"Convex Formulation of Continuous Multi-label Problems"

by Pock, Schoenemann, Graber, Bischof, Cremers (2008)

Pascal Getreuer

Department of Mathematics University of California, Los Angeles getreuer@math.ucla.edu

A General Problem

Let $G = (\mathcal{V}, \mathcal{E})$ be a graph with nodes $x \in \mathcal{V}$ and edges $(x, y) \in \mathcal{E}$, and let L be a node label set, and consider

$$\min_{u:\mathcal{V}\to L} E(u) = \sum_{(x,y)\in\mathcal{E}} R(u(x) - u(y)) + \sum_{x\in\mathcal{V}} \rho(u(x),x)$$
 (1)

where R is convex and ρ is arbitrary. Applications include segmentation, stereo estimation, and denoising.

Ishikawa showed that even though E is nonconvex, a global minimizer of (1) can be found with graph cuts.

Applications

$$\min_{u:\mathcal{V}\to L} \sum_{(x,y)\in\mathcal{E}} R(u(x) - u(y)) + \sum_{x\in\mathcal{V}} \rho(u(x),x)$$

• Multiphase segmentation: $c_{\ell_1}, c_{\ell_2}, \ldots$ are given segment intensities $\rho(u, x) = |I(x) - c_u|^2$ u is the segment label

• Stereo estimation: I_L and I_R are a stereo pair of left and right images $\rho(u,x) = |I_L(x) - I_R(x + \binom{u}{0})| \qquad u \text{ is the displacement}$

• Multiplicative noise removal: $f = n \cdot u_{\mathsf{exact}}$ with $n \sim \mathsf{Gamma}$ $\rho(u,x) = \log u + \frac{f(x)}{u} \qquad \qquad u \text{ is the denoised pixel value}$

Pascal Getreuer (UCLA) Functional Lifting 3 / 28

Ishikawa's Method

Each pixel corresponds to a column of nodes. The horizontal edges encode R and the vertical edges encode ρ .

Pascal Getreuer (UCLA) Functional Lifting 4 / 28

Ishikawa's Method

To prevent cutting any column more than once, the red edges are given infinite weight.

Pascal Getreuer (UCLA) Functional Lifting 5 / 28

Ishikawa's Method

Problems

- Memory: many edges, all represented explicitly
- Parallelization: currently no fast parallel algorithm for graph cuts
- Metrification (grid bias) artifacts

Continuous Problem

Pock et al. consider the variational problem

$$\min_{u:\Omega\to\Gamma} E(u) = \int_{\Omega} |\nabla u(x)| \ dx + \int_{\Omega} \rho(u(x), x) \ dx \tag{2}$$

where $\Gamma = [\gamma_{\min}, \gamma_{\max}]$ and $\rho(u(x), x)$ is any nonnegative function.

The authors show how to obtain a global minimizer of this nonconvex problem by reinterpreting Ishikawa's method.

Define the super level sets of u

$$\varphi(x,\gamma) = \mathbb{1}_{\{u>\gamma\}}(x) = \begin{cases} 1 & \text{if } u(x) > \gamma, \\ 0 & \text{otherwise.} \end{cases}$$

Then u is recovered from φ as

$$u(x) = \gamma_{\min} + \int_{\gamma_{\min}}^{\gamma_{\max}} \varphi(x, \gamma) d\gamma.$$

For notational convenience, let $\Sigma = \Omega \times \Gamma$ and

$$D' = \left\{ \varphi : \Sigma \rightarrow \{0,1\} \mid \varphi(\textbf{\textit{x}},\gamma_{\mathsf{min}}) = 1, \varphi(\textbf{\textit{x}},\gamma_{\mathsf{max}}) = 0 \right\}$$

Theorem

The minimization for u (2) is equivalent to

$$\min_{\varphi \in D'} \int_{\Sigma} |\nabla \varphi(x, \gamma)| + \rho(x, \gamma) |\partial_{\gamma} \varphi(x, \gamma)| \ d\Sigma$$
 (3)

Proof: By the co-area formula, we have for the TV term

$$\int_{\Omega} |\nabla u(x)| \ dx = \int_{\Gamma} \operatorname{perimeter}(\mathbb{1}_{\{u > \gamma\}}) \, d\gamma$$
$$= \int_{\Gamma} \int_{\Omega} |\nabla \varphi| \ dx \, d\gamma.$$

Observe that

$$|\partial_{\gamma}\varphi(x,\gamma)|=\delta(u(x)-\gamma).$$

So for the fidelity term,

$$\int_{\Omega} \rho(u(x), x) dx$$

$$= \int_{\Omega} \int_{\Gamma} \rho(\gamma, x) \delta(u(x) - \gamma) d\gamma dx$$

$$= \int_{\Omega} \int_{\Gamma} \rho(\gamma, x) |\partial_{\gamma} \varphi(x, \gamma)| d\gamma dx.$$

Thus we have that the problem in u

$$\min_{u:\Omega\to\Gamma} E(u) = \int_{\Omega} |\nabla u(x)| \ dx + \int_{\Omega} \rho(u(x), x) \ dx$$

is equivalent to the lifted problem in arphi

$$\min_{\varphi \in D'} E(\varphi) = \int_{\Sigma} |\nabla \varphi(x, \gamma)| + \rho(x, \gamma) |\partial_{\gamma} \varphi(x, \gamma)| \ d\Sigma.$$

Still, at this point, the lifted problem

$$\min_{\varphi \in \mathbf{D'}} E(\varphi) = \int_{\Sigma} |\nabla \varphi| + \rho |\partial_{\gamma} \varphi| \ d\Sigma$$

is nonconvex because D' is nonconvex:

$$extstyle D' = ig\{ arphi : \Sigma
ightarrow \{0,1\} \mid arphi(x,\gamma_{\mathsf{min}}) = 1, arphi(x,\gamma_{\mathsf{max}}) = 0 ig\}.$$

To make the problem convex, define the relaxed set

$$D = \{ \varphi : \Sigma \to [0,1] \mid \varphi(x,\gamma_{\mathsf{min}}) = 1, \varphi(x,\gamma_{\mathsf{max}}) = 0 \}.$$

Then the problem

$$\min_{\varphi \in \mathcal{D}} E(\varphi) = \int_{\Sigma} |\nabla \varphi| + \rho |\partial_{\gamma} \varphi| \ d\Sigma \tag{4}$$

is convex.

We can find a minimizer $\varphi^* \in D$ of (4) and then threshold it, $1\!\!1_{\{\varphi^* \geq \mu\}} \in D'$.

Theorem

Let $\varphi^* \in D$ be a minimizer of the relaxed problem (4). Then for a.e. $\mu \in [0,1]$, the thresholded solution

$$\mathbf{1}_{\{\varphi^* \geq \mu\}} \in D'$$

is a minimizer of the unrelaxed problem (3).

Proof: Again using the co-area formula.

(Proof by contradiction) By the co-area formula,

$$E(\varphi) = \int_{\Sigma} |\nabla \varphi(x, \gamma)| + \rho(x, \gamma) |\partial_{\gamma} \varphi(x, \gamma)| \ d\Sigma$$

$$= \int_{0}^{1} \int_{\Sigma} |\nabla \mathbf{1}_{\{\varphi \geq \mu\}}| + \rho(x, \gamma) |\partial_{\gamma} \mathbf{1}_{\{\varphi \geq \mu\}}| \ d\Sigma \ d\mu$$

$$= \int_{0}^{1} E(\mathbf{1}_{\{\varphi \geq \mu\}}) \ d\mu.$$

Suppose there exists $\varphi' \in D'$ such that $E(\varphi') < E(\mathbb{1}_{\{\varphi^* \ge \mu\}})$ for all μ in a measurable subset of [0,1] of nonzero measure, then

$$E(\varphi') = \int_0^1 E(\varphi') d\mu < \int_0^1 E(\mathbf{1}_{\{\varphi^* \geq \mu\}}) d\mu = E(\varphi^*).$$

But this contradicts that φ^* is a minimizer of (4).

So, we can find a minimizer φ^* of the relaxed convex problem

$$\min_{\varphi \in D} \int_{\Sigma} |\nabla \varphi| + \rho |\partial_{\gamma} \varphi| \ d\Sigma,$$

then thresholding it $1\!\!1_{\{\varphi^*\geq \mu\}}$ gives a minimizer of the unrelaxed problem

$$\min_{\varphi \in \underline{\mathcal{D}'}} \int_{\Sigma} |\nabla \varphi| + \rho \, |\partial_{\gamma} \varphi| \, \, d\Sigma.$$

Pascal Getreuer (UCLA) Functional Lifting 16 / 28

Then a solution u^* is recovered by

$$u^* = \gamma_{\mathsf{min}} + \int_{\gamma_{\mathsf{min}}}^{\gamma_{\mathsf{max}}} \mathbf{1}_{\{arphi^* \geq \mu\}} \, d\gamma,$$

and it is a minimizer of the original problem

$$\min_{u:\Omega\to\Gamma}\int_{\Omega}|\nabla u(x)|\ dx+\int_{\Omega}\rho\big(u(x),x\big)\ dx.$$

Minimization Algorithm

Now that we have established a convex formulation of the problem, we wish to solve it. To find the minimizer of

$$\min_{\varphi \in D} E(\varphi) = \int_{\Sigma} |\nabla \varphi| + \rho |\partial_{\gamma} \varphi| \ d\Sigma,$$

one could attempt to solve the associated Euler-Lagrange equations

$$-\operatorname{div}\left(\frac{\nabla\varphi}{|\nabla\varphi|}\right)-\partial_{\gamma}\left(\rho\frac{\partial_{\gamma}\varphi}{|\partial_{\gamma}\varphi|}\right)=0,\quad \text{s.t.}\quad \varphi\in D.$$

But this is hard because of the singularities as $|\nabla \varphi|$ or $|\partial_{\gamma} \varphi| \to 0$.

Minimization Algorithm

Instead, write $E(\varphi)$ in a dual formulation: observe that

$$|\nabla \varphi| + \rho \, |\partial_\gamma \varphi| = \max_p \{p \cdot \nabla_3 \varphi\}, \quad \text{s.t.} \quad \sqrt{p_1^2 + p_2^2} \leq 1, \ |p_3| \leq \rho,$$

where $p = (p_1, p_2, p_3)$ is the dual variable and $\nabla_3 := (\partial_{x_1}, \partial_{x_2}, \partial_{\gamma})^T$. This leads to the primal-dual formulation

$$\min_{\varphi \in D} \left\{ \max_{p \in C} \int_{\Sigma} p \cdot \nabla_{3} \varphi \, d\Sigma \right\},\tag{5}$$

where
$$C = \{p : \Sigma \to \mathbb{R}^3 \mid \sqrt{p_1(x,\gamma)^2 + p_2(x,\gamma)^2} \le 1, |p_3(x,\gamma)| \le \rho(\gamma,x)\}.$$

Pascal Getreuer (UCLA) Functional Lifting 19 / 28

Minimization Algorithm

The authors solve $\min_{\varphi \in D} \left\{ \max_{p \in C} \int_{\Sigma} p \cdot \nabla_3 \varphi \, d\Sigma \right\}$ with a primal-dual proximal point method:

Primal Step: Solve for φ^{k+1} as the minimizer of

$$\min_{\varphi \in D} \int_{\Sigma} p^{k} \cdot \nabla_{3} \varphi + \frac{1}{2\tau_{p}} \int_{\Sigma} (\varphi - \varphi^{k})^{2}$$

$$\implies \varphi^{k+1} = \mathcal{P}_{D}(\varphi^{k} + \tau_{c} \operatorname{div}_{3} p^{k})$$

Dual Step: Solve for p^{k+1} as the maximizer of

$$\max_{p \in C} \int_{\Sigma} p \cdot \nabla_{3} \varphi^{k+1} - \frac{1}{2\tau_{d}} \int_{\Sigma} (p - p^{k})^{2}$$

$$\implies p^{k+1} = \mathcal{P}_{C}(p^{k} + \tau_{d} \nabla_{3} \varphi^{k+1})$$

Pock et al. compare their method with Ishikawa's for color stereo estimation. The left image is

Method	Error (%)	Runtime (s)	Memory (MB)
Ishikawa 4-neighbor	2.90	2.9	450
Ishikawa 8-neighbor	2.63	4.9	630
Ishikawa 16-neighbor	2.71	14.9	1500
Pock et al., CPU	2.57	25	54
Pock et al., GPU	2.57	0.75	54

The authors tested both CPU and a GPU implementations of their method (on a fancy NVidia GeForce GTX 280). Ishikawa's method is only on CPU as there is currently no parallel algorithm for graph cuts.

Pascal Getreuer (UCLA) Functional Lifting 25 / 28

Summary

Pock et al. consider nonconvex problems of the form

$$\min_{u:\Omega\to\Gamma}\int_{\Omega}|\nabla u(x)|\ dx+\int_{\Omega}\rho\big(u(x),x\big)\ dx.$$

Functional lifting is used to obtain a convex formulation

$$\min_{\varphi \in D} \int_{\Sigma} |\nabla \varphi| + \rho |\partial_{\gamma} \varphi| \ d\Sigma.$$

 The convex formulation is solved by a proximal primal-dual method on

$$\min_{\varphi \in D} \bigg\{ \max_{p \in C} \int_{\Sigma} p \cdot \nabla_{3} \varphi \ d\Sigma \bigg\}.$$

The Paper

 T. Pock, T. Schoenemann, G. Grabe, H. Bischof, D. Cremers, "A Convex Formulation of Continuous Multi-label Problems," *Proc.* ECCV, 2008.

Related Works

- E. Brown, T.F. Chan, X. Bresson, "Convex Formulation and Exact Global Solutions for Multi-phase Piecewise Constant Mumford-Shah Image Segmentation," UCLA CAM Report 09-66, 2009.
- T. Goldstein, X. Bresson, S. Osher, "Global Minimization of Markov Random Fields with Applications to Optical Flow," UCLA CAM Report 09-77, 2009.
- H. Ishikawa, "Exact optimization for Markov random fields with convex priors," IEEE Trans. PAMI 25(10), pp. 1333–1336, 2003.

Related Work on Mumford-Shah*

The Mumford-Shah functional is

$$E(u) = \lambda \int_{\Omega} (f - u)^2 dx + \int_{\Omega \setminus S_u} |\nabla u|^2 dx + \nu \mathcal{H}^1(S_u)$$

Pock et al. use a result from Bouchitte, Alberti, and Dal Maso:

$$E(u) = \sup_{p \in K} \int_{\Omega \times \mathbb{R}} p \cdot D \mathbf{1}_{\{u > \gamma\}}$$

where K is the set of vectorfields $p = (p_1, p_2, p_3)$ satisfying

- $p_1, p_2, p_3 \in C_0(\Omega \times \mathbb{R})$
- $p_3(x,\gamma) \ge \frac{1}{4} [p_1(x,\gamma)^2 + p_2(x,\gamma)^2] \lambda (\gamma f(x))^2$
- $\left| \int_{\gamma_1}^{\gamma_2} \binom{p_1(x,\mu)}{p_2(x,\mu)} d\mu \right| \leq \nu$ for all $x \in \Omega, \gamma_1, \gamma_2 \in \mathbb{R}$

^{*}T. Pock, D. Cremers, H. Bischof, A. Chambolle, "An Algorithm for Minimizing the Mumford-Shah Functional," *ICCV*, 2009.