
Numerical discretization of the Rudin-Osher-Fatemi
model, time-dependent semi-implicit discretization

We discretize (using a fixed point finite differences scheme) the Euler-
Lagrange equation associated with the minimization of the total variation
model of Rudin-Osher-Fatemi.

We would like to find the (unique) minimizer, u, of

inf
u

F (u) = λ
∫

Ω

|f − u|2dxdy +
∫

Ω

|∇u|dxdy,

where f is the noisy data and λ > 0 is a scaling parameter. The associated
Euler-Lagrange equation of the Rudin-Osher-Fatemi model formally is

{

u = f + 1

2λ
div

(

∇u
|∇u|

)

in Ω
∂u
∂~n

= 0 on ∂Ω.

First, we remove the singularity when |∇u| = 0, by approximating F (u)
by Fǫ(u), where

Fǫ(u) = λ
∫

Ω

|f − u|2dxdy +
∫

Ω

√

ǫ2 + |∇u|2dxdy,

with ǫ > 0 a small parameter. Then, the Euler-Lagrange equation minimizing
Fǫ(u) formally is:

u = f +
1

2λ
div

( ∇u
√

ǫ2 + |∇u|2

)

in Ω, (1)

∂u

∂~n
= 0 on ∂Ω. (2)

We can associate the time-dependent problem:

∂u

∂t
= f − u +

1

2λ
div

( ∇u
√

ǫ2 + |∇u|2

)

in Ω, (3)

∂u

∂~n
= 0 on ∂Ω. (4)

Thus an initial data is given u(0, x, y) and the energy F (u(t, ·, ·)) is decreasing
as t increases, if u(t) satisfies the time-dependent flow. The time-dependent
problem is solved until steady state, or until the solution or the energy become
stationary.
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We will discretize here the time-dependent problem.
Let xi = ih, yj = jh, for 0 ≤ i, j ≤ M , be the discrete points (in our

numerical calculations, we have h = 1). We recall the following notations:

ui,j ≈ u(xi, yj),

fi,j ≈ f(xi, yj),

△x
±ui,j = ±(ui±1,j − ui,j),

△y
±ui,j = ±(ui,j±1 − ui,j),

△x
0ui,j = (ui+1,j − ui−1,j)/2, and

△y
0ui,j = (ui,j+1 − ui,j−1)/2.

We use a fixed point Gauss-Seidel iteration method for the above equation
and so we now introduce the following linearized equation:

un+1
i,j − un

i,j

△t
+ un+1

i,j = fi,j +
1

2λh2

un
i+1,j − un+1

i,j
√

ǫ2 + (
un

i+1,j
−un

i,j

h
)2 + (

un
i,j+1

−un
i,j

h
)2

−
1

2λh2

un+1
i,j − un

i−1,j
√

ǫ2 + (
un

i,j
−un

i−1,j

h
)2 + (

un
i−1,j+1

−un
i−1,j

h
)2

+
1

2λh2

un
i,j+1 − un+1

i,j
√

ǫ2 + (
un

i+1,j
−un

i,j

h
)2 + (

un
i,j+1

−un
i,j

h
)2

−
1

2λh2

un+1
i,j − un

i,j−1
√

ǫ2 + (
un

i+1,j−1
−un

i,j−1

h
)2 + (

un
i,j

−un
i,j−1

h
)2

.

Introducing the notations:

c1 =
1

√

ǫ2 + (
un

i+1,j
−un

i,j

h
)2 + (

un
i,j+1

−un
i,j

h
)2

,

c2 =
1

√

ǫ2 + (
un

i,j
−un

i−1,j

h
)2 + (

un
i−1,j+1

−un
i−1,j

h
)2

,

c3 =
1

√

ǫ2 + (
un

i+1,j
−un

i,j

h
)2 + (

un
i,j+1

−un
i,j

h
)2

,

c4 =
1

√

ǫ2 + (
un

i+1,j−1
−un

i,j−1

h
)2 + (

un
i,j

−un
i,j−1

h
)2

,

2



and solving for un+1
i,j , we obtain:

un+1
i,j =

( 1

1 + △t + △t

2λh2 (c1 + c2 + c3 + c4)

)

·
[

un
i,j + △t · fi,j +

△t

2λh2
(c1u

n
i+1,j + c2u

n
i−1,j + c3u

n
i,j+1 + c4u

n
i,j−1)

]

.

We let u0
i,j = fi,j . Then, we note that if m1 ≤ fi,j ≤ m2, for any 0 ≤ i, j ≤ M ,

we have m1 ≤ un
i,j ≤ m2, for any n ≥ 0. We use the above equation for un+1

i,j

for all interior points (xi, yj) such that 1 ≤ i, j ≤ M − 1.
The boundary condition can be implemented in the following way: if un

i,j

has been computed using the above numerical scheme for 1 ≤ i, j ≤ M − 1,
then we let un

0,j = un
1,j, un

M,j = un
M−1,j, un

i,0 = un
i,1, un

i,M = un
i,M−1, and

un
0,0 = un

1,1, un
0,M = un

1,M−1, un
M,0 = un

M−1,1, un
M,M = un

M−1,M−1.
• The coefficient λ has to be optimized for each image. Too small λ will

introduce too much smoothing in the recovered image u. However, too large
λ will keep noise in the solution u.

• The discrete energy has to be computed and visualized versus iterations,
to see if it decreases at all times.

• Note that this scheme may introduce some asymmetry, but not visible
in general. Other schemes can be proposed, for instance alternating at each
iteration the discretization of the div operator, with all four (schematic)
choices

△x
−(△x

+), △y
−(△y

+) (the above scheme)
△x

+(△x
−), △y

+(△y
−)

△x
+(△x

−), △y
−(△y

+)
△x

−(△x
+), △y

+(△y
−)

3


