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General Model

v(x) = u(x) + n(x), x ∈ Ω

v(x) observed image

u(x) true image

n(x) i.i.d gaussian noise (white noise)

Gaussian kernel

x→ Gh(x) =
1

4πh2
e−
|x|2

4h2
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Local smoothing Filters

Linear low-pass filter

Idea: average in a local spatial neighborhood

GFh(v)(x) = Gh ∗ v(x) =
1

C(x)

∫
y∈Ω

v(y) exp
‖y−x‖2

4h2 dy

where C(x) = 4πh2

Pro: work well for harmonic function (homogenous region)
Con: perform poorly on singular part, namely edge and texture
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Local smoothing Filters

Anisotropic filter

Idea: average only in the direction orthogonal to
Dv(x)(∂v(x)

∂x , ∂v(y)
∂y ).

AFh(v)(x) =
1

C(x)

∫
t
v(x+ f

Dv(x)⊥

|Dv(x)|
) exp

−t2
h2 dt

where C(x) = 4πh2.
Pro: Avoid blurring effect of Gaussian filter, maintaining edges.
Con: perform poorly on flat region, worse there than a Gaussian
blur.
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Local smoothing Filters

Neighboring filter

Spatial neighborhood

Bρ(x) = {y ∈ Ω|‖y − x‖ ≤ ρ}

Gray-level neighborhood

B(x, h) = {y ∈ Ω|‖v(y)− v(x)‖ ≤ ρ}

for a given image v. Yaroslavsky filter

Y NFh,ρ =
1

C(x)

∫
Bρ(x)

u(y)e−
|u(y)−u(x)|2

4h2 dy

Bilateral(SUSAN) filter

SUSANh,ρ =
1

C(x)

∫
u(y)e−

|u(y)−u(x)|2

4h2 e
− |y−x|

2

4ρ2 dy

Behave like weighted heat equation, enhancing the edges
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Local smoothing Filters

Denoising example
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Nonlocal means filter

Nonlocal mean filter1

Idea: Take advantage of high degree of redundancy of natural
images.

1A. Buades, B. Coll, and J-M. Morel. 2005
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Nonlocal means filter

Denoising formula

NLM(v)(x) :=
1

C(x)

∫
Ω
w(x, y)v(y)dy,

where

w(x, y) = exp{−Ga ∗ (||v(x+ ·)− v(y + ·)||2)(0)
2h2

0

},

C(x) =
∫

Ω
wv(x, y)dy
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Nonlocal means filter

Weight from clean image

12/29



Nonlocal methods for image processing

Nonlocal means filter

Weight from noisy image
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Nonlocal means filter

Example
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Nonlocal means filter

Comparison with other methods
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Nonlocal operators

Nonlocal operators2/Graph based Regularization

Given a nonnegative and symmetric weight function w(x, y) for
each pair of points (x, y) ∈ Ω× Ω:

Nonlocal gradient of an image u(x):

∇wu(x, y) = (u(y)− u(x))
√
w(x, y) : Ω× Ω→ Ω

Nonlocal divergence of a gradient filed p(x, y) : Ω×Ω→ R is
defined by

< ∇wu, p >= − < u, divwp >,∀u(x), p(x, y)

=⇒ divwp(x) =
∫

Ω
(p(x, y)− p(y, x))

√
w(x, y)dy.

Nonlocal functionals of u:

JNL/H1(f) =
1
4

∫
Ω
|∇wu(x)|2 :

1
4

∫
x

∫
y
|∇wu(x, y)|2

JNL/TV (f) =
∫

Ω
|∇wu(x)|1 :

∫
x

√∫
y
|∇wu(x, y)|2.

2G. Gilboa and S. Osher, 2007
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Nonlocal operators

Denoising by nonlocal functionals

Nonlocal H1 regularization by non-local means

Model:min JNL/H1(u) + µ
2 ||u− f ||

2

Euler-Lagrange equation: Lw(u)u+ µ(u− f) = 0, where Lw
is unnormalized graph laplacian :

Lw(u) =
∫

Ω
w(x, y)(u(x)− u(y)).

We can replace Lw(u) by normalized graph laplacian3

L0
w =

1
C(x)

Lw = Id− NLMw(u).

Semi-explicit iteration: for a time step
τ > 0, s = 1 + τ + τµ, α1 = τ

s , α2 = τµ
s :

uk+1 = (1− α1)uk + α1NLMw(uk) + α2f.
3When N →∞ and h0 → 0, then L0

w converges to the continuous manifold
Laplace - Beltrami operator.
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Nonlocal operators

Denoising by nonlocal functionals

Nonlocal TV regularization by Chambolle’s algorithm

Model: minu JNL/TV,w(u) + µ
2 ||u− f ||

2

Extension of Chambolle’s projection method for Nonlocal TV:

inf
u

sup
||p||≤1

∫
Ω×Ω

< ∇wu, p > +
µ

2
||u− f ||2,

where the solution can be solved by a projected solution
u∗ = f − 1

µ ÷w p
∗. and the dual variable p∗ is obtained by

sup
||p||≤1

∫
Ω×Ω

< ∇wu, p > +
1

2µ
||divwp||2.

Algorithm:

pn+1 =
pn + τ∇w(divwp

n − µf)
1 + τ |∇w(divwpn − µf)|

, τ > 0
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Nonlocal operators

Inverse problems by nonlocal regularization

Deblurring by Nonlocal Means4

Problem: f = Au+ n, A linear operator, n Gaussian noise. Idea:
Use initial blurry and noisy image f to compute the weight.

JNLM,w(f) := min ||u− NLMfu||2 +
λ

2
||Au− f ||2 (1)

which is equivalent to

JNLM,w(f) := min ||L0
wf

(u)||2 +
λ

2
||Au− f ||2 (2)

where L0
wf

is the normalized graph laplacian with the weight
computed from f .
Gradient descents flow:

((L0
wf

)∗L0
wf

)u+ λA∗(Au− f) = 0

4A. Buades, B. Coll, and J-M. Morel. 2006
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Nonlocal operators

Inverse problems by nonlocal regularization

Image recovery via nonlocal operators

Idea: Use a deblurred image to compute the weight.
1 Preprocessing:

Compute a deblurred image via a fast method:

u0 = min
1
2
||Au− f ||2 + δ||u||2 ⇐⇒ u0 = (A∗A+ δ)−1A∗f.

where δ is chosen optimally by respecting the condition

σ2 = ||Au0 − f ||2

where σ2 is the noise level in blurry image.
Compute the nonlocal weight w0 by using u0 as a reference
image (set h0 = σ2||(A∗A+ δ)−1A∗||2.)

2 Nonlocal regularization with the fixed weight w0:

min Jw0(u) +
λ

2
||Au− f ||2

by gradient descent.
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Nonlocal operators

Inverse problems by nonlocal regularization

Nonlocal regularization for inverse problems

Idea: nonlocal weight updating during nonlocal regularization
by operator splitting.

Model :

min
u
Jw(u)(u) +

λ

2
||Au− v||2

Approximated Algorithm:


vk+1 = uk + 1

µA
∗(f −Auk)

wk+1 = w(vk+1)(optional)
uk+1 = arg min JNL/TV,wk+1 + λµ

2 ||u− v
k+1||2

(3)

where uk+1 is solved by Chamobelle’s method for NLTV.
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Nonlocal operators

Nonlocal regularization with Bregmanized methods

Nonlocal regularization with Bregmanized methods

With/without weight updating:

Algorithm:


fk+1 = fk + f −Auk
vk+1 = uk + 1

µA
∗(fk+1 −Auk)

wk+1 = w(vk+1)(optional)
uk+1 = arg min JNL/TV,wk+1 + λµ

2 ||u− v
k+1||2

(4)
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Applications

Compressive sampling

Compressive sampling : Au = RFu

True Image Initial guess

TV NLTV

Figure: Data: 30% random Fourier measurements
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Applications

Deconvolution

Deconvolution: Au = k ∗ u

True Image Blurry and noisy Image

Fix weight Update weight

Figure: 9× 9 box average blur kernel, σ = 3
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Applications

Wavelet Inpainting

Wavelet Inpainting: Au = RWu

Original Received, PSNR= 17.51

TV, PSNR=28.64 NLTV, PSNR= 36.06

Figure: Block loss(including low-low frequencies loss). For both TV and NLTV, the
initial guess is the received image
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