Nonlocal methods for image processing

Lecture note, Xiaoqun Zhang

Oct 30, 2009
Outline

1. Local smoothing Filters
2. Nonlocal means filter
3. Nonlocal operators
4. Applications
5. References
General Model

\[v(x) = u(x) + n(x), \ x \in \Omega \]

- \(v(x) \) observed image
- \(u(x) \) true image
- \(n(x) \) i.i.d gaussian noise (white noise)

Gaussian kernel

\[x \rightarrow G_h(x) = \frac{1}{4\pi h^2} e^{-\frac{|x|^2}{4h^2}} \]
Nonlocal methods for image processing
Local smoothing Filters

Outline

1 Local smoothing Filters

2 Nonlocal means filter

3 Nonlocal operators
 - Denoising by nonlocal functionals
 - Inverse problems by nonlocal regularization
 - Nonlocal regularization with Bregmanized methods

4 Applications
 - Compressive sampling
 - Deconvolution
 - Wavelet Inpainting

5 References
Linear low-pass filter

Idea: average in a local spatial neighborhood

\[GF_h(v)(x) = G_h * v(x) = \frac{1}{C(x)} \int_{y \in \Omega} v(y) \exp \left(\frac{||y-x||^2}{4h^2} \right) dy \]

where \(C(x) = 4\pi h^2 \)

Pro: work well for harmonic function (homogenous region)

Con: perform poorly on singular part, namely edge and texture
Anisotropic filter

Idea: average only in the direction orthogonal to $Dv(x)(\frac{\partial v(x)}{\partial x}, \frac{\partial v(y)}{\partial y})$.

$$AF_h(v)(x) = \frac{1}{C(x)} \int t v(x + f \frac{Dv(x) \perp}{|Dv(x)|}) \exp \frac{-t^2}{h^2} dt$$

where $C(x) = 4\pi h^2$.

Pro: Avoid blurring effect of Gaussian filter, maintaining edges.
Con: perform poorly on flat region, worse there than a Gaussian blur.
Neighboring filter

Spatial neighborhood

\[B_\rho(x) = \{ y \in \Omega \| y - x \| \leq \rho \} \]

Gray-level neighborhood

\[B(x, h) = \{ y \in \Omega \| v(y) - v(x) \| \leq \rho \} \]

for a given image \(v \). Yaroslavsky filter

\[YNF_{h, \rho} = \frac{1}{C(x)} \int_{B_\rho(x)} u(y) e^{-\frac{|u(y) - u(x)|^2}{4h^2}} dy \]

Bilateral(SUSAN) filter

\[SUSAN_{h, \rho} = \frac{1}{C(x)} \int u(y) e^{-\frac{|u(y) - u(x)|^2}{4h^2}} e^{-\frac{|y-x|^2}{4\rho^2}} dy \]

Behave like weighted heat equation, enhancing the edges
Fig. 3. Denoising experience on a natural image. From left to right and from top to bottom: noisy image (standard deviation 20), Gaussian convolution, anisotropic filter, total variation minimization, Tadmor-Nezzar-Vese iterated total variation, Osher et al. iterated total variation, and the Yaroslavsky neighborhood filter.
Outline

1. Local smoothing Filters
2. Nonlocal means filter
3. Nonlocal operators
 - Denoising by nonlocal functionals
 - Inverse problems by nonlocal regularization
 - Nonlocal regularization with Bregmanized methods
4. Applications
 - Compressive sampling
 - Deconvolution
 - Wavelet Inpainting
5. References
Nonlocal mean filter

Idea: Take advantage of high degree of redundancy of natural images

Fig. 6. q_1 and q_2 have a large weight because their similarity windows are similar to that of p. On the other side the weight $w(p, q_3)$ is much smaller because the intensity grey values in the similarity windows are very different.
Denoising formula

\[NLM(v)(x) := \frac{1}{C(x)} \int_{\Omega} w(x, y)v(y)dy, \]

where

\[w(x, y) = \exp\left\{-\frac{G_{\alpha} \ast (\|v(x + \cdot) - v(y + \cdot)\|^2)(0)}{2h_0^2}\right\}, \]

\[C(x) = \int_{\Omega} w_v(x, y)dy \]
Weight from clean image

(a)

(b)

(c)

(d)

(e)

(f)
Weight from noisy image

(a)
(b)
(c)
(d)
Example

Fig. 7. NL-means denoising experiment with a nearly periodic image. Left: Noisy image with standard deviation 30. Right: NL-means restored image.

Fig. 8. NL-means denoising experiment with a Brodatz texture image. Left: Noisy image with standard deviation 30. Right: NL-means restored image. The Fourier transform of the noisy and
Comparison with other methods

Fig. 20. Denoising experience on a natural image. From left to right and from top to bottom: noisy image (standard deviation 35), neighborhood filter, total variation, and the NL-means algorithm.
Outline

1 Local smoothing Filters

2 Nonlocal means filter

3 Nonlocal operators
 - Denoising by nonlocal functionals
 - Inverse problems by nonlocal regularization
 - Nonlocal regularization with Bregmanized methods

4 Applications
 - Compressive sampling
 - Deconvolution
 - Wavelet Inpainting

5 References
Nonlocal operators2/Graph based Regularization

Given a nonnegative and symmetric weight function \(w(x, y) \) for each pair of points \((x, y) \in \Omega \times \Omega\):

- Nonlocal gradient of an image \(u(x) \):
 \[
 \nabla_w u(x, y) = (u(y) - u(x)) \sqrt{w(x, y)} : \Omega \times \Omega \rightarrow \Omega
 \]

- Nonlocal divergence of a gradient field \(p(x, y) : \Omega \times \Omega \rightarrow \mathcal{R} \) is defined by
 \[
 \langle \nabla_w u, p \rangle = - \langle u, \text{div}_w p \rangle, \forall u(x), p(x, y)
 \]
 \[
 \Rightarrow \text{div}_w p(x) = \int_{\Omega} (p(x, y) - p(y, x)) \sqrt{w(x, y)} dy.
 \]

- Nonlocal functionals of \(u \):
 \[
 J_{NL/H^1}(f) = \frac{1}{4} \int_{\Omega} |\nabla_w u(x)|^2 : \frac{1}{4} \int_x \int_y |\nabla_w u(x, y)|^2
 \]
 \[
 J_{NL/TV}(f) = \int_{\Omega} |\nabla_w u(x)|_1 : \int_x \sqrt{\int_y |\nabla_w u(x, y)|^2}.
 \]
Nonlocal methods for image processing
Nonlocal operators
Denoising by nonlocal functionals

Nonlocal H^1 regularization by non-local means

- Model: $\min J_{NL/H1}(u) + \frac{\mu}{2} \|u - f\|^2$
- Euler-Lagrange equation: $L_w(u)u + \mu(u - f) = 0$, where L_w is unnormalized graph laplacian:

$$L_w(u) = \int_\Omega w(x,y)(u(x) - u(y)).$$

- We can replace $L_w(u)$ by normalized graph laplacian3

$$L_0^w = \frac{1}{C(x)}L_w = Id - NLM_w(u).$$

- Semi-explicit iteration: for a time step

 $\tau > 0, s = 1 + \tau + \tau \mu, \alpha_1 = \frac{\tau}{s}, \alpha_2 = \frac{\tau \mu}{s}$:

$$u^{k+1} = (1 - \alpha_1)u^k + \alpha_1 NLM_w(u^k) + \alpha_2 f.$$

3When $N \to \infty$ and $h_0 \to 0$, then L_0^w converges to the continuous manifold Laplace - Beltrami operator.
Nonlocal TV regularization by Chambolle’s algorithm

- **Model:** \(\min_u J_{NL/TV,w}(u) + \frac{\mu}{2} ||u - f||^2 \)
- **Extension of Chambolle’s projection method for Nonlocal TV:**

\[
\inf_u \sup_{||p|| \leq 1} \int_{\Omega \times \Omega} < \nabla_w u, p > + \frac{\mu}{2} ||u - f||^2,
\]

where the solution can be solved by a projected solution \(u^* = f - \frac{1}{\mu} \div_w p^* \). and the dual variable \(p^* \) is obtained by

\[
\sup_{||p|| \leq 1} \int_{\Omega \times \Omega} < \nabla_w u, p > + \frac{1}{2\mu} ||\div_w p||^2.
\]

Algorithm:

\[
p^{n+1} = \frac{p^n + \tau \nabla_w (\div_w p^n - \mu f)}{1 + \tau |\nabla_w (\div_w p^n - \mu f)|}, \quad \tau > 0
\]
Deblurring by Nonlocal Means

Problem: \(f = Au + n \), \(A \) linear operator, \(n \) Gaussian noise. **Idea:** Use initial blurry and noisy image \(f \) to compute the weight.

\[
J_{\text{NLM},w(f)} := \min ||u - \text{NLM}_f u||^2 + \frac{\lambda}{2} ||Au - f||^2
\]

which is equivalent to

\[
J_{\text{NLM},w(f)} := \min ||L^0_{w_f}(u)||^2 + \frac{\lambda}{2} ||Au - f||^2
\]

where \(L^0_{w_f} \) is the normalized graph laplacian with the weight computed from \(f \).

Gradient descents flow:

\[
((L^0_{w_f})^* L^0_{w_f})u + \lambda A^*(Au - f) = 0
\]

\(^4\)A. Buades, B. Coll, and J-M. Morel. 2006
Image recovery via nonlocal operators

Idea: Use a deblurred image to compute the weight.

1. **Preprocessing:**
 - Compute a deblurred image via a fast method:
 \[
 u_0 = \min \frac{1}{2} ||Au - f||^2 + \delta ||u||^2 \iff u_0 = (A^*A + \delta)^{-1} A^*f.
 \]
 where δ is chosen optimally by respecting the condition
 \[
 \sigma^2 = ||Au_0 - f||^2
 \]
 where σ^2 is the noise level in blurry image.
 - Compute the nonlocal weight w_0 by using u_0 as a reference image (set $h_0 = \sigma^2 ||(A^*A + \delta)^{-1} A^*||^2$.)

2. **Nonlocal regularization with the fixed weight w_0:**
 \[
 \min J_{w_0}(u) + \frac{\lambda}{2} ||Au - f||^2
 \]
 by gradient descent.
Nonlocal regularization for inverse problems

- **Idea:** nonlocal weight updating during nonlocal regularization by operator splitting.

- **Model:**
 \[
 \min_u J_w(u)(u) + \frac{\lambda}{2} ||Au - v||^2
 \]

Approximated Algorithm:

\[
\begin{align*}
 v^{k+1} &= u^k + \frac{1}{\mu} A^*(f - Au^k) \\
 w^{k+1} &= w(v^{k+1})(optional) \\
 u^{k+1} &= \text{arg min } J_{NL/TV,w^{k+1}} + \frac{\lambda\mu}{2}||u - v^{k+1}||^2
\end{align*}
\]

where \(u^{k+1}\) is solved by Chambolle's method for NLTV.
Nonlocal methods for image processing
Nonlocal operators
Nonlocal regularization with Bregmanized methods

Nonlocal regularization with Bregmanized methods

With/without weight updating:

Algorithm:

\[
\begin{align*}
 f^{k+1} &= f^k + f - Au^k \\
v^{k+1} &= u^k + \frac{1}{\mu} A^* (f^{k+1} - Au^k) \\
w^{k+1} &= w(v^{k+1}) \text{(optional)} \\
u^{k+1} &= \arg \min J_{NL/TV, w^{k+1}} + \frac{\lambda \mu}{2} ||u - v^{k+1}||^2
\end{align*}
\]
Outline

1. Local smoothing Filters
2. Nonlocal means filter
3. Nonlocal operators
 - Denoising by nonlocal functionals
 - Inverse problems by nonlocal regularization
 - Nonlocal regularization with Bregmanized methods
4. Applications
 - Compressive sampling
 - Deconvolution
 - Wavelet Inpainting
5. References
Compressive sampling: \(Au = RFu \)

Figure: Data: 30% random Fourier measurements
Deconvolution: $Au = k \ast u$

True Image
Blury and noisy Image

Fix weight
Update weight

Figure: 9×9 box average blur kernel, $\sigma = 3$
Wavelet Inpainting: $Au = RWu$

Figure: Block loss (including low-low frequencies loss). For both TV and NLTV, the initial guess is the received image.
Outline

1. Local smoothing Filters
2. Nonlocal means filter
3. Nonlocal operators
 - Denoising by nonlocal functionals
 - Inverse problems by nonlocal regularization
 - Nonlocal regularization with Bregmanized methods
4. Applications
 - Compressive sampling
 - Deconvolution
 - Wavelet Inpainting
5. References

Guy Gilboa and Stanley Osher, Nonlocal Operators with Applications to Image Processing, UCLA CAM report, July 2007

Xiaoqun Zhang, Martin Burger, Xavier Bresson and Stanley Osher, Bregmanized Nonlocal Regularization for Deconvolution and Sparse Reconstruction, UCLA CAM Report, January 2009

Xiaoqun Zhang and Tony F. Chan, Wavelet Inpainting by Nonlocal Total Variation, UCLA CAM Report, July 2009