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A General Problem

Let G = (V, &) be a graph with nodes x € V and edges (x,y) € &,
and let L be a node label set, and consider

min E(u) = Y R(u(x) —u(y)) +>_p(u(x),x) (1)

uV—L
(x,y)e€ x€V

where R is convex and p is arbitrary. Applications include
segmentation, stereo estimation, and denoising.

Ishikawa showed that even though E is nonconvex, a global minimizer
of (1) can be found with graph cuts.
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Applications

it 3 R6t) - o0r) + 3 o(ut0

(x,y)e€ x€eY
@ Multiphase segmentation: cy,, cy,, ... are given segment intensities
p(u,x) = [I(x) = cu]? u is the segment label

@ Stereo estimation: I; and I are a stereo pair of left and right images

p(u,x) = ‘/L(X) — Ir(x + (6’))’ u is the displacement

@ Multiplicative noise removal: f = n - Uexact With n ~ Gamma

f(x)

p(u,x) =logu+ —= u is the denoised pixel value
u

Pascal Getreuer (UCLA) Functional Lifting



Ishikawa's Method

Labels L

O e O (O ) Pixels V

Each pixel corresponds to a column of nodes. The horizontal edges
encode R and the vertical edges encode p.
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Ishikawa's Method

Labels L )
&< cut value =

@@ 0O Pixels V

To prevent cutting any column more than once, the red edges are
given infinite weight.
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Ishikawa's Method

Problems

@ Memory: many edges, all represented explicitly
o Parallelization: currently no fast parallel algorithm for graph cuts

@ Metrification (grid bias) artifacts

Pascal Getreuer (UCLA) Functional Lifting



Continuous Problem

Pock et al. consider the variational problem

min E(u):/Q\Vu(X)\ dx—l—/Qp(u(x),x) dx (2)

u:Q—T
where I = [Ymin, Ymax]| and p(u(x),x) is any nonnegative function.

The authors show how to obtain a global minimizer of this nonconvex
problem by reinterpreting Ishikawa's method.
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Functional Lifting

Define the super level sets of u

1 if u(x) >,
0 otherwise.

p(x:7) = Ly (x) = {
Then u is recovered from ¢ as

“Ymax
U(X) = Ymin +/ ©(x,7) dy.

Ymin

For notational convenience, let ¥ = Q x " and

D/ = {90 : Z - {07 1} ‘ SO(X7 ’Ymin) = ]-790(X7')/max) = O}
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Functional Lifting

The minimization for u (2) is equivalent to

mig, [ 1Ve(x, )1+ p(x, ) [0y(x,7)] o 3)

peD’

Proof: By the co-area formula, we have for the TV term

/|Vu(x)| dx = /perimeter(l{u>7})d7
Q

r

://]Vg0| dx d~.
rJo
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Functional Lifting

Observe that
10,0(x, ) = 0(u(x) — 7).
So for the fidelity term,

/p(u(x),x) dx

// 7 X — ) dvydx
B /Q/rp(%x) |0y0(x,7)| d dx.
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Functional Lifting

Thus we have that the problem in u

min_E(u) /|vu |dx+/ p(u(x),x) dx

is equivalent to the lifted problem in ¢

min E(; /|w x|+ p(x,7) |80, )| dE.

peD’
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Convex Relaxation

Still, at this point, the lifted problem

min E(¢p / V| + p|0ye| dE

peD’

is nonconvex because D’ is nonconvex:

D' = {90 L — {O~ 1} | SO(X7 P)/min) = 1790(X77max) = O}
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Convex Relaxation

To make the problem convex, define the relaxed set

D = {90 P — [07 1] | SD(Xv'Vmin) = 1790(X77ma><) = 0}'

Then the problem

min E(yp) = />: Vol + p|0yp| dX (4)

peD

is convex.

We can find a minimizer o* € D of (4) and then threshold it,
Loy € D"
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Convex Relaxation

Let o* € D be a minimizer of the relaxed problem (4). Then for a.e.
w € [0,1], the thresholded solution

Lipropy € D

is a minimizer of the unrelaxed problem (3).

Proof: Again using the co-area formula.
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Convex Relaxation

(Proof by contradiction) By the co-area formula,
E(e) = [ 96(x )]+ plx,) [2,0(x.7)] I
b
1
:/0 /):|V]1{so>u}| +p(x,7) |0y L2y | dX dp

1
:/o E(l{sOZM})dM-

Suppose there exists ¢’ € D’ such that E(y") < E(L{,+>,y) for all
in a measurable subset of [0, 1] of nonzero measure, then

E(¢) = / E(¢) d < / E(Lpesy) di = E(2").

But this contradicts that ¢* is a minimizer of (4).
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Convex Relaxation

So, we can find a minimizer * of the relaxed convex problem

min/ Vel + ploye] dX,
peD Y

then thresholding it 1;,->,) gives a minimizer of the unrelaxed
problem

min/|V<,0|+,0\87g0| dx.
peD |y
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Convex Relaxation

Then a solution u* is recovered by

Ymax
U" = Ymin + / Lipe>p dv,
Ymin
and it is a minimizer of the original problem

min /Q|Vu(x)\ dx—i—/p(u(x),x) dx.

u:Q—T Q
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Minimization Algorithm

Now that we have established a convex formulation of the problem,
we wish to solve it. To find the minimizer of

minE(e) = [ V¢l + 10,4l dF,

pE

one could attempt to solve the associated Euler-Lagrange equations

Vo ) ( 8%0 )
—div 0, =0, st peD.
<|V | "Tol

But this is hard because of the singularities as |V| or |0,¢| — 0.
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Minimization Algorithm

Instead, write E(¢y) in a dual formulation: observe that

Vel +plopl=max{p-Vsp}, st \[pi+p <1 |p|<p,

where p = (p1, p2, p3) is the dual variable and V3 := (0y,, 0y,,0,)".
This leads to the primal-dual formulation

ggg{geag/zp-v3¢di}7 (5)

where C={p: ¥ — R3 [/ p1(x,7)2 + pa(x,7)2 < 1,
[ps (. I < p(7, %)}

Pascal Getreuer (UCLA) Functional Lifting



Minimization Algorithm

The authors solve min¢€D{maxp€C fz p-Visp dZ} with a
primal-dual proximal point method:

Primal Step: Solve for ¢**! as the minimizer of

: k 1 ky2
V4 1 _
STE'B/ZP 39+ 57 Z(90 ")
= " = Pp(p* + 7 divs p¥)
Dual Step: Solve for p¥*1 as the maximizer of
i k41 _ 1 k)2
max /z p-Vsp 5 | (P—pP")

>

— pk+1 — Pc(pk + Tdv3(pk+1)
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Numerical Results

Pock et al. compare their method with Ishikawa's for color stereo
estimation. The left image is
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Numerical Results

Ishikawa 4-neighbor Pock et al.

Pascal Getreuer (UCLA) Functional Lifting



Numerical Results

Ishikawa 8-neighbor Pock et al.
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Numerical Results

Ishikawa 16-neighbor Pock et al.

~
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Numerical Results

Method Error (%) Runtime (s) Memory (MB)
Ishikawa 4-neighbor 2.90 2.9 450
Ishikawa 8-neighbor 2.63 49 630
Ishikawa 16-neighbor 2.71 14.9 1500

Pock et al., CPU 2.57 25 54
Pock et al., GPU 2.57 0.75 54

The authors tested both CPU and a GPU implementations of their
method (on a fancy NVidia GeForce GTX 280). Ishikawa's method is
only on CPU as there is currently no parallel algorithm for graph cuts.
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Summary
@ Pock et al. consider nonconvex problems of the form
[ d dx.
u:rpzfr/ﬂ |Vu(x)| dx + /Qp(u(x),x) x
@ Functional lifting is used to obtain a convex formulation
min/ V| + p|0y¢| dXE.
peD 5

@ The convex formulation is solved by a proximal primal-dual
method on

g]gg{rpeag/zp -Vsp dZ}.
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Related Work on Mumford-Shah*
The Mumford-Shah functional is

E(u) = /\/(f — u)? dx+/ IVul® dx + vHY(S,)
Q Q\S,

Pock et al. use a result from Bouchitte, Alberti, and Dal Maso:

E(w)=swp [ p-Dliy
peEK JQOxXR
where K is the set of vectorfields p = (p1, p2, p3) satisfying
® p1,p2, p3 € Go(2 x R)
2
o p3(x,7) > 7 [P1(x,7)* + pa(x,7)?] = Ay — f(x))

! JIZ(Z;&Z du| <vforall xe Q,v,»eR

*T. Pock, D. Cremers, H. Bischof, A. Chambolle, “An Algorithm for
Minimizing the Mumford-Shah Functional,” ICCV, 2009.
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