285J, L. Vese

Assignment 2:

[1] Implement a numerical scheme for the Euler-Lagrange equation of the ROF model in the presence of known blur:

$$
\inf _{u} \int_{\Omega} \sqrt{\epsilon^{2}+|\nabla u|^{2}} d x d y+\frac{\lambda}{2} \int_{\Omega}|k * u-f|^{2} d x d y,
$$

where you can choose a Gaussian blur or a uniform blur for k (of mean 1), with small support (between 3×3 and 9×9). If you compute the convolution in the spatial domain, then you can use the commands "conv2" or "imfilter" in matlab. You can also evaluate the convolutions in the frequency domain. Define a blurry data f (with a small amount of noise). Output the root-mean-square-error between u and $u_{\text {orig }}$, and plot the numerical energy versus iterations. Choose a value λ that gives better results.
[2] Assume that $\phi(z)$ is even and differentiable, increasing on $[0, \infty)$ and positive. We know that the time-dependent Euler-Lagrange equation obtained by minimizing

$$
\inf _{u \in W^{1,1}(\Omega)} F(u)=\int_{\Omega} \phi(|\nabla u|) d x d y+\frac{\lambda}{2} \int_{\Omega}|f-u|^{2} d x d y
$$

is formally given by

$$
\begin{equation*}
\frac{\partial u}{\partial t}=-\lambda(u-f)+\operatorname{div}\left(\frac{\phi^{\prime}(|\nabla u|)}{|\nabla u|} \nabla u\right) . \tag{1}
\end{equation*}
$$

(i) Express the above differential operator in (1) as ()$u_{\vec{N} \vec{N}}+() u_{\vec{T} \vec{T}}$, where $\vec{N}=\frac{\nabla u}{|\nabla u|}$, and \vec{T} is normalized and orthogonal to \vec{N}.
(ii) Assume $\lambda=0$ in (1). Under what conditions is the obtained PDE (weakly) parabolic ? (in other words, under what conditions on ϕ, does the quasi-linear 2 nd order operator $\operatorname{div}\left(\frac{\phi^{\prime}(|\nabla u|)}{|\nabla u|} \nabla u\right)=\sum_{i, j=1}^{2} a_{i j} u_{x_{i}, x_{j}}$ satisfy the weakly elliptic property $\sum_{i, j=1}^{2} a_{i j} \xi_{i} \xi_{j} \geq 0$ for all $\xi_{1}, \xi_{2} \in R$?)
[3] Let u be sufficiently smooth and satisfy

$$
\frac{\partial u}{\partial t}=|\nabla u| G(\operatorname{curv} u)
$$

where $\operatorname{curv} u=\operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)$ is the curvature operator, and G is a function such that $k G(k) \geq 0$. Show that this flow decreases the total variation of u in time.
[4] Let $g \in C^{1}(R)$ be a function, with $g^{\prime}>0$. Let $v=g(u)$. If u satisfies

$$
\frac{\partial u}{\partial t}=|\nabla u| G(\operatorname{curv}(u)),
$$

so does v (this is called contrast invariance or geometric invariance).

