odds (that you found in this problem) of misidentification by
fingerprint evidence against the odds of misidentification by DNA evidence.

Comments
The Outstanding papers were by teams from Harvey Mudd College, Uni-

versity College Cork (Ireland), and University of Colorado. Their papers and
accompanying commentaries were published in The UMAP Journal 25 (3) (2004):
215–280. The Ben Fusaro Award went to a team from Central Washington Uni-
versity.

Problem Origin
The problem was contributed by Michael Tortorella (Rutgers University).

Practitioner’s Commentary
Mary Beeton, Automated Fingerprint Identification System Technician for

the Durham Regional Police Service in Oshawa, Ontario, Canada, commented
from the perspective of someone who examines more than 125,000 fingerprints
each year.

Despite the oversimplification in each model from unrealistic assumptions
such as

• minutiae occur at uniform rates along a particular ridge,

• only two types of minutiae exist,

• all fingerprints are perfect rolled prints, and

• ridge widths are consistent, so that pores and edge shapes are not significant,

each of the teams’ conclusions support fingerprint uniqueness.
In 1993, a U.S. Supreme Court, in a ruling for the civil case Daubert v. Mer-

rell Dow Pharmaceuticals, Inc., 509 U.S. 579 (1993), outlined specific “Daubert”
criteria to be used by trial judges in assessing the admissibility of scientific ev-
idence. In 1999, the Assistant Federal Defender for the State of Pennsylvania
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challenged the admissibility of fingerprint evidence, based on the “Daubert”
criteria.

How can Friction Ridge Identification Specialists claim certainty? Champod
et al. [2004] argue that positive identification “is based on inductive reasoning”
and, therefore, “must be probabilistic.” However, others suggest that the proba-
bility is so small that it can be disregarded and hence the latent print examiner’s
conclusion of 100% certainty is acceptable.

There are inherent risks in bringing a probability model into a courtroom.
Regarding one DNA “match” case, “The odds of the arrestee’s DNA being
wrongly matched against that of the crime scene were said to be one in 37
million” [Moenssens 2000]. Moenssens believes that it is a common misun-
derstanding among lawyers, judges, lay persons, and police that when a DNA
“match” is reported with odds of one in 37 million that a like match in the
DNA pattern exists once in 37 million people. Moenssens adds, “the calcu-
lated frequency is an estimate, and can be off by an order of magnitude in
either direction.”

Whether or not fingerprint features are recognized, ignored, or given any
significance can be seriously affected by any distortion present in the finger-
print. Another factor is that the majority of crime scene fingerprints contain
only 20% of the information found in a rolled inked fingerprint.

Author-Judge’s Commentary
A reasonable interpretation of the relevant question could be:

Determine the probability that there have never been two identical fingerprints,
given the capability of the technology used to determine “different.”

You get very quickly into deep—even philosophical—questions.
The first step in developing a model based on this question is to define:

• “fingerprint,”

• the probability space in which this experiment is conducted, and

• “distinct.”

“Distinct” depends on resolution.
The definition of “fingerprint” is wrapped up in the definition of the proba-

bility space, because most teams made assumptions about the minimum spac-
ing between ridges that could possibly occur. This assumption is based on
empirical evidence and is the first step down a road leading to consideration
of only a finite number of potential fingerprints.

As always, interpretation is the key to success in modeling problems. The
first key was to understand that the word “fingerprint,” in addition to its usual
semantic or prose usage, must be given a mathematical meaning in the context
of a model.



188 The MCM at 21

With a few assumptions, a model is possible. Assume that fingerprints (the
actual skin patterns) are assigned at birth, at random from a pool of potential
fingerprints. If we assume that the pool contains N � n elements and selec-
tion is made on an equally-likely basis, then the probability that there are no
two fingerprints alike is the solution to a birthday problem with n people and
N birthdays; namely, the probability of no match (denoted Q1 = 1 − P2 in
Weisstein [2004]) is given by

P (no match) =
N

N

N − 1
N

· · · N − n + 1
N

=
N !

(N − n)!Nn
≈ e−n(n−1)/2N ,

which for fixed n is asymptotic to 1 as N → ∞.
Further definitions for “fingerprint” shrink the pool of possible “finger-

prints,” that is, restrict N so that there is a chance that the probability of no
match will be less than 1.

The total number of possible distinct fingerprints implied is 2600 ≈ 10181.
The number of people who have ever lived is about 1.06 × 1011; so, assuming
that all 2600 patterns are equally likely, the probability that no two persons who
have ever lived have the same fingerprint is approximately 1 − 10−159/2 (this
latter computed from the “birthday problem” with 1.06× 1011 people and 2600

possible “birthdays,” a point that many teams missed).
It is easy to poke holes in this model. Empirically, it is clear that

• not every grid square has the same probability of containing a minutia,

• stochastic independence of the presence or absence of minutiae from grid
square to grid square is not reasonable, and

• there are several different types of minutiae.

When such assumptions based on empirical observation are introduced, the
modeler should attempt to bound the answers using a range of possible rea-
sonable values for the inputs, because sampling error could affect the assump-
tions. Once could argue that sampling error should be negligible in drawing
inferences from a database containing millions of records, like most fingerprint
databases, but most teams did not address this issue in any way.

Finally, the problem asks for comparison of the computed probability with
the probability of misidentification by DNA evidence, a topic much in the public
eye in the last decade. Some teams ignored this requirement. Others quoted
popular anecdotes concerning the DNA misidentification probability. In the
latter case, teams would be advised to bolster their contentions with at least
one legitimate citation.

Further Commentary
Paul Campbell (Beloit College) offered his perspective as long-time editor

of the Outstanding papers for The UMAP Journal.
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Some problems in the MCM and the ICM arise from special situations,
and it is not clear that specific ideas from the solution papers could have any
application beyond the original setting:

• Emergency Facilities Location Problem (1986),

• Parking Lot Problem (1987),

• Midge Classification Problem (1989),

• Helix Intersection Problem (1995),

• Velociraptor Problem (1997),

• Lawful Capacity Problem (1999),

• Bicycle Wheel Problem (2001),

• Wind and Waterspray Problem (2002),

• Gamma Knife Treatment Problem (2003), and

• Stunt Person Problem (2003).

Other problems arise from situations that society faces chronically but have
no urgency, yet the solution papers provide valuable ideas that could be put
into practice:

• Salt Storage Problem (1987),

• College Salaries Problem (1995),

• Contest Judging Problem (1996),

• Discussion Groups Problem (1997),

• Grade Inflation Problem (1998), and

• Quick Pass Problem (2004).

Finally, some problems touch on issues of immediate concern and the solu-
tion papers offer important insights:

• Emergency Power-Restoration Problem (1992),

• Asteroid Impact Problem (1999),

• Hurricane Evacuation Problem (2001),

• Airline Overbooking Problem (2002),

• IT Security Problem (ICM 2003), and

• Airport Security Problem (2004).
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Perhaps no problem has been as aptly timed, however, as the Fingerprints
Problem. The Outstanding papers and the commentaries refer to very recent
questioning in U.S. courts of the reliability of fingerprint evidence.

Fingerprint identification is not solely a scientific enterprise but takes place
in an environment where various sources of human error can prevail: fraud,
incompetence, and errors of various kinds. Prof. Campbell cited instances of
each in recent events. He also emphasized two philosophical questions with
important ramifications:

• the assumption (by all teams) that all the many fingerprints are equally
(un)likely. “We do not know how often different people’s prints may signif-
icantly resemble one another, or how good examiners are at distinguishing
between such prints” [Mnookin 2004].

• the status of scientific truth and of evidence obtained by technical means.
Can scientific evidence yield certainty? Should scientific evidence be re-
garded as more reliable than other evidence? Is it more reliable?

In the final analysis, declaring a match of two fingerprints is a subjective
decision, made by a human being based on training, experience, and all of the
circumstances involved in the comparison.
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Summary
For over a century, fingerprints have been an undisputed personal iden-

tifier. Recent court rulings have sparked interest in verifying uniqueness of
fingerprints.

We seek to determine precisely the probability of duplicate fingerprints.
Our model of fingerprint structure must achieve the following objectives:

• Topological structure in the print, determined by the overall flow of ridges
and valleys, should be described accurately.

• Fine detail, in the form of ridge bifurcations and terminations, must also be
characterized accurately.

• Intrinsic uncertainties, in our ability to reproduce and measure fingerprint
data, must be considered.

• Definite probabilities for specified fingerprint configurations must be cal-
culated.

We place special emphasis on meeting the modeling criteria established by
Stoney and Thornton [1986] in their assessment of prior fingerprint models.

We apply our model to the conditions encountered in forensic science, to de-
termine the legitimacy of current methodology. We also compare the accuracies
of DNA and fingerprint evidence.

Our model predicts uniqueness of prints throughout human history. Fur-
thermore, fingerprint evidence can be as valid as DNA evidence, if not more
so, although both depend on the quality of the forensic material recovered.
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Introduction

What is a Fingerprint?
A fingerprint is a two-dimensional pattern created by the friction ridges on

a human finger [Beeton 2002]. Such ridges are believed to form in the embryo
and to persist unchanged through life. The physical ridge structure appears to
depend chaotically on factors such as genetic makeup and embryonic fluid flow
[Prabhakar 2001]. When a finger is pressed onto a surface, the friction ridges
transfer to it (via skin oil, ink, or blood) a representation of their structure.

Fingerprints have three levels of detail [Beeton 2002]:

1. Overall ridge flow and scarring patterns, insufficient for discrimination.

2. Bifurcations, terminations, and other discontinuities of ridges. The pairwise
locations and orientations of the up to 60 such features in a full print, called
minutiae, provide for detailed comparison [Pankanti et al. 2002].

3. The width of the ridges, the placement of pores, and other intraridge features.
Such detail is frequently missing from all but the best of fingerprints.

Fingerprints as Evidence
The first two levels have been used to match suspects with crime scenes,

and fingerprint evidence was long used without major challenge in U.S. courts
[OnIn.com 2003]. In 1993, however, in Daubert v. Merrill Dow Pharmaceutical,
the U.S. Supreme Court set standards for “scientific” evidence [Wayman 2000]:

1. The theory or technique has been or can be tested.

2. The theory or technique has been subjected to peer review or publication.

3. The existence and maintenance of standards controlling use of the technique.

4. General acceptance of the technique in the scientific community.

5. A known potential rate of error.

Since then, there have been challenges to fingerprint evidence.

Individuality of Fingerprints
Francis Galton [1892] divides a fingerprint into squares with a side length

of six ridge periods and estimates that he can recreate the ridge structure of
a missing square with probability 1

2 . Assuming independence of squares and
introducing additional factors, he concludes that the probability of a given
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fingerprint occurring is 1.45×10−11. Pearson refines Galton’s model and finds
a probability of 1.09 × 10−41 [Stoney and Thornton 1986].

Osterburg [1977] extends Galton’s approach by dividing a fingerprint into
cells that can each contain one of 12 minutia types. Based on independence
among cells and observed frequencies of minutiae, he finds the probability of
a configuration to be 1.33× 10−27. Sclove [1979] extends Osterburg’s model to
dependencies among cells and multiple minutiae in a single cell.

Stoney and Thornton [1986] charge that these models fail to consider key
issues completely: the topological information in level-one detail; minutiae
location, orientation, and type; normal variations in fingerprints; and number
of positions considered. We try to correct some of these omissions.

Our Model: Assumptions and Constraints

Assumptions
• Fingerprints are persistent: they remain the same throughout a person’s

lifetime. Galton [1892] established this fact, in recent times verified from the
processes of development of dermal tissues [Beeton 2002].

• Fingerprints are of the highest possible quality, without damage from abra-
sion and injury.

• The pattern of ridges has some degree of continuity and flow.

• The ridge structure of a fingerprint is in one of five categories: Arch, Left
Loop, Right Loop, Tented Arch, or Whorl, employed in the automatic clas-
sification system of Cappelli et al. [1999] (derived from those of the FBI and
Watson and Wilson [1992]). Each category has a characteristic ridge flow
topology, which we break into homogeneous domains of approximately
unidirectional flow. While Cappelli et al. [1999] raise the issue of “unclas-
sifiable” prints, and they and Marcialis et al. [2001] confuse classes of ridge
structures, we assume that such ambiguities stem from poor print quality.

• Fingerprints may further be distinguished by the location and orientation
of minutiae relative to local ridge flow. Stoney and Thornton [1986] argue
that the ridges define a natural coordinate system, so the location of a minutia
can be specified with a ridge number and a linear measure along that ridge.
Finally, minutiae have one of two equally likely orientations along a ridge.

• Each minutia can be classified as a bifurcation, a termination, or a dot
(Figure 1) [Pankanti et al. 2002; Stoney and Thornton 1986]. Though Galton
[1892] identifies 10 minutia structures and others find 13 [Osterburg et al.
1977], we can ignore these further structures (which are compositions of the
basic three) because of their low frequency [Osterburg et al. 1977].
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Figure 1. The three basic minutiae types (from Galton [1892]). We refer to ending ridges as
terminations.

• A ridge structure produces an unambiguous fingerprint, up to some level
of resolution. A ridge structure can vary in print representations primarily
in geometric data, such as ridge spacing, curvature, and location of minu-
tiae [Stoney and Thornton 1986]. Topological data—ridge counts, minutiae
orientation, and ordering—are robust to such variation and are replicated
consistently.

A more serious consideration is connective ambiguities, such as when a given
physical minutia is represented sometimes as a bifurcation and sometimes
as a termination. But our highest-quality assumption dictates that such
ambiguity arise only where the physical structure itself is ambiguous.

• Location and orientation of minutiae relative to each other are indepen-
dent, though Stoney and Thornton [1986] find some dependency and Sclove
[1979] model such dependency in a Markov process.

• Ridge widths are uniform throughout the print and among different prints,
and ridge detail such as pores and edge shapes is not significant. While
ridge detail is potentially useful, we have little data about types and fre-
quencies.

• Frequencies of ridge structure classes and configurations and minutiae
types do not change appreciably with time. We need this invariance for
our model’s probabilities to apply throughout human history.

Constraints Implied by Assumptions
• Our model must consider ridge structure, relative position, orientation, and

type of minutiae.

• Locations of minutiae must be specified only to within some uncertainty
dependent on the inherent uncertainty in feature representation.

Model Formulation
We examine a hierarchy of probabilities:

• that the given class of ridge structure occurs,
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• that the ridge structure occurs in the specified configuration of ridge flow
regions, and

• that minutiae are distributed as specified throughout the regions.

We further break this last probability down into a composition of the following
region-specific probabilities:

• that a region contains the specified number of minutiae,

• that the minutiae in this region follow the specified configuration, and

• that the minutiae occur with the specified types and orientations.

Probability of Ridge Structure Class
To each of the five classes of ridge structures (Arches, Left and Right Loops,

Tented Arches, and Whorls), we associate a probability of occurrence (νA, νL,
νR, νT , νW ), which we estimate from observed frequency in the population.

Probability of Ridge Structure Configuration
Each print is partitioned into regions in which the overall flow is relatively

unidirectional, and the class of the print is determined from five prototypical
masks characteristic of ridge-structure classes (Figure 2) [Cappelli et al. 1999].
The variations of flow region structure within each class then depend on pa-
rameters for the class. For example, the ridge structure of a Loop print can be
determined from the locations of the triangular singularity and the core of the
loop (Figure 3). To determine the probability of a particular region configura-
tion, we determine the probability that the associated parameters occur.

Because of uncertainty in the parameters, we discretize the parameter space
at the fundamental resolution limit δ1 (subscript indicates feature level). We use
independent Gaussian distributions about the mean values of the parameters.

We now detail the parameter spaces for each ridge-structure class. The use
of the prototypes requires an X × Y region within the print.

Arch
The parameters for the Arch consist of the Cartesian coordinates (x, y) of

the lower corner of the left region, the height h of the central corridor, and the
four angles θ1, θ2, θ3, θ4 at the inner corners of the left and right regions. We
consider as fixed the width b of the central corridor. The ratio of the resolution
limit δ1 to the mean length of a typical segment determines the uncertainty in
the angular measurement of that segment.
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Arch Right Loop

Tented Arch Whorl

Figure 2. The prototypical region structures and parameters for each ridge structure class, derived
from the masks in Cappelli et al. [1999].

Arch Right Loop Whorl

Figure 3. The prototypical region structures applied to an Arch, a Right Loop, and a Whorl.
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Loops, Left and Right
Since Left and Right Loops are identical except for a horizontal reflection,

we use the same parameter space for both classes. The two principal features
are the position (x, y) of the triangular singularity outside the loop and the
distance r and angle θ of the core of the loop relative to this singularity.

Tented Arch
The major structure is the arch itself; the parameters are the position (x, y)

of the base of the arch and the height h of the arch.

Whorl
The Whorl structure has four major features: the center of the whorl, (xC , yC);

the base of the whorl, (xB , yB); and the triangular singularities to the left and
right of the base of the whorl, at (xL, y:) and (xR, yR). We assume that the center
and the base lie between the two singularities, so that xL ≤ xC and xB ≤ xR,
and that the base lies above the singularities, so that yB ≥ yL and yB ≥ yR.

Probabilities of Intraregion Minutiae Distribution
Since the geometry of a region is uniquely determined by the configuration

parameters, we can divide each unidirectional flow region into parallel ridges.
We can represent the ridge structure of the region as a list of ridge lengths.

We assume a fundamental limit δ2 to resolution of the position of minutiae
along a ridge and divide a ridge into cells of length δ2, in each of which we
find at most one minutia. The probability PTC(n, l, k) that the nth ridge in the
partition, with length l, has a particular configuration of k minutiae is

PTC(n, l, k, . . . ) = Pp(n, k, l)Pc(n, k, l)Pto({ki, pi, oi}),
where Pp is the probability that k minutiae occur on this ridge, Pc the proba-
bility that these k minutiae are configured in the specified pattern on the ridge,
and Pto the probability that these minutiae are of the specified types and ori-
entations, indexed by i and occurring with type probability pi and orientation
probability oi.

Probability of Minutiae Number
Under the assumption that minutiae occur at uniform rates along a ridge,

we expect a binomial distribution for the number of minutiae on the ridge.
Denote the linear minutiae density on ridge n by λ(n). The probability that a
minutia occurs in a given cell of length δ2 is δ2λ(n). Thus, the probability that
k minutiae occur is

Pp(n, k, l, λ) =
(

l/δ2

k

)
(δ2λ)k(1 − δ2λ)l/δ2−k.
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Probability of Minutiae Configuration
Assuming that all configurations of k minutiae are equally likely along the

ridge, the probability of the specified configuration is

Pc(n, k, l) =
1(

l/δ2

k

) .

Probability of Minutiae Type and Orientation
The probability that minutiae occur with specified types and orientations is

Pto({ki, pi, oi}) =
∏

i

pki
i oki

i .

Applying our assumption that the only level-two features are bifurcations,
terminations, and dots, and that orientations are equally likely and independent
along the ridge, this expression reduces to

Pto = pkb

b pkt
t pkd

d

1
2kb+kt

,

with kb + kt + kd = k. Then the total probability for the ridge configuration is

PTC(n, l, k, λ, {ki, pi, oi}) = (δ2λ)k(1 − δ2λ)l/δ2−kpkb

b pkt
t pkd

d

1
2kb+kt

.

The total probability that minutiae are configured as specified through the entire
print is then product of the PTCs for all ridges in all domains, since we assume
that ridges develop minutiae independently.

Applying the assumption that λ and other factors do not depend on n and
are hence uniform throughout the print, we can collapse these multiplicative
factors to an expression for the configuration probability of the entire print:

P
global
TC = (δ2λ)K(1 − δ2λ)L/δ2−KpKb

b pKt
t pKd

d

1
2Kb+Kt

.

Here K is the total number of minutiae in the print, Ki the number of type i,
and L is the total linear length of the ridge structure in the print. The length
L is determined only by the total area XY of the print and the average ridge
width w and is therefore independent of the topological structure of the print.

Parameter Estimation
For parameters in our model, we use published values and estimates based

on the NIST-4 database [Watson and Wilson 1992].
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Level-One Parameters
All lengths are in millimeters (mm); angles are in radians or in degrees.

• Level-one spatial resolution limit δ1: Cappelli et al. [1999] discretize images
into a 28 × 30 grid to determine level-one detail. From these grid dimen-
sions, the physical dimensions of fingerprints, and the assumption of an
uncertainty of three blocks for any level-one feature, we estimate δ1 = 1.5.

• Level-one angular resolution limit δθ: Taking X/2 = 5.4 (determined be-
low) as a typical length scale, we have δθ = δ1/5.4 = 0.279 radians.

• Ridge structure class frequencies νA, νL, νR, νT , and νW : We use the esti-
mates in Prabhakar [2001] (Table 1).

Table 1. Relative frequencies of ridge structure classes (from Prabhakar [2001]).

νA νL νR νT νW

0.0616 0.1703 0.3648 0.0779 0.3252

• Thumbprint width X and height Y : Examining thumbprints from the NIST-
4 database and comparing them with the area given by Pankanti et al. [2002],
we conclude that a width that covers the majority of thumbprints is 212 pixels
in the 500 dpi images, a physical length of 10.8 mm. Similarly, Y = 16.2 mm.

• Arch parameters (x, y), h, b, θ1, θ2, θ3, and θ4: We restrict the parameter
space for (x, y) to the lower half of the thumbprint with horizontal margins
of length b. We estimate b = 2.5 from examination of Arch fingerprints
in the NIST database and from Cappelli et al. [1999]. This estimate places
x ∈ (0, 8.3) and y ∈ (0, 5.6). The mean for (x, y), which we need to describe
the distribution of (x, y), is then (4.2, 2.8). We estimate that x and y both
have a standard deviation of 0.7. We assume that θ1, . . . ,θ4 are all between
0◦ and 45◦ with mean 22.5◦ and standard deviation 5.13◦.

• Loop parameters (x, y), θ, and r: For a left loop (a right loop is reflection
of this), (x, y) must lie in the bottom left quadrant and the mean coordinate
pair is (2.7, 2.8). Additionally, we restrict θ to lie between 15◦ and 75◦, which
allows us to estimate the mean θ as 45◦ with a standard deviation of 15◦. We
estimate that r must be greater than 0 and less than 9.6.

• Tented arch parameters (x, y) and h: Along the y direction, we restrict the
bottom of the arch (x, y) to lie in the bottom half of the thumbprint. We
further estimate that x lies in the middle two-thirds of X . These assumptions
yield x ∈ (1.8, 9) and y ∈ (0, 8.1). Assuming a symmetric distribution
of (x, y) yields (x, y) = (5.4, 2.8) with a standard deviation of 0.7 in both
directions. Logically, we place h between 0 and Y/2 = 8.1. Again, assuming
a symmetric distribution in this parameter space and a standard deviation
of one-eighth the maximum value yields h = 4.05 ± 1.02.
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• Whorl parameters (xL, yL), (xC , yC), (xR, yR), and (xB , yB): We expect
(xL, yL) to be in the bottom left quadrant for all but the most extreme ex-
amples and similarly (xR, yR) to lie in the bottom right quadrant. We place
(xB , yB) between x = X/4 and x = 3X/4 and y = 0 and y = 2Y/3. The
topmost point, (xC , yC), we place in the top half of the thumbprint. We again
put the average values in the center of their restricted areas.

Table 2 summarizes the estimates for these four classes of ridge structures.

Table 2. Parameter range estimates for the ridge structure classes.
All lengths in millimeters (mm), angles in degrees.

Arch parameter ranges

(x, y) (4.2, 2.8)± (0.7, 0.7)

h 4.05± 0.7
b 2.5± 0

θ1–θ4 22.5◦ ± 5.13◦

Loop parameter ranges

(x, y) (2.7, 2.8)± (0.7, 0.7)

θ 45◦ ± 15◦

r 4.58± 0.7

Tented Arch Parameter Ranges

(x, y) (5.4, 2.8)± (0.7, 0.7)

h 4.05± 1.02

Whorl parameter ranges

(xL, yL) (2.7, 4.1)± (0.7, 0.7)

(xC , yC) (5.4, 12.2)± (0.7, 0.7)

(xR, yR) (8.1, 4.1)± (0.7, 0.7)

(xB , yB) (5.4, 4.1)± (0.7, 0.7)

Level-Two Parameters
• Level-two spatial resolution limit δ2: We estimate δ2 by r0, the spatial un-

certainty of minutiae location in two dimensions [Pankanti et al. 2002], and
propose δ2 = 1 for best-case calculations.

• Relative minutiae type frequencies pd, pb, and pt: Almost every compound
minutia can be broken into a combination of bifurcations and terminations
separated spatially. Counting these compound minutiae appropriately, we
determine the relative minutiae frequencies in Table 3.

• Ridge period w: We use 0.463 mm/ridge for the ridge period, the distance
from the middle of one ridge to the middle of an adjacent one [Stoney and
Thornton 1986].
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Table 3. Frequencies of simple minutiae types (from Osterburg et al. [1977]).

pb pt pd

0.356 0.581 0.0629

• Mean number of minutiae per print µ: Under ideal circumstances, we
discern 40 to 60 minutiae on a print [Pankanti et al. 2002]; we take µ = 50±10.

• Linear minutiae density λ: We calculate λ by dividing the average number
of minutiae per a thumbprint µ by the total ridge length of a thumbprint
XY/w. Under ideal conditions, this gives λ = 0.13± 0.03 minutiae/mm. In
practice, we may have λ = 0.05 ± 0.03 minutiae/mm [Pankanti et al. 2002].

Finally, we estimate that there have been 100 billion humans [Haub 1995].

Model Analysis and Testing
Let the probability that a print has a configuration x be pc(x). Assuming

that fingerprint patterns are distributed independently, the probability that two
prints match is p2

c(x). The sum of these probabilities over the configuration
space is the total probability that some match occurs.

The probabilities associated with the two levels of detail are determined
independently, so the total occurrence probability factors into pc1(x1)pc2(x2).
Denoting the level-one configuration subspace asC1 and the level-two subspace
as C2, the total probability of the prints matching is

p =
∑
i∈C1

∑
j∈C2

[pc1(i)pc2(j)]2 =

( ∑
i∈C1

p2
c1(i)

) ∑
j∈C2

p2
c2(j)

 = p1p2.

Level-One Detail Matching
We restrict each parameter to a region of parameter space in which we expect

to find it and assume that it is uniformly distributed there. This approximation
is enough to estimate order of magnitude, which suffices for our analysis. Then

pc1(i) =
νi( ∏

j∈V (i)

Lj

δ1

) , (1)

where Lj is the range of parameter j in V (i), the set of parameters for a type-i
ridge structure. For (1) to be accurate, we should make any Lj corresponding
to angular parameters the product of the angle range with our typical length
of 5.4 mm. The product is simply the total number of compartments in the
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parameter space, since we assume a uniform distribution in that range. Calcu-
lating pc1(i) for each ridge structure type, and summing squares, we find the
probability that two thumbprints have the same overall ridge structure:

p1 =
∑
i∈C1

p2
c1(i) = .00044. (2)

Level-Two Detail Matching
If we disregard the infrequent dot minutiae, we obtain the probability

pc2(j) = (δ2λ)k(1 − δ2λ)C−Kpkb

b pk−kb
t

1
2k

for a configuration j with k minutiae, kb of which are bifurcations (and the rest
ridges), placed in C = XY/wδ2 cells. If we simplify minutia-type frequencies
to pb = pt = 1/2, and note that there are(

C

k

)(
k

kb

)
2k

ways to configure j given k and kb, the total probability of a match becomes

p2 =
C∑

k=0

k∑
kb=0

(
(δ2λ)k(1 − δ2λ)C−K 1

4k

) (
C

k

)(
k

kb

)
2k

=
C∑

k=0

(δ2λ)2k(1 − δ2λ)2(C−k) 1
4k

(
C

k

)

=
(

5(δ2λ)2 − 8δ2λ + 4
4

)C

.

Match probabilities for λ = 0.13 ± 0.03/mm, δ2 = 1 mm, and C = 250 to 400
cells range from 2.9 × 10−23 to 9.8 × 10−60; probabilities for the more realistic
values λ = 0.05± 0.03/mm, δ2 = 2–3 mm, and C = 100 to 250 cells range from
3.7 × 10−5 to 1.7 × 10−47.

Historical Uniqueness of Fingerprints
Denote the probability of a match of any two left thumbprints in the history

of the human race by p and the world total population by N . The probability
of at least one match among

(
N
2

)
thumbprints is

P = 1 − (1 − p)(
N
2 ).

Figure 4a illustrates the probability of at least one match for N = 1011, while
Figure 4b shows a log-log plot of the probability for very small p-values. Since
even conservative parameter values in the ideal case give p � 10−30, our model
solidly establishes uniqueness of fingerprints through history.
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Figure 4a. For N = 1011, probability of at
least one thumbprint match through history.
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Figure 4b. Log-log plot of probability.

Strengths and Weaknesses of the Model

Strengths
• Topological coordinate system: We take topological considerations into

account, as demanded by Stoney and Thornton [1986].

• Incorporation of ridge structure detail: We use this in addition to the minu-
tiae detail that is the primary focus of most other models.

• Integration of nonuniform distributions: We allow for more-complex dis-
tributions of the ridge structure parameters, such as Gaussian distributions
for singularity locations, and we consider that distribution of minutiae along
ridges may depend on the location of the ridge in the overall structure.

• Accurate representation of minutia type and orientation: We follow mod-
els such as those developed by Roxburgh and Stoney in emphasizing the
bidirectional orientation of minutiae along ridges, and we further consider
the type of minutiae present as well as their location and orientation. Cruder
models of minutiae structure [Osterburg et al. 1977; Pankanti et al. 2002] ne-
glect some of this information.

• Flexibility in parameter ranges: We test a range of parameters in both ideal
and practical scenarios and find that the model behaves as expected.

Weaknesses
• Ambiguous prints, smearing, or partial matches: We assume that ambigui-

ties in prints reflect ambiguities in physical structure and are not introduced
by the printing. This is certainly not the case for actual fingerprints.

• Domain discontinuities: We have no guarantee of continuity between re-
gions of flow; continuity requirements may affect the level-one matching
probabilities significantly.



204 The MCM at 21

• Nonuniform minutia distribution: We assume that the distribution of minu-
tiae along a ridge is uniform. However, models should account for variations
in minutiae density and clustering of minutiae [Stoney and Thornton 1986].
Although we have a mechanism for varying this distribution, we have no
data on what the distribution should be.

• Left/right orientation distribution: We assume that the distribution of minu-
tiae orientation is independent and uniform throughout the print. Amy
notes, however, that the preferential divergence or convergence of ridges
in a particular direction can lead to an excess of minutiae with a particular
orientation [Stoney and Thornton 1986].

• Level-three information: We neglect level-three information, such as pores
and edge shapes, because of uncertainty about its reproducibility in prints.

Comparison with DNA Methods

DNA Fingerprinting
The genetic material in living organisms consists of deoxyribonucleic acid

(DNA), a macromolecule in the shape of a double helix with nitrogen-base
“rungs” connecting the two helices. The configurations of these nitrogen bases
encode the genetic information for each organism and are unique to the organ-
ism (except for identical twins and other cases in which an organism splits into
multiple separate organisms).

Direct comparison of base-pair sequences for two individuals is infeasible,
so scientists sequence patterns in a person’s DNA called variable number tandem
repeats (VNTR), sections of the genome with no apparent genetic function.

Comparison of Traditional and DNA Fingerprinting
While level-two data is often limited by print quality, we expect level-one

detail to remain relatively unchanged unless significant sections of the print
are obscured or absent. We use p1 = 10−3 from (2), allowing for a conservative
loss of seven-eighths of the level-one information. Multiplying by this level-one
factor 10−3, all but the three worst probabilities are less than 10−9.

DNA fingerprinting has its flaws: False positives can arise from mishan-
dling samples, but the frequency is difficult to estimate. The probability of two
different patterns exhibiting the same VNTR by chance varies between 10−2

and 10−4, depending on the VNTR [Roeder 1994; Woodworth 2001]. The total
probability of an individual’s DNA pattern occurring by chance is computed
under the assumption that the VNTRs are independent, which has been verified
for the ten most commonly used VNTRs [Lambert et al. 1995].
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Results and Conclusions
We present a model that determines whether fingerprints are unique. We

consider both the topological structure of a fingerprint and the fine detail
present in the individual ridges. We compute probabilities that suggest that
fingerprints are reasonably unique among all humans who have lived.

Fingerprint evidence compares well with DNA evidence in forensic settings.
Our model predicts that with even a reasonably small fingerprint area and
number of features, the probability that a match between a latent print and a
suspect’s print occurs by chance is less than 10−9. Both DNA evidence with few
VNTRs and fingerprints of poor quality with few features can give inconclusive
results, resulting in uncertainty beyond a reasonable doubt.
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The Other Problems of the
Second Ten Years

1995: The College Salaries
Problem

Aluacha Balaclava College has just hired a new Provost. Problems with
faculty compensation at the college forced the former Provost to resign, so the
new Provost needs to make the institution of a fair and reasonable compensation
system her first priority. As a first step in this process, she has hired your
team as consultants to design a compensation system that reflects the following
circumstances and principles.

Circumstances
There are four faculty ranks: Instructor, Assistant Professor, Associate Pro-

fessor and Professor, in ascending order. Faculty with Ph.D. degrees are hired
at the rank of Assistant Professor. Faculty who are working on a Ph.D. are
hired at the rank of Instructor and promoted automatically to Assistant Pro-
fessor upon completion of their degrees. Faculty may apply for promotion
from Associate Professor to Professor after serving at the rank of Associate for
seven or more years. The promotion decisions are made by the Provost with
recommendations from a faculty committee and are not your concern.

Faculty salaries are for the ten-month period September through June.
Raises are always effective beginning in September. The total amount of money
available for raises varies from year to year and generally is not known until
March for the following year.

The starting salary this year for an Instructor with no prior teaching ex-
perience was $27,000 and for an Assistant Professor was $32,000. Faculty can
receive credit, upon hire, for as much as seven years of teaching experience at
other institutions.

Principles
• All faculty should get a raise any year that money is available.

• Faculty should get a substantial benefit from promotion. If one is promoted
in the minimum possible time, the benefit should be roughly equal to seven
years of normal (non-promotion) raises.
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Table 1.

Salary data for Problem B.

Case Years Rank Salary Case Years Rank Salary Case Years Rank Salary

1 4 ASSO 54,000 2 19 ASST 43,508 3 20 ASST 39,072
4 11 PROF 53,900 5 15 PROF 44,206 6 17 ASST 37,538
7 23 PROF 48,844 8 10 ASST 32,841 9 7 ASSO 49,981

10 20 ASSO 42,549 11 18 ASSO 42,649 12 19 PROF 60,087
13 15 ASSO 38,002 14 4 ASST 30,000 15 34 PROF 60,576
16 28 ASST 44,562 17 9 ASST 30,893 18 22 ASSO 46,351
19 21 ASSO 50,979 20 20 ASST 48,000 21 4 ASST 32,500
22 14 ASSO 38,462 23 23 PROF 53,500 24 21 ASSO 42,488
25 20 ASSO 43,892 26 5 ASST 35,330 27 19 ASSO 41,147
28 15 ASST 34,040 29 18 PROF 48,944 30 7 ASST 30,128
31 5 ASST 35,330 32 6 ASSO 35,942 33 8 PROF 57,295
34 10 ASST 36,991 35 23 PROF 60,576 36 20 ASSO 48,926
37 9 PROF 57,956 38 32 ASSO 52,214 39 15 ASST 39,259
40 22 ASSO 43,672 41 6 INST 45,500 42 5 ASSO 52,262
43 5 ASSO 57,170 44 16 ASST 36,958 45 23 ASST 37,538
46 9 PROF 58,974 47 8 PROF 49,971 48 23 PROF 62,742
49 39 ASSO 52,058 50 4 INST 26,500 51 5 ASST 33,130
52 46 PROF 59,749 53 4 ASSO 37,954 54 19 PROF 45,833
55 6 ASSO 35,270 56 6 ASSO 43,037 57 20 PROF 59,755
58 21 PROF 57,797 59 4 ASSO 53,500 60 6 ASST 32,319
61 17 ASST 35,668 62 20 PROF 59,333 63 4 ASST 30,500
64 16 ASSO 41,352 65 15 PROF 43,264 66 20 PROF 50,935
67 6 ASST 45,365 68 6 ASSO 35,941 69 6 ASST 49,134
70 4 ASST 29,500 71 4 ASST 30,186 72 7 ASST 32,400
73 12 ASSO 44,501 74 2 ASST 31,900 75 1 ASSO 62,500
76 1 ASST 34,500 77 16 ASSO 40,637 78 4 ASSO 35,500
79 21 PROF 50,521 80 12 ASST 35,158 81 4 INST 28,500
82 16 PROF 46,930 83 24 PROF 55,811 84 6 ASST 30,128
85 16 PROF 46,090 86 5 ASST 28,570 87 19 PROF 44,612
88 17 ASST 36,313 89 6 ASST 33,479 90 14 ASSO 38,624
91 5 ASST 32,210 92 9 ASSO 48,500 93 4 ASST 35,150
94 25 PROF 50,583 95 23 PROF 60,800 96 17 ASST 38,464
97 4 ASST 39,500 98 3 ASST 52,000 99 24 PROF 56,922

100 2 PROF 78,500 101 20 PROF 52,345 102 9 ASST 35,798
103 24 ASST 43,925 104 6 ASSO 35,270 105 14 PROF 49,472
106 19 ASSO 42,215 107 12 ASST 40,427 108 10 ASST 37,021
109 18 ASSO 44,166 110 21 ASSO 46,157 111 8 ASST 32,500
112 19 ASSO 40,785 113 10 ASSO 38,698 114 5 ASST 31,170
115 1 INST 26,161 116 22 PROF 47,974 117 10 ASSO 37,793
118 7 ASST 38,117 119 26 PROF 62,370 120 20 ASSO 51,991
121 1 ASST 31,500 122 8 ASSO 35,941 123 14 ASSO 39,294
124 23 ASSO 51,991 125 1 ASST 30,000 126 15 ASST 34,638
127 20 ASSO 56,836 128 6 INST 35,451 129 10 ASST 32,756
130 14 ASST 32,922 131 12 ASSO 36,451 132 1 ASST 30,000
133 17 PROF 48,134 134 6 ASST 40,436 135 2 ASSO 54,500
136 4 ASSO 55,000 137 5 ASST 32,210 138 21 ASSO 43,160
139 2 ASST 32,000 140 7 ASST 36,300 141 9 ASSO 38,624
142 21 PROF 49,687 143 22 PROF 49,972 144 7 ASSO 46,155
145 12 ASST 37,159 146 9 ASST 32,500 147 3 ASST 31,500
148 13 INST 31,276 149 6 ASST 33,378 150 19 PROF 45,780
151 4 PROF 70,500 152 27 PROF 59,327 153 9 ASSO 37,954
154 5 ASSO 36,612 155 2 ASST 29,500 156 3 PROF 66,500
157 17 ASST 36,378 158 5 ASSO 46,770 159 22 ASST 42,772
160 6 ASST 31,160 161 17 ASST 39,072 162 20 ASST 42,970
163 2 PROF 85,500 164 20 ASST 49,302 165 21 ASSO 43,054
166 21 PROF 49,948 167 5 PROF 50,810 168 19 ASSO 51,378
169 18 ASSO 41,267 170 18 ASST 42,176 171 23 PROF 51,571
172 12 PROF 46,500 173 6 ASST 35,798 174 7 ASST 42,256
175 23 ASSO 46,351 176 22 PROF 48,280 177 3 ASST 55,500
178 15 ASSO 39,265 179 4 ASST 29,500 180 21 ASSO 48,359
181 23 PROF 48,844 182 1 ASST 31,000 183 6 ASST 32,923
184 2 INST 27,700 185 16 PROF 40,748 186 24 ASSO 44,715
187 9 ASSO 37,389 188 28 PROF 51,064 189 19 INST 34,265
190 22 PROF 49,756 191 19 ASST 36,958 192 16 ASST 34,550
193 22 PROF 50,576 194 5 ASST 32,210 195 2 ASST 28,500
196 12 ASSO 41,178 197 22 PROF 53,836 198 19 ASSO 43,519
199 4 ASST 32,000 200 18 ASSO 40,089 201 23 PROF 52,403
202 21 PROF 59,234 203 22 PROF 51,898 204 26 ASSO 47,047
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• Faculty who get promoted on time (after seven or eight years in rank) and
have careers of 25 or more years should make roughly twice as much at
retirement as a new Ph.D. starting off.

• Faculty in the same rank with more experience should be paid more than
others with less experience. But the effect of an additional year of experience
should diminish over time. In other words, if two faculty stay in the same
rank, their salaries should tend to get closer over time.

The Project
First, design a new pay system without cost-of-living increases. Then in-

corporate cost-of-living increases. The final piece of this project is to design a
transition process for existing faculty that will move all salaries towards your
system without cutting anyone’s salary. The existing faculty salaries, ranks and
years of service, are in Table 1. Discuss any refinements that you think would
improve your system.

The Provost has asked for a detailed pay system plan that she can use for
implementation, as well as a short executive summary in clear language, which
she can present to the Board and to the faculty. The summary should outline
the model, its assumptions, its strengths and weaknesses, and the expected
results.

Comments
The Outstanding papers were by teams from Harvey Mudd College, North

Carolina School of Science and Mathematics, Southeast Missouri State Univer-
sity, and University of Alaska Fairbanks. Their papers, together with commen-
taries, were published in The UMAP Journal 16 (3) (1995): 259–314.

Problem Origin
The problem was contributed by Kathleen M. Shannon (Salisbury State Uni-

versity, MD). The data were public information from Salisbury State University.

Judge’s Comments
Contest judge Don Miller (St. Mary’s College, IN) noted that most teams

recognized the problem as a curve-fitting problem and found a model that
satisfied most of the criteria.

Implementing the model on the provided data set turned out to be decep-
tively more difficult. The team from University Alaska Fairbanks had experi-
mented with six different functions before settling on a logistic model because
it met all the criteria.
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Most teams used the same model for all ranks and the entire tenure of the
faculty member. Others developed a separate model for the instructor rank or
for the full professor rank (different because a full professor has no opportunity
for promotion). The team from Southeast Missouri State University developed
a separate model for each rank.

Modelers can gain creditability by demonstrating that they understand the
problem in its context. For the salary data, this could mean recognizing some
of the salaries as outliers that must be dealt with individually. The professor
with two years of experience and a salary of $85,500 is clearly an outlier and
will be virtually impossible to bring into line with any reasonable model. This
person may be a “superstar” who is not expected to fit into the model salary
structure (the football coach? no, the salary is too low). The modeler should
point out or question such unusual situations, but few teams did. An exception
was the team from the North Carolina School of Science and Mathematics, who
showed that, “with the exception of a few grossly overpaid faculty, the problem
of unfairness would be solved” in five years.

Better papers were distinguished by a complete and mature treatment of
the assumptions as well as a precise plan of implementation. The team from
University of Alaska at Fairbanks offered two plans, showed graphically how
they differed, and recommended one over the other. All the Outstanding papers
did sensitivity analyses, included cost of living in their implementation plan,
and featured a well-written executive summary.

1996: The Submarine Detection
Problem

The world’s oceans contain an ambient noise field. Seismic disturbances,
surface shipping, and marine mammals are sources that, in different frequency
ranges, contribute to this field. We wish to consider how this ambient noise
might be used to detect large moving objects, e.g., submarines located below the
ocean surface. Assuming that a submarine makes no intrinsic noise, develop a
method for detecting the presence of a moving submarine, its speed, its size, and
its direction of travel, using only information obtained by measuring changes to
the ambient noise field. Begin with noise at one fixed frequency and amplitude.

Comments
The Outstanding papers were by teams from Pomona College, University

of North Carolina, Wake Forest University, and Worcester Polytechnic Institute.
Their papers, together with commentaries, were published in The UMAP Journal
17 (3) (1996): 207–282.
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Problem Origin
The problem was contributed by Daniel Zwillinger (Zwillinger & Asso-

ciates).

Judge’s Comments
Jack Robertson (then at Georgia College and State University, now at Geor-

gia Military College) observed that it was critical for a team to consider the
environmental effect of the ocean on sound propagation and account for the
properties of the ambient noise field itself. Although the literature contains
extensive discussions of both ideas, too many teams did little or nothing in this
area. A great many papers made absolutely no attempt to do any true acous-
tic modeling. Instead, they looked like homework sets for a signal-processing
course, rolling out page after page of theory without ever making a clear link-
age to the problem posed. Those papers contained very little modeling—and
modeling, after all, is what the contest is all about. Papers with simple models
that were well conceived and whose shortcomings were clearly noted tended
to fare much better than papers with extremely elaborate calculations and little
connection with the real world.

Several papers stood out for creative schemes for designing receivers to
work well under the conditions specified in the problem.

Many teams made little or no effort to search the literature. Very few teams
referred to Buckingham et al. [1996], which appeared in a widely read science
magazine shortly before the competition began.

Practitioner’s Comments
Michael J. Buckingham (Scripps Institution of Oceanography and the Uni-

versity of Southampton) surveyed the history of underwater detection, includ-
ing sonar, and the alternative based on the idea that ambient noise in the ocean
acts as a form of acoustic illumination. An object will scatter and reflect some
of the incident noise, suggesting that by focusing the scattered component with
a suitable acoustic lens, it should be possible to create an image of the object.
This, after all, is the essential process of photography using daylight.

The Worcester Polytechnic Institute paper is interesting in that it considered
various types of reflector as candidates for an acoustic lens. In fact, a similar
approach was implemented in the original investigations of ambient noise de-
tection, in Buckingham et al. [1992] (a parabolic dish) and in Buckingham et al.
[1996] (a larger spheroidal dish). This paper was the only one of the four to cite
a reference to the research that has been performed on ambient noise detection
and imaging. The authors proposed an interesting triangulation technique for
parabolic reflectors and went on to consider two other detector geometries, a
parabolic trough, and a parabolic torus. They found that the technique would
work, but only over limited ranges, out to about 1 km, due to the absorption of
sound by seawater.
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The Wake Forest University team took a different approach by developing
a computer simulation of noise detection with four close-packed hydrophones
at each of four locations. They proposed a technique to give the submarine’s
position and, through a Doppler shift in the noise spectrum, its velocity. The
idea of determining target speed from the noise field is novel, although probably
would be difficult to achieve in practice, since the noise is broadband, whereas
the authors assumed a single frequency. Another of the assumptions adopted
by the authors of this paper is that the intensity of the noise is statistically
stationary everywhere, which in reality is definitely not the case.

An extensive discussion of ambient noise, its properties, and sources is given
by the Pomona College team. The authors proposed an array of directional
hydrophones for detecting the presence of a submarine, plus a second array
to give a three-dimensional view. This is the only paper that comes close to
the idea that the ambient noise can be used not only for detection but also
for imaging. They also went beyond theoretical analysis to perform simple
experiments in air, using loudspeakers to simulate an ambient noise field and
a rolling trash can as the target. To producing images, they propose a sound
camera and also a variant of Schlieren photography, using a laser interference
technique to observe the pressure fluctuations in the sound field. The authors
were unfamiliar with Schlieren methods but worked out the essential principles
for themselves.

The University of North Carolina team represented the submarine as an
ellipsoidal object obstructing the noise field, giving rise to a reduction in noise
intensity (a silhouette) at the receiver. Contouring of the noise intensity forms
the basis of the recognition algorithm, with the velocity obtained by observing
the submarine position at successive times.

The quality of the papers is very high, and some of the ideas presented
may well work in practice. None of the teams considered using a multi-beam
phased array as an acoustic lens. Such a system is a strong contender for future
ambient noise imaging systems.
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1997: The Velociraptor
Location Problem

The velociraptor, Velociraptor mongoliensis, was a predatory dinosaur that
lived during the late Cretaceous period, approximately 75 million years ago.
Paleontologists think that it was a very tenacious hunter and may have hunted
in pairs or larger packs. Unfortunately, there is no way to observe its hunt-
ing behavior in the wild, as can be done with modern mammalian predators.
A group of paleontologists has approached your team and asked for help in
modeling the hunting behavior of the velociraptor. They hope to compare your
results with field data reported by biologists studying the behaviors of lions,
tigers, and similar predatory animals.

The average adult velociraptor was 3 m long with a hip height of 0.5 m
and an approximate mass of 45 kg. It is estimated that the animal could run
extremely fast, at speeds of 60 km/h, for about 15 sec. After the initial burst of
speed, the animal needed to stop and recover from a buildup of lactic acid in
its muscles.

Suppose that velociraptor preyed on Thescelosaurus neglectus, a herbivorous
biped approximately the same size as the velociraptor. A biomechanical anal-
ysis of a fossilized thescelosaurus indicates that it could run at a speed of about
50 km/h for long periods of time.

Part 1
Assuming the velociraptor is a solitary hunter, design a mathematical model
that describes a hunting strategy for a single velociraptor stalking and chasing a
single thescelosaurus as well as the evasive strategy of the prey. Assume that the
thescelosaurus can always detect the velociraptor when it comes within 15 m,
but may detect the predator at even greater ranges (up to 50 m) depending upon
the habitat and weather conditions. Additionally, due to its physical structure
and strength, the velociraptor has a limited turning radius when running at full
speed. This radius is estimated to be three times the animal’s hip height. On
the other hand, the thescelosaurus is extremely agile and has a turning radius
of 0.5 m.

Part 2
Assuming more realistically that the velociraptor hunted in pairs, design a
new model that describes a hunting strategy for two velociraptors stalking and
chasing a single thescelosaurus as well as the evasive strategy of the prey. Use
the other assumptions and limitations given in Part 1.

Comments
The Outstanding papers were by teams from Calvin College, Harvard Uni-

versity, Pomona College, University of Alaska Fairbanks, and Washington Uni-
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versity. Their papers, together with an author-judge’s commentary, were pub-
lished in The UMAP Journal 18 (3) (1997): 213–295.

Problem Origin
The problem was contributed by Jack Robertson (Mathematics Dept.) and

William Wall (Dept. of Biological and Environmental Sciences), both of Georgia
College and State University, Milledgeville, GA.

Author-Judge’s Comments
Jack Robertson (now at Georgia Military College) commented that the data

provided suggest unrealistically high forces when either animal made a sharp
turn, a maneuver almost certainly necessary for survival. It was important to
the success of the teams that they identified the data provided as containing
an evident weakness and reacted in some reasonable and appropriate way.
For example, quite a few teams drew on information readily available in the
literature concerning mammalian species similar in size and behavior traits to
the dinosaurs in the problem. This enabled the teams to adjust the data in a
realistic way.

Another major issue in assumptions dealt with the geometry and mecha-
nisms of the stalk, the chase, and the capture. The best teams provided clear,
detailed thinking about their choices.

Some teams formulated models that used just algebra and geometry and no
calculus. Others used differential equations, and one of the best papers used
differential game theory.

This problem was especially well suited to graphical interpretation, and
most teams provided graphs and charts that depicted the conduct and out-
come of chases with one or two predators. Graphical analysis is particularly
important when working with clients who may not grasp all the technical math-
ematics (such as paleontologists), and the illustrations produced by teams were
absolutely vital.

1998: The Scanner Problem

Introduction
Industrial and medical diagnostic machines known as Magnetic Resonance

Imagers (MRI) scan a three-dimensional object, such as a brain, and deliver
their results in the form of a three-dimensional array of pixels. Each pixel
consists of one number, indicating a color or a shade of gray that encodes a
measure of water concentration in a small region of the scanned object at the
location of the pixel. For instance, 0 can picture high water concentration in
black (ventricles, blood vessels), 128 can picture a medium water concentration
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in gray (brain nuclei and gray matter), and 255 can picture a low water density
in white (lipid-rich white matter consisting of myelinated axons). Such MRI
scanners also include facilities to picture on a screen any horizontal or vertical
slice through the three-dimensional array (slices are parallel to any of the three
Cartesian coordinate axes).

Algorithms for picturing slices through oblique planes, however, are pro-
prietary. Current algorithms

• are limited in terms of the angles and parameter options available,

• are implemented only on heavily used dedicated workstations,

• lack input capabilities for marking points in the picture before slicing, and

• tend to blur and “feather out” sharp boundaries between the original pixels.

A more faithful, flexible algorithm implemented on a personal computer
would be useful

• for planning minimally invasive treatments;

• for calibrating the MRI machines;

• for investigating structures oriented obliquely in space, such as post-mortem
tissue sections in animal research;

• for enabling cross sections at any angle through a brain atlas consisting of
black-and-white line drawings.

To design such an algorithm, one can access the values and locations of the
pixels but not the initial data gathered by the scanner.

Problem
Design and test an algorithm that produces sections of three-dimensional

arrays by planes in any orientation in space, preserving the original gray-scale
values as closely as possible.

Data Sets
The typical data set consists of a three-dimensional array A of numbers

A(i, j, k), where A(i, j, k) is the density of the object at the location (x, y, z)i,j,k.
Typically, A(i, j, k) can range from 0 through 255. In most applications, the data
set is quite large. Teams should design data sets to test and demonstrate their
algorithms. The data sets should reflect conditions likely to be of diagnostic
interest. Teams should also characterize data sets that limit the effectiveness of
their algorithms.
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Summary
The algorithm must produce a picture of the slice of the three-dimensional

array by a plane in space. The plane can have any orientation and any location in
space. (The plane can miss some or all data points.) The result of the algorithm
should be a model of the density of the scanned object over the selected plane.

Comments
The Outstanding papers were by teams from Eastern Oregon University,

Harvey Mudd College, Macalester College, and Tsinghua University. Their
papers, together with commentaries, were published in The UMAP Journal 19
(3) (1998): 211–278.

Problem Origin
The problem was contributed by Yves Nievergelt (Eastern Washington Uni-

versity).

Author’s Comments
The problem came from the laboratory of Dr. Mark F. Dubach in studying

the effects of intracerebral drug injections on monkeys with brain diseases at
the University of Washington’s Regional Primate Research Center in Seattle,
WA.

Striking about the Outstanding solutions was the teams’ mastery of finding
information on the World Wide Web, their use of computer graphics (no nu-
merical summary can substitute for a final visual medical diagnostic), and their
computer programming (for the change of coordinates, in effect an isometric
parametrization of a plane in space, and for three-dimensional interpolation).

All of the Outstanding teams realized that the practical problem could be
cast as a mathematical problem in three-dimensional interpolation. Detail
was important in the generalization from one- or two-dimensional to three-
dimensional interpolation. While one team (Tsinghua University) already
knew the result, other teams (Eastern Oregon University, Harvey Mudd Col-
lege) offered excellent explanations and proofs of their mathematical general-
izations.

The teams demonstrated efficient time tradeoff between searches and in-
house production of data and algorithms. Such a balancing act between find-
ing and reinventing the wheel can be critical to deliver a report on time. None
of the teams used a three-dimensional interpolation computer program from
the World Wide Web, perhaps because it is not obvious where to get one. Such
routines exist, but finding them and using them may demand more time than
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available. For instance, there is a multidimensional (with an unlimited num-
ber of dimensions) interpolation routine using nonuniform rational B-splines
(NURBS) at http://dtnet33-199.dt.navy.mil/dtnurbs/about.htm .

Judge’s Comments
William P. Fox (Francis Marion University) noted that the judges did not

witness a wide range of mathematical modeling; most teams recognized this
problem as an image-processing problem.

One component of the problem required an oblique slice from an image
scanned vertically or horizontally. Teams used one of three basic methods:

• (most frequent) Create a plane, Ax + By + Cz = D, and then rotate it using
a standard matrix transformation.

• Select two points in three-space and define a plane between those points.

• Select one point and two angles to define the plane.

A critical element was mapping the coordinates of the oblique plane through
the three-dimensional data set to obtain a gray scale scheme (0–255) for the
elements in the plane. The three-dimensional data set was defined by three
integers, while the points in the oblique plane were real numbers. Methods
had to be developed to interpolate the grayscale values for all the points in the
oblique plane:

• a nearest-neighbor algorithm, using eight or more points;

• a weighted-point algorithm;

• splines (linear through cubic); and

• Lagrangian polynomials.

Teams usually tried more than one method, though comparisons were generally
sketchy and lacked analysis. Teams that critically compared and analyzed their
methodology and results, and reached valid conclusions, impressed the judges.

The problem statement also required design and testing of an algorithm to
produce sections of three-dimensional arrays made by planes in any orientation
in space, preserving as closely as possible the original grayscale values. Some
teams used color to enhance their presentation; this was acceptable provided
that the grayscale was not totally removed. Several teams suggested color
because their grayscale resolution could not detect certain diagnostic elements;
this was viewed as a fatal flaw, since the problem statement required grayscale.

The team’s algorithm had to produce a picture of the slice of the three-
dimensional array by a plane in space. Judges wanted to see a picture, not a
matrix portrayal. They scrutinized pictures closely to see if they appeared to
be oblique slices.
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The teams were expected to demonstrate their algorithm by designing and
testing data sets that reflect conditions likely to be of diagnostic value. Teams
should also characterize data sets that limit the effectiveness of their algorithm;
few teams did so. Thus, judges looked for a good descriptions of the data sets
and the elements of diagnostic value. Some teams created spheres inside cubes
as their representative data set; provided teams put something of diagnostic
value inside their lager 3-D elements, their data sets were acceptable.

Another important element not uniformly accomplished was some kind of
error analysis. Very few teams even checked for accuracy their integer values
in the plane against the corresponding integer point in their three-space data
set. The judges praised teams that accomplished that.

1999: The Lawful Capacity Problem
Many facilities for public gatherings have signs that state that it is “unlaw-

ful” for their rooms to be occupied by more than a specified number of people.
Presumably, this number is based on the speed with which people in the room
could be evacuated from the room’s exits in case of an emergency. Similarly,
elevators and other facilities often have “maximum capacities” posted.

Develop a mathematical model for deciding what number to post on such a
sign as being the “lawful capacity.” As part of your solution, discuss criteria—
other than public safety in the case of a fire or other emergency—that might
govern the number of people considered “unlawful” to occupy the room (or
space). Also, for the model that you construct, consider the differences between
a room with movable furniture such as a cafeteria (with tables and chairs), a
gymnasium, a public swimming pool, and a lecture hall with a pattern of rows
and aisles. You may wish to compare and contrast what might be done for a
variety of different environments: elevator, lecture hall, swimming pool, cafe-
teria, or gymnasium. Gatherings such as rock concerts and soccer tournaments
may present special conditions.

Apply your model to one or more public facilities at your institution (or
neighboring town). Compare your results with the stated capacity, if one is
posted. If used, your model is likely to be challenged by parties with interests
in increasing the capacity. Write an article for the local newspaper defending
your analysis.

Comments
The Outstanding papers were by teams from Eastern Oregon University,

Harvey Mudd College, Macalester College, and Tsinghua University. Their
papers, together with commentaries, were published in The UMAP Journal 20
(3) (1999): 273–372.
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Problem Origin
The problem was contributed by Joe Malkevitch (York College, City Uni-

versity of New York).

Practitioner’s Comments
Richard Hewitt (US WEST Communications) commented from experience:
My hands-on training in public safety includes spending time in burning

buildings, cutting people out of wrecked cars, and, unfortunately, putting a few
people in body bags. As a result of these experiences, I developed sufficient
knowledge and credibility to develop a method that the Denver Fire Depart-
ment uses for selecting sites for new fire stations. The station-siting problem
is similar to the contest problem in that my mathematical training enabled me
to find the correct answer, but focusing exclusively on a mathematical solution
moved me further away from a solution that could be implemented.

Common Assumptions were:

• “People will exit via the nearest exit.” Unfortunately, this not the case. Ac-
cording to Denver Fire Chief Richard Gonzales, “in the case of fire, people
exit via the door they entered, regardless of the nearest exit. . . . They gen-
erally remember the way they came in and retrace that path even if another
exit is much closer.” This finding further complicates the maximum occu-
pancy problem and creates a need to understand how people enter a room
or building to determine how they will exit. This adds a level of complexity
to determining how quickly people will exit and therefore the maximum
number to let in.

• “The average person can exit at a rate of x feet per second.” I have been in
several burning buildings where the smoke was so thick that I couldn’t see
my hand in front of my face. It’s also not unusual for the power to go out
because of the fire or water used to fight it. Unless the room has emergency
lighting (or it’s daytime and the room has exterior windows), you’re moving
around in darkness. In smaller fires, or in the early stages of a fire, it can
be difficult to see across a well-lit room; and many public places, such as
restaurants, bars, dance halls, and theaters, are not well lit. Visibility is a
critical variable that impacts how fast people can exit or even find the exit
that they remember entering.

• “People behave rationally in an emergency.” In a private conversation, Chief
Gonzales cited several examples of just how irrationally some people behave,
such as the restaurant patron who refused to leave a burning building, even
as the room was filling with smoke. The man argued with fire department
personnel, “I paid for this steak and I’m going to eat it.” This may be an
extreme example, but it highlights a point: You have to account for human
behavior, whether it’s logical or not, because that behavior represents reality.
Failure to do so leaves your model, and therefore your solution, open to
attack.
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To maximize the probability of a successful implementation, your solution,
model, or method must address the issues of each stakeholder. So you must
first figure out who the stakeholders are. In the case of the maximum occu-
pancy problem, Chubb and Williamson [1998] provide a fairly complete list
of construction project stakeholders, each of which has a stake in the maxi-
mum occupancy decision: owners, designers, builders, insurers, regulators,
and occupants.

You have to identify the needs and concerns of each stakeholder group.
This is best done by talking to them, in person, on their turf and in their terms.
During the discussion, ask lots of “why” questions (“Why is that important?”
and “Why do you feel that way?”). The answers enable you to understand
what each stakeholder values. You can then define a solution space that in-
corporates what the stakeholders told you was important. You then begin to
weigh priorities and make tradeoffs based on politics, economic impact, risk,
importance to the decision makers, and/or the ability of a stakeholder group to
block the implementation of your solution. And yes, you can now incorporate
your mathematical findings.

I have never (outside of academia) seen a mathematical solution dominate
the other decision criteria. In really good solutions, the mathematical findings
complement the solution, but they never dictate it.

A newspaper article defending your method should focus on its ease of use,
grounding in common sense, and the amount by which the results you generate
exceed what they already have. A quote from a highly visible and respected
official never hurts either.

As an example of what not to do, I submit the following.

Dear Mr. And Mrs. Public,

Concerning our award-winning method to determine the maximum
occupancy level of your child’s elementary school classroom, we used
a polyhedral approach to approximate a statistically unbiased estimator
that incorporated Euler’s formula to model crowd movement based in
small rooms. This model incorporated Chebyshev’s inequality as it ap-
plies to elementary-school traffic patterns.

We then fed our results into a simulation model utilizing software that
we built ourselves based on tools that we downloaded from the Internet.

While this method is probably way over your head, we have full con-
fidence in its ability to forecast the probability of an emergency during
school hours.

This information enables us to set the maximum occupancy of your
child’s classroom at 183 plus or minus 7%.

Yours truly,
Contest Winners



The Other Problems 221

The correct approach would be to convince the public that your method
yields a solution that increases their safety and improves the likelihood of the
survival of their loved ones.

Reference

Chubb, M.D., and R.B. Williamson. 1998. Value-based fire safety: A new
regulatory model for mitigating human error. In Human Behaviour In Fire—
Proceeding of the First International Symposium, August 30—September 2,
1998, edited by T.J. Shields, 105–114. Belfast, Northern Ireland: University
of Ulster.

Judge’s Comments
Jerry Griggs (University of South Carolina) noted that many teams took an

overly simplified approach:
Determine

• an exit flow rate of r people per second per exit,

• the number of exits n in the room, and

• the number of seconds s to clear the room safely,

then obtain a room capacity of rns people.
However, the best papers allowed for a range of significant factors to be

included in the model. Among these, they consider the flow of people through
the room—not just at the exit—as well as crowd congestion due to bottlenecks
created by the room shape and furniture placement. A strong model allows a
variable initial distribution of people in the room.

Many entries omitted several of the elements requested in the problem:

• considering different room arrangements and environments,

• comparing models to posted requirements or codes,

• discussing criteria other than safety, and

• writing an explanatory article suitable for the newspaper.

Researching the problem impressed the judges, such as by consulting exist-
ing codes or by gathering data directly from crowd observations. One paper
even considered capacity reductions mandated by the Americans with Disabil-
ities Act!

Some papers present easily understood graphs of exit time as a function of
the number of people in the room; such displays make it easy for the decision-
maker.
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It was nice to see analysis of model run-time complexity, which is important
in dealing with very large or complicated arrangements, along with improve-
ments made by simplifying calculations.

Papers stood out that consider factors that could be included in a more
elaborate model, such as crowd panic, accessibility of emergency personnel,
ventilation, and crowd flow out of the entire building.

One nice approach was to use a graphical/network flow model. One paper
employs a series of queues to handle the bottlenecks. Another model tiles
the room with one-person-sized hexagons and calculates the expected waiting
times for each. There is a sophisticated motion simulation model that represents
people by disks that naturally flow around obstacles towards exits.

2000: The Channel Assignment
Problem

We seek to model the assignment of radio channels to a symmetric network
of transmitter locations over a large planar area, so as to avoid interference.
One basic approach is to partition the region into regular hexagons in a grid
(honeycomb-style), as shown in Figure 1, where a transmitter is located at the
center of each hexagon.

Figure 1. Honeycomb grid of hexagons.

An interval of the frequency spectrum is to be allotted for transmitter fre-
quencies. The interval will be divided into regularly spaced channels, which
we represent by integers 1, 2, 3, . . . . Each transmitter will be assigned one
positive integer channel. The same channel can be used at many locations,
provided that interference from nearby transmitters is avoided.
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Our goal is to minimize the width of the interval in the frequency spectrum
that is needed to assign channels subject to some constraints. This is achieved
with the concept of a span. The span is the minimum, over all assignments
satisfying the constraints, of the largest channel used at any location. It is not
required that every channel smaller than the span be used in an assignment
that attains the span.

Let s be the length of a side of one of the hexagons. We concentrate on the
case that there are two levels of interference.

• Requirement A: There are several constraints on frequency assignments:

– No two transmitters within distance 4s of each other can be given the
same channel.

– Due to spectral spreading, transmitters within distance 2s of each other
must not be given the same or adjacent channels: Their channels must
differ by at least 2.

Under these constraints, what can we say about the span in Figure 1?

• Requirement B: Repeat Requirement A, assuming the grid in the example
spreads arbitrarily far in all directions.

• Requirement C: Repeat Requirements A and B, except assume now more
generally that channels for transmitters within distance 2s differ by at least
some given integer k, while those at distance at most 4s must still differ by
at least one. What can we say about the span and about efficient strategies
for designing assignments, as a function of k?

• Requirement D: Consider generalizations of the problem, such as several
levels of interference or irregular transmitter placements. What other factors
may be important to consider?

• Requirement E: Write an article (no more than 2 pages) for the local news-
paper explaining your findings.

Comments
The Outstanding papers were by teams from California Polytechnic State

University, Lewis & Clark College, National University of Defence Technology
(Changsha, China), Wake Forest University, and Washington University. Their
papers, together with an author-judge’s commentary, were published in The
UMAP Journal 20 (3) (2000): 311–388.

Problem Origin
The problem was contributed by Jerrold R. Griggs (University of South

Carolina).
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Judge’s Comments
The original “channel assignment problem” has a long history and detailed

some of it. The problem is to assign an integer channel to each transmitter in
a network, with the condition that the absolute difference between channels
for two nearby transmitters must not belong to a certain set T that arises from
interference considerations (see Hale [1980] for motivation). A feasible assign-
ment can be obtained with channels far apart, but this is highly inefficient.
Typically, a frequency band that spans the assigned channels is allocated to
the network; the wider the band, the more it costs. The problem, then, is to
minimize the “span” of the assignment, which is the difference between the
maximum channel and the minimum channel.

This problem is modeled nicely with graph theory by letting each trans-
mitter correspond to a vertex, with edges corresponding to pairs of nearby
transmitters. The problem becomes a special vertex-coloring problem, owing
to the set T of forbidden differences [Cozzens and Roberts 1982]. Among the
methods that come into play are number theory (in the case of complete graphs
[Griggs and Liu 1994]) and the complexity of graph homomorphisms.

The potential application is mobile radio networks. Large areas are often
covered by a network of regularly spaced transmitters such that the associ-
ated graph labeling problem exactly models the network problem. The most
common design places the transmitters in a triangular lattice.

For Requirement A, feasible solutions are easy to find, but working down to
an optimal one requires some cleverness. Most teams achieved the minimum
span.

Part B extends the network of Part A to the whole plane. While one can solve
Part A by trial-and-error or by a computer search, Part B requires a method to
keep going forever. Successful teams for Part B usually found a pattern (a
strip or a tile of numbers) that could be repeated indefinitely and achieve the
same span as the bounded array in Part A. One way is to label a strip by an
appropriate ordering, say

1 3 5 7 9 2 4 6 8 1 3 . . . ,

and then use the same strip shifted appropriately for the next row, and so on.
Another perspective is to construct an appropriate tile of nine hexagons and
replicate it. Judges were pleased to see papers that tested a variety of heuristics
to assign channels in Parts A and B, since such methods are needed for more
general arrays and distance parameters. At least one paper, by the team from
Wake Forest University, made the interesting observation (with proof) that the
optimal labeling for Parts A and B is essentially unique!

What is most remarkable is that several teams were able to solve Part C,
in which the channel spread parameters for Parts A and B are extended to
d1 = k, d2 = 1. It seems to be a new result.

Part D is the open-ended generalization of the problem to general array
configurations and multiple levels of interference. It has the most room for
creativity and for model design, but most entries did not do much here.
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For Part E, judges wanted to see an article that conveys to the public the
sense of the problem and the team’s ideas on how to attack it. A particularly
amusing article was crafted by a team from Harvey Mudd College whose entry
received Honorable Mention.

Several teams located related results in the literature or the Web, particularly
for the problem of cyclic labelings, where integers {1, 2, . . . , n} are used but the
distance between two labels is measured modulo n, that is, by the shortest
path on the circle labelled 1 through n. This approach can be used when a
large number of channels must be assigned to each location: When a vertex
receives label i, it is given all channels congruent to i modulo n. For two levels
of interference (L(d1, d2)), this cyclic problem is solved in van den Heuvel et
al. [1998]. However, this does not immediately solve the contest problem.
A solution for general L(d1, d2) of the (linear) contest problem remains to be
found.

Teams typically found good labelings for the bounded array in Part A by
trial and error or by exhaustive computer search, for small values of k, and
identified patterns or tiles that could be extended to general k to yield good
labelings for the bounded and unbounded arrays.

One cannot be certain that a labeling is optimal without proving that there
is no labeling of smaller span. Also, it is by no means clear that there exist
optimal labelings using a repeating pattern, although many teams seemed to
assume this. Thus, it is not sufficient to check just labelings from a repeating
pattern. (In fact, it would be very interesting if one could show that for all sets
of distance parameters di that there is an optimal labeling of the plane built
from a repeating pattern. This seems to be an open question.)

Judges favored papers that provide a clear proof that their labelings are
optimal for general k. The best proofs that we read were impressive, such as
the one by the team from the National University of Defence Technology. That
paper is among those that made the interesting observation that for general k
there is an optimal labeling for the arrays in Parts A and B that uses only nine
different channels—which could be useful in some applications!

[EDITOR’S NOTE: Prof. Griggs’s original commentary contains much more
detail and cites many more references.]

References
Cozzens, M.B., and F.S. Roberts. 1982. T -colorings of graphs and the channel

assignment problem. Congressus Numerantium 35: 191–208.

Griggs, Jerrold R., and D. D.-F. Liu. 1994. The channel assignment problem for
mutually adjacent sites. Journal of Combinatorial Theory A 68: 169–183.

Hale, W.K. 1980. Frequency assignment: Theory and applications. Proceedings
of the IEEE 68: 1497–1514.

van den Heuvel, J., R.A. Leese, and M.A. Shepherd. 1998. Graph-labeling and
radio channel assignment. Journal of Graph Theory 29: 263–283.
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2001: The Bicycle Wheel Problem

Introduction
Cyclists have different types of wheels they can use on their bicycles. The

two basic types of wheels are those constructed using wire spokes and those
constructed of a solid disk (see Figure 2). The spoked wheels are lighter but
the solid wheels are more aerodynamic. A solid wheel is never used on the
front for a road race but can be used on the rear of the bike.

Figure 2. Solid wheel (left) and spoked wheel (right).

Professional cyclists look at a racecourse and make an educated guess as
to what kind of wheels should be used. The decision is based on the number
and steepness of the hills, the weather, wind speed, the competition, and other
considerations.

The directeur sportif of your favorite team would like to have a better system
in place and has asked your team for information to help determine what kind
of wheel should be used for a given course.

The directeur sportif needs specific information to help make a decision and
has asked your team to accomplish the tasks listed below. For each of the tasks,
assume that the same spoked wheel will always be used on the front but that
there is a choice of wheels for the rear.

Task 1
Provide a table giving the wind speed at which the power required for a solid

rear wheel is less than for a spoked rear wheel. The table should include the
wind speeds for different road grades starting from 0% to 10% in 1% increments.
(Road grade is defined to be the ratio of the total rise of a hill divided by the
length of the road.1) A rider starts at the bottom of the hill at a speed of 45 km/h

1If the hill is viewed as a triangle, the grade is the sine of the angle at the bottom of the hill.
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and the deceleration of the rider is proportional to the road grade. A rider will
lose about 8 km/h for a 5% grade over 100 m.

Task 2
Provide an example of how the table could be used for a specific time trial

course.

Task 3
Determine if the table is an adequate means for deciding on the wheel

configuration and offer other suggestions as to how to make this decision.

Comments
The Outstanding papers were by teams from Stellenbosch University (South

Africa), U.S. Military Academy, and University College Cork (Ireland). Their
papers, together with an author-judge’s commentary, were published in The
UMAP Journal 22 (3) (2001): 211–256.

Problem Origin
The problem was contributed by Kelly Black (University of New Hamp-

shire).

Author-Judge’s Comments
The problem focused on the two most basic types of wheels, the spoked

wheel and the solid wheel. Spoked wheels have the lowest mass but the highest
friction forces, due to interactions with air. Solid wheels have the most mass
but the lowest friction forces. Three tasks were given:

• Find the wind speeds for which one wheel has an advantage over the other
for particular inclines.

• Demonstrate how to use the information in the first task to determine which
wheel to use for a specific course.

• Evaluate whether the information provided in the first task achieved the
overall goal.

A number of submissions concentrated on the yaw angle, the angle that the
wind makes with respect to the direction of movement of the bicycle. While
some of these submissions were quite good, others spent so much time trying
to figure out how to deal with this complicated aspect that they did not make
sufficient progress on other parts of the problem.
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There were a number of entries in which Newton’s Second Law, the torque
equations, or the power was not correctly identified. There was also some
confusion about units.
Overall, there were two different approaches:

– The first approach focused on the mechanics of a bicycle moving on an
incline.

The main difficulty was in isolating and identifying the relevant
force based on Newton’s Second Law and the corresponding
torque equations. In many cases, it was difficult to identify ex-
actly how the system of equations was manipulated and how the
equations were found. The highly rated submissions did an ex-
cellent job of displaying and referring to the free-body diagrams,
as well as discussing how the relevant force was isolated.

– The second approach focussed on the aerodynamic forces acting on the
wheels, then calculated the power to move the wheels forward. For the
spoked wheel, the total force acting on the wheel was found by adding
the effects on each spoke (along its entire length) with its respective
orientations. For the solid wheel, the forces acting on the whole wheel
were found with respect to the wind yaw angle.

This approach turned out to be difficult. The teams that carefully
structured their approach and clearly identified each step stood
out.

For either approach, it was common to make some assumption about either
the acceleration or the steady-state velocity as the bike and rider moved along
the hill. The second most common assumption was to assume that the rider
provides a constant power output and then work backwards to isolate the
forces acting on the wheels. The judges did not question the technical merits of
these assumptions but concentrated instead on whether or not the submissions
presented a clear and consistent case based on them.

The first task was specific and straightforward. How the two remaining
tasks (use the table in a time trial, determine if the table is adequate) were
addressed and presented was what set papers apart. The majority of submis-
sions divided the race course into discrete pieces; they found the total power
by adding up the power requirements over each piece.

Entries that impressed the judges went further. A few entries approached
the third task by noting that the real goal was to minimize the time spent on
a particular race course. By assuming that the rider would expend constant
power output, the equations of motions from Newton’s Second Law could
then be found. The position of the rider on the course at any given time could
then be approximated through a numerical integration of the resulting system
of equations. For a given racecourse, the total time on the course could be
found for different wheel configurations. A simple comparison of total times
determined which wheel to use for the course.
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2002: The Wind and Waterspray
Problem

An ornamental fountain in a large open plaza surrounded by buildings
squirts water high into the air. On gusty days, the wind blows spray from
the fountain onto passersby. The water flow from the fountain is controlled
by a mechanism linked to an anemometer (which measures wind speed and
direction) located on top of an adjacent building. The objective of this control is
to provide passersby with an acceptable balance between an attractive spectacle
and a soaking: The harder the wind blows, the lower the water volume and
the height to which the water is squirted, hence the less spray falls outside the
pool area.

Your task is to devise an algorithm that uses data provided by the anemome-
ter to adjust the water-flow from the fountain as the wind conditions change.

Comments
The Outstanding papers were by teams from Maggie L. Walker Gover-

nor’s School, North Carolina School of Science and Mathematics, U.S. Military
Academy, and University of Washington. Their papers, together with a judge’s
commentary, were published in The UMAP Journal 23 (3) (2002): 209–271.

Problem Origin
The problem was contributed by Tjalling Ypma (Western Washington Uni-

versity).

Judge’s Comments
Patrick Driscoll (U.S. Military Academy) noted that the input quantities

(anemometer data) and output quantities (water flow characteristics) for the
algorithm required by the problem were clear from the problem description.
The particular transformation rules for this problem were unspecified and left
to the team to decide upon.

The predominant approach was Newton’s Second Law of Motion, Bernoulli’s
formula, continuity equations, fuzzy membership sets, Poiseuille’s equation,
or the Navier-Stokes equations, largely dependent on the assumptions.

At least three categories of computational testing come to mind that support
model validation:

• Once the team is convinced that their base model produces reasonable re-
sults, special cases of interest (e.g., no wind, no spread angle, etc.) should
be tested.
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• Recognizing that model parameters contain some amount of uncertainty,
high, most likely, and low values of important parameters used in the base
model should be examined by systematically altering these values and re-
running the model to see if the output results remain reasonable. For this
MCM problem, these parameters might be drag coefficients, shapes of water
droplets, wind speed and direction, and so on. This process essentially con-
stitutes what is commonly referred to as sensitivity analysis of the parameters.

• The effects of relaxing a select number of simplifying assumptions made
during the course of developing the model should be examined. How-
ever, it is fair to stress that this last category is safely performed only when
time permits, because it generally requires substantial model modifications
to examine the desired effects. A good example of this third category for
the Wind and Waterspray problem would be adding the influence of sur-
rounding buildings on wind speed and direction after they were previously
assumed away. Such a change would be nontrivial and might consume more
time than what is available.

Teams must link their computational results back to the problem that they
are trying to solve. Tell the reader what to conclude from the results! This is
what is referred to as analyzing the results.

2003: The Stunt Person
Problem

An exciting action scene in a movie is going to be filmed, and you are the
stunt coordinator! A stunt person on a motorcycle will jump over an elephant
and land in a pile of cardboard boxes to cushion their fall. You need to protect
the stunt person, and also use relatively few cardboard boxes (lower cost, not
seen by camera, etc.).

Your job is to:

• determine what size boxes to use,

• determine how many boxes to use,

• determine how the boxes will be stacked,

• determine if any modifications to the boxes would help, and

• generalize to different combined weights (stunt person and motorcycle) and
different jump heights.

Note that in the 1997 film “Tomorrow Never Dies,” the James Bond character,
on a motorcycle, jumps over a helicopter.
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Comments
The Outstanding papers were by teams from California Institute of Technol-

ogy, Harvard University, Harvey Mudd College, Southeast University (Nan-
jing, China), University of Washington, and Zhejiang University (Hangzhou,
China). Their papers, together with a judge’s commentary, were published in
The UMAP Journal 24 (3) (2003): 221–324.

Problem Origin
The problem was contributed by Daniel Zwillinger (Zwillinger and Asso-

ciates).

Judge’s Comments
William P. Fox (Francis Marion University) enjoyed judging the problem

because the teams did not have a wealth of information for the overall model
from the Web or from other resources. Students could find basic information for
helping model the jumping of the elephant from many sources. This problem
turned out to be a “true” modeling problem; the students’ assumptions led to
the development of their model.

Six papers were selected as Outstanding submissions because they:

• developed a workable, realistic model from their assumptions and used it
to answer all elements of the stunt person scenario;

• made clear recommendations as to the number of boxes used, their size,
and how they should be stacked, and offered a generalization to other stunt
persons;

• wrote a clear and understandable paper describing the problem, their model,
and results; and

• handled all the elements.

The required elements, as viewed by the judges, were in two distinct phases.

• Models needed to consider the mission of the stunt person. A model had
to be developed that ensured that the stunt person could jump over the
elephant. The better teams then worked to minimize the speed with which
to accomplish this jump. Teams that used a high-speed jump were usually
discarded by the judges quickly.

• In Phase II, the model had to consider the landing; this included speed,
energy, force, and momentum of the jumper, so that the boxes could be used
safely to cushion the fall.



232 The MCM at 21

Most of the better papers did an extensive literature and Web search for in-
formation about cardboard. However, many teams spent way too much energy
researching cardboard; their time would have been better spent in modeling.

The poorest section in all papers, including many of the Outstanding papers,
was the summary.

Another flaw was the misuse of ECT (Edge Compression Testing) in a pro-
portionality model. Many teams started with a Website formula,

BCS = 5.87 × ECT ×
√

Pt,

where P is the perimeter of the box and t is its thickness. They developed an
energy model, where energy is the area under a curve, namely

1
2 × P × ECT × h

—a formula also at the Website—and reached conclusions based on using h
as the height of the stacked boxes. Dan Zwillinger (the problem author) dis-
covered both the use of the formula in many papers and the flaw in it. The
potential energy is an area but it is

1
2 × P × ECT × δ,

where δ is the depth of crush or deformation of the boxes, not the total height
of the boxes (see Figure 3).

Figure 3. Force as a function of delta in ECT.

The moral, of course, is not to incorporate elements into your model that
you don’t understand thoroughly.

The better papers used a variety of methods to model the safe landing.
These included kinematics, work, and energy absorption. The discussion of
the boxes and how they were to be secured was also an important feature. One
team laid many large mattress boxes flat on top of the stacked boxes to give a
smooth landing area.
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2004: The Quick Pass Problem
“Quick Pass” systems are increasingly appearing to reduce people’s time

waiting in line, whether it is at tollbooths, amusement parks, or elsewhere.
Consider the design of a Quick Pass system for an amusement park. The

amusement park has experimented by offering Quick Passes for several popular
rides as a test. The idea is that for certain popular rides you can go to a kiosk
near that ride and insert your daily park entrance ticket, and out will come
a slip that states that you can return to that ride at a specific time later. For
example, you insert your daily park entrance ticket at 1:15 P.M., and the Quick
Pass states that you can come back between 3:30 and 4:30 P.M. when you can
use your slip to enter a second, and presumably much shorter, line that will
get you to the ride faster. To prevent people from obtaining Quick Passes for
several rides at once, the Quick Pass machines allow you to have only one
active Quick Pass at a time.

You have been hired as one of several competing consultants to improve
the operation of Quick Pass. Customers have been complaining about some
anomalies in the test system. For example, customers observed that in one
instance Quick Passes were being offered for a return time as long as 4 hours
later. A short time later on the same ride, the Quick Passes were given for
times only an hour or so later. In some instances, the lines for people with
Quick Passes are nearly as long and slow as the regular lines.

The problem then is to propose and test schemes for issuing Quick Passes
in order to increase people’s enjoyment of the amusement park. Part of the
problem is to determine what criteria to use in evaluating alternative schemes.
Include in your report a nontechnical summary for amusement park executives
who must choose between alternatives from competing consultants.

Comments
The Outstanding papers were by teams from Harvard University, Merton

College of the University of Oxford, Harvey Mudd College, University of Col-
orado, and University of Washington. Their papers were published in The
UMAP Journal 25 (3) (2004): 281–354. The Ben Fusaro Award went to a team
from MIT.

Problem Origin
The problem was contributed by Jerrold R. Griggs (University of South

Carolina).
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The 2005 Problems

The Flood Planning Problem
Lake Murray in central South Carolina is formed by a large earthen dam,

which was completed in 1930 for power production. Model the flooding down-
stream in the event there is a catastrophic earthquake that breaches the dam.

Two particular questions:

• Rawls Creek is a year-round stream that flows into the Saluda River a short
distance downriver from the dam. How much flooding will occur in Rawls
Creek from a dam failure, and how far back will it extend?

• Could the flood be so massive downstream that water would reach up to
the S.C. State Capitol Building, which is on a hill overlooking the Congaree
River?

Comments
The Outstanding papers were by teams from Harvey Mudd College, Uni-

versity of Saskatchewan (Canada), and University of Washington. The Ben
Fusaro Award went to a team from McGill University (Canada).

The Tollbooth Problem
Heavily-traveled toll roads such as the Garden State Parkway, Interstate 95,

and so forth, are multi-lane divided highways that are interrupted at intervals
by toll plazas. Because collecting tolls is usually unpopular, it is desirable
to minimize motorist annoyance by limiting the amount of traffic disruption
caused by the toll plazas. Commonly, a much larger number of tollbooths is
provided than the number of travel lanes entering the toll plaza. Upon entering
the toll plaza, the flow of vehicles fans out to the larger number of tollbooths,
and when leaving the toll plaza, the flow of vehicles is required to squeeze back
down to a number of travel lanes equal to the number of travel lanes before
the toll plaza. Consequently, when traffic is heavy, congestion increases upon
departure from the toll plaza. When traffic is very heavy, congestion also builds
at the entry to the toll plaza because of the time required for each vehicle to pay
the toll.

Make a model to help you determine the optimal number of tollbooths to
deploy in a barrier-toll plaza. Explicitly consider the scenario where there is
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exactly one tollbooth per incoming travel lane. Under what conditions is this
more or less effective than the current practice? Note that the definition of
“optimal” is up to you to determine.

Comments
The Outstanding papers were by teams from Duke University, Harvard

University, Massachusetts Institute of Technology, Rensselaer Polytechnic In-
stitute, University of California–Berkeley (two teams), and University of Col-
orado. The Ben Fusaro Award went to one of the Outstanding teams from
University of California–Berkeley
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