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Shape Modeling with Front Propagation: 
A Level Set Approach 

Ravikanth Malladi, James A. Sethian, and Baba C. Vemuri 

Abstract - Shape modeling is an important constituent of 
computer vision as well as computer graphics research. Shape 
models aid the tasks of object representation and recognition. 
This paper presents a new approach to shape modeling which re- 
tains some of the attractive features of existing methods and over- 
comes some of their limitations. Our techniques can be applied to 
model arbitrarily complex shapes, which include shapes with 
significant protrusions, and to situations where no a priori as- 
sumption about the object’s topology is made. A single instance of 
our model, when presented with an image having more than one 
object of interest, has the ability to split freely to represent each 
object. This method is based on the ideas developed by Osher and 
Sethian to model propagating solidhiquid interfaces with curva- 
ture-dependent speeds. The interface (front) is a closed, noninter- 
secting, hypersurface flowing along its gradient field with con- 
stant speed or a speed that depends on the curvature. It is moved 
by solving a “Hamilton-Jacob?’ type equation written for a func- 
tion in which the interface is a particular level set. A speed term 
synthesizpd from the image is used to stop the interface in the vi- 
cinity of object boundaries. The resulting equation of motion is 
solved by employing entropy-satisfying upwind finite difference 
schemes. We present a variety of ways of computing evolving 
front, including narrow bands, reinitializations, and different 
stopping criteria. The efficacy of the scheme is demonstrated with 
numerical experiments on some synthesized images and some low 
contrast medical images. 

Index Terms - Shape modeling, shape recovery, interface mo- 
tion, level sets, hyperbolic conservation laws, Hamilton-Jacobi 
equation, entropy condition. 

I. INTRODUCTION 

N this paper, we describe a modeling technique based on a I level set approach for recovering shapes of objects in two 
and three dimensions from various types of image data. The 
modeling technique may be viewed as a form of active model- 
ing such as “snakes” [ 151 and deformable surfaces [34] since, 
the model which consists of a moving front, may be molded 
into any desired shape by externally applied halting criteria 
synthesized from the image data. The “snakes” or deformable 
surfaces may be viewed as Lagrangian geometric formulations 
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wherein the boundary of the model is represented in a 
parametric form. These parameterized boundary representa- 
tions will encounter difficulties when the dynamic model em- 
bedded in a noisy data set is expandinghhrinking along its 
normal field [ 101 and sharp corners or cusps develop or pieces 
of the boundary intersect. By exploiting recent advances in 
interface techniques, our modeling technique avoids this La- 
grangian geometric view and instead capitalizes on a related 
initial value partial differential equation. In this setting, several 
advantages are apparent, including the ability to evolve the 
model in the presence of sharp corners, cusps and changes in 
topology, model shapes with significant protrusions and holes 
in a seamless fashion, and extension to three dimensions in an 
extremely straightforward way. 

A. Background 

An important goal of computational vision is to recover the 
shapes of objects in 2D and 3D from various types of visual 
data. One way to achieve this goal is via model-based tech- 
niques. Broadly speaking, these techniques involve the use of a 
model whose boundary representation is matched to the image 
to recover the object of interest. These models can either be 
rigid, such as correlation-based template matching techniques, 
or nonrigid, as those used in dynamic model fitting techniques. 

Shape recovery from raw data typically precedes its sym- 
bolic representation. Shape models are expected to aid the re- 
covery of detailed structure from noisy data using only the 
weakest of the possible assumptions about the observed shape. 
To this end, several variational shape reconstruction methods 
have been proposed and there is abundant literature on the 
same (see [4], [27], [35], [38], [17] and references therein). 
Generalized spline models with continuity constraints are well 
suited for fulfilling the goals of shape recovery (see [6] ,  [331). 
Generalized splines are the key ingredient of the dynamic 
shape modeling paradigm introduced to vision literature by 
Kass et a1 [15]. Incorporating dynamics into shape modeling 
enables the creation of realistic animation for computer 
graphics applications and for tracking moving objects in com- 
puter vision. Following the advent of the dynamic shape 
modeling paradigm [ 151, [34], considerable research followed, 
with numerous application specific modifications to the model- 
ing primitives, and external forces derived from data con- 
straints [391, [181, [ I  11, [241, [%I, [W. 

The final recovered shape in these schemes can depend on 
an initial guess which is reasonably close to the desired shape. 
One solution to this problem in the one-dimensional case has 
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(a) CT image (b) DSA image ( c )  Shapes with holes 
Fig. I .  Test bed for our topology-independent shape modeling scheme. 

been presented by Amini et al [2]. They use a discrete form of 
dynamic programming to optimize the univariate variational 
problem. 

The framework of energy minimization (snakes) has been 
used successfully in the past for extracting salient image con- 
tours such as edges and lines by Kass et a1 [15]. To make the 
final result relatively insensitive to the initial conditions, Co- 
hen [ lo]  suggested the use of an inflation force which makes 
the snake behave like an edge seeking active model. Although 
the inflation force prevents the curve from getting trapped by 
isolated spurious edges, the active contour model cannot be 
made to extrude through any significant protrusions that a 
shape may possess (see Fig. l(b)) without resorting to cumber- 
some resampling techniques. In this paper, we present a tech- 
nique which overcomes this problem and accurately models bi- 
furcations and protrusions in complex shapes. Most existing 
shape modeling schemes require that the topology of the object 
be known before the shape recovery can commence. It is, 
however, not always possible to specify the topology of an 
object prior to its recovery. For example, an important concern 
in object tracking and motion detection applications is topo- 
logical change resulting from tracking the positions of object 
boundaries in an image sequence through time. During their 
evolution, these closed contours may change connectivity and 
split, thereby undergoing a topological transformation. One 
such example is the splitting of cell boundary in a sequence of 
images depicting cell division. A heuristic criterion for split- 
ting and merging of curves in  2D which is based on monitoring 
deformation energies of points on the elastic curve has been 
discussed in [26]. In the context of static problems, more re- 
cently, particle systems have been used to model surfaces of 
arbitrary topology [32 ] .  Here, particles can be added and de- 
leted dynamically to enlarge, and trim the surface respectively. 

The schemes described in this paper offer a new approach 
to some of the above problems. To begin, the convergence to 
the final result is relatively independent of the shape initializa- 
tion. The algorithm allows branches to sprout automatically as 
the front moves. The scheme described in this paper can be 
applied where no a priori assumption about the object’s topol- 
ogy is made. A single instance of our model, when presented 
with an image having more than one shape of interest (see 
Fig. I(c)), has the ability to split freely to represent each shape 
[19], [20]. We show that by using our approach, it is also pos- 

sible to extract the bounding contours of shapes with holes in a 
seamless fashion (see Fig. 13). 

Our method is inspired by ideas first introduced in Osher 
and Sethian [23], [29], which grew out of work in Sethian 
[28], to model propagating fronts with curvature-dependent 
speeds. Two such examples are flame propagation and crystal 
growth, in which the speed of the moving interface normal to 
itself depends on transport terms modified by the local curva- 
ture. The challenge in these problems is to devise numerical 
schemes for the equations of the propagating front which will 
accurately approximate these highly unstable physical phe- 
nomena. Osher and Sethian [23] achieve this by viewing the 
propagating surface as a specific level set of a higher- 
dimensional function. The equation of motion for this function 
is reminiscent of an initial value “Hamilton-Jacob?’ equation 
with a parabolic right-hand side and is closely related to a vis- 
cous hyperbolic conservation law. 

In our work, we adopt these level set techniques to the 
problem of shape recovery. To isolate a shape from its back- 
ground, we first consider a closed, nonintersecting, initial hy- 
persurface placed inside (or outside) it. This hypersurface is 
then made to flow along its gradient field with a speed F(K),  
where K is the curvature of the hypersurface. Unknown shapes 
are recovered by making the front adhere to the object 
boundaries. This is done by synthesizing a speed term from 
image data which acts as a halting criterion. Finally, we note 
that a separate study also applying a level set approach has 
been performed independently by Caselles et a1 [7]. 

The outline of this paper is as follows. In Section 11, we 
briefly explain the level set approach to front propagation 
problems and the accompanying numerical algorithms. In Sec- 
tions 111 and IV, we discuss the application of this technique to 
shape recovery problems, and consider various speed functions 
and approaches to the problem, such as the effect of global 
speed laws, narrow band formulations, reinitialization and 
stopping criteria. In Section V, we present some experimental 
results of applying our method to some synthetic and low con- 
trast medical images. We conclude in Section VI. 

11. FRONT PROPAGATION PROBLEM 

In this section we present the level set technique due to 
Osher and Sethian [23]. For details and an expository review, 
see Sethian [29]. 
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As a starting point and motivation for the level set ap- 
proach, consider a closed curve moving in the plane, that is, let 
$0) be a smooth, closed initial curve in Euclidean plane S2, 
and let $t) be the one-parameter family of curves generated by 
moving $0) along its normal vector field with speed F(K), a 
given scalar function of the curvature K .  Let x(s, f), be the 
position vector which parameterizes $t) by s, 0 5 s S S. 

One numerical approach to this problem is to take the above 
Lagrangian description of the problem, produce equations of 
motion for the position vector x(s, t), and then discretize the 
parameterization with a set of discrete marker particles lying 
on the moving front. These discrete markers are updated in 
time by approximating the spatial derivatives in the equations 
of motion, and advancing their positions. However, there are 
several problems with this approach, as discussed in Sethian 
[28]. First, small errors in the computed particle positions are 
tremendously amplified by the curvature term, and calculations 
are prone to instability unless an extremely small time step is 
employed. Second, in the absence of a smoothing curvature 
(viscous) term, singularities develop in the propagating front, 
and an entropy condition must be observed to extract the cor- 
rect weak solution. Third, topological changes are difficult to 
manage as the evolving interface breaks and merges. And 
fourth, significant bookkeeping problems occur in the exten- 
sion of this technique to three dimensions. 

As an alternative, the central idea in the level set approach 
of Osher and Sethian [23] is to represent the front $f) as the 
level set { W =  0) of a function W. Thus, given a moving closed 
hypersurface fit), that is, $t = 0) : [0, -) + SN, we wish to 
produce an Eulerian formulation for the motion of the hyper- 
surface propagating along its normal direction with speed F, 
where F can be a function of various arguments, including the 
curvature, normal direction, etc. The main idea is to embed 
this propagating interface as the zero level set of a higher di- 
mensional function W. Let y(x, t = 0), where x E 91N is defined 
by 

where d is the distance from x to $it = 0), and the plus (minus) 
sign is chosen if the point x is outside (inside) the initial hyper- 
surface $t=O). Thus, we have an initial function 
y(x ,  t = 0)  : 91N + % with the property that 

y(t=O)=(xI  W(X, t = O ) = O )  (2) 

As illustration, consider the example of an expanding circle. 
Suppose the initial front y at t = 0 is a circle in the xy-plane 
(Fig. 2(a)). We imagine that the circle is the level set { I// = 0 )  
of an initial surface z = H x ,  y, t = 0) in 913 (see Fig. 2(b)). We 
can then match the one-parameter family of moving curves r(t) 
with a one-parameter family of moving surfaces in such a way 
that the level set { t,u = 0) always yields the moving front (see 
Fig. 2(c) and Fig. 2(d)). 

Our goal is to now produce an equation for the evolving 
function w(x, t) which contains the embedded motion of $t) as 
the level set { v/ = 0). Here, we follow the derivation presented 

Fig. 2. Level set formulation of equations of motion - (a) and (b) show the 
curve y and the surface H x ,  y )  at t = 0, and (c) and (d) show the curve y and 
the corresponding surface w(x, y )  at time t .  

in [22]. Let x(t), f E [0, =) be the path of a point on the propa- 
gating front. That is, x (t=O) is a point on the initial front 
$t = 0), and x, = F(x ( t ) )  with the vector x, normal to the front 
at x(t). Since the evolving function w is always zero on the 
propagating hypersurface, we must have 

By the chain rule, 

where xi is the ith component of x .  Let 

Since 

(4) 

(5) 

we then have the evolution equation for W, namely 

with a given value of y(x ,  t = 0). We refer to this as a Hamil- 
ton-Jacobi “type” equation because, for certain forms of the 
speed function F, we obtain the standard Hamilton-Jacobi 
equation. 

There are four major advantages to this Eulerian Hamilton- 
Jacobi formulation. The first is that the evolving function 
I&, t)  always remains a function as long as F is smooth. 
However, the level surface ( W= 0}, and hence the propagating 
hypersurface $t) may change topology, break, merge, and 
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form sharp corners as the function yevolves, see [231. 
The second advantage of this Et~kian formulation concerns 

numerical approximation. Because yfx, t )  remains a function 
as it evolves, we may use a discrete grid in the domain of x 
and substitute finite difference approximations for the spatial 
and temporal derivatives. For example, using a uniform mesh 
of spacing h, with grid nodes i j ,  and employing the standard 
notation that I,Y~ is the approximation to the solution 

W(ih,jh, ndt), where At is the time step, we might write 

y"' - ys 
'I " + ( F ) ( V u y ; )  = 0. 

At (7) 

Here, we have used forward differences in time, and let V , y i  
be some appropriate finite difference operator for the spatial 
derivative. 

The correct technique for approximating the spatial deriva- 
tive in the above comes from respecting the appropriate en- 
tropy condition for propagating fronts, discussed in detail in 
[29]. As brief motivation for these schemes, consider a peri- 
odic cosine curve propagating in its normal direction with 
speed F = 1 - EK, where K is the curvature. This problem has 
been discussed extensively in [28]. For E > 0, the front stays 
smooth for all time. For E = 0, the parameterized analytic solu- 
tion corresponds to a front which passes through itself and de- 
velops a swallowtail solution. In order for the propagating 
front to correspond to the boundary of an expanding region, 
we invoke the entropy condition, namely that if the boundary 
is viewed as a propagating flame, then once a particle is burnt, 
it stays burnt. This entropy condition yields the front which 
corresponds to the limiting solution as E + 0 of the smooth 
case. 

In order to build a correct entropy-satisfying approximation 
to the difference operator, we exploit the technology of hyper- 
bolic conservation laws. Following [23], we use a modification 
of an Engquist-Osher scheme [12]. That is, given a speed 
function F(K), we update the front by the following scheme. 
First, separate F(K) into a constant advection term Fo and the 
remainder F I ( K ) ,  that is, 

The advection component Fo of the speed function is then ap- 
proximated using upwind schemes, while the remainder is ap- 
proximated using central differences. In one space dimension, 
we have 

Extension to higher dimensions are straightforward; we use the 
version given in [30]. 

The third advantage of the above formulation is that intrin- 
sic geometric properties of the front may be easily determined 

from the level function y. For example, at any point of the 
front, the normal vector, is.given by 

and the curvature is easily obtained from the divergence of the 
gradient of the unit normal vector to front, that is, 

Finally, the fourth advantage of the above level set approach 
is that there are no significant differences in following fronts in 
three space dimensions. By simply extending the array struc- 
tures and gradients operators, propagating surfaces are easily 
handled. 

Since its introduction in [23], the above level set approach 
has been used in a wide collection of problems involving 
moving interfaces. Some of these applications include the gen- 
eration of minimal surfaces [8], singularities and geodesics in 
moving curves and surfaces in [9], flame propagation [25], 
[40], and fluid interfaces [31], [22]. Extensions of the basic 
technique include fast methods in [ l ]  and extensions to triple 
points in [3]. The fundamental Eulerian perspective presented 
by this approach has since been adopted in many theoretical 
analyses of mean curvature flow, in particular, see [13]. In 
computer vision, a model for shape theory based on this work 
has been presented in [ 161. 

111. SHAPE RECOVERY WITH FRONT PROPAGATION 

In this section, we describe how the level set formulation for 
the front propagation problem discussed in the previous sec- 
tion can be used for shape recovery. First, note that the front 
represents the boundary of an evolving shape. Since the idea is 
to'extract objects, shapes from a given image, the front should 
be forced to stop in the vicinity of the desired objects' 
boundaries. This is analogous to the force criterion used to 
push the active contour model towards desired shapes [15]. 
We define the final shape to be the configuration when all the 
points on the front come to a stop, thereby bringing the compu- 
tation to an end. 

Our goal now is to define a speed function from the image 
data that can be applied on the propagating front as a halting 
criterion. As before, we split the speed function F into two 
components: F = FA + FG. The term FA, referred to as the ad- 
vection term, is independent of the moving front's geometry. 
The front uniformly expands or contracts with speed FA de- 
pending on its sign and is analogous to the inflation force de- 
fined in [lo]. The second term FG, is the part which depends 
on the geometry of the front, such as its local curvature. This 
(diffusion) term smoothes out the high curvature regions of the 
front and has the same regularizing effect on the front as the 
internal deformation energy term in thin-plate-membrane 
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splines [15] (see the Fig. 9). We rewrite Equation 6 by split- 
ting the influence of F as 

First consider the case when the front moves with a constant 
speed, that is, FG = 0 3 F = FA. Define a negative speed F, to 
be 

where M I  and M2 are the maximum and minimum values of the 
magnitude of image gradient IVG, * I(x,  j)I, (x, y) E R. The 
expression Go * I denotes the image convolved with a Gaussian 
smoothing filter whose characteristic width is 6. Alternately, 
we could use a smoothed zero-crossing image to synthesize the 
negative speed function. The zero-crossing image is produced 
by detecting zero-crossings in the function V’G, * I ,  which is 
the original image convolved with a Laplacian-of-Gaussian 
filter whose characteristic width is Q. The value of F, lies in 
the range [-FA, 01 as the value of image gradient varies be- 
tween M I  and MZ. From this argument it is clear that, if 
IVG,* I (x ,  y)I approaches the maximum M I  at the object 
boundaries, then the front gradually attains zero speed as it 
gets closer to the object boundaries and eventually comes to a 
stop. 

If FG # 0, then it is not possible to find an additive speed 
term from the image that will cause the net speed of the front 
to approach zero in the neighborhood of a desired shape. In- 
stead, we multiply the speed function F = FA + FG with a 
quantity k,. The term k,, which is defined as 

1 
k f ( x , y )  = 1 +(VGU * I (x , y ) l ’  

has values that are closer to zero in regions of high image 
gradient and values that are closer to unity in regions with 
relatively constant intensity. If one desires a speed function 
that falls to zero faster than the reciprocal function, the follow- 
ing definition can be employed: 

More sophisticated stopping criteria can be synthesized by 
using the orientation dependent “steerable” filters [ 141. 

Iv .  EXTENDING THE SPEED FUNCTION 

The image-based speed terms have meaning only on the 
boundary y(t), that is, on the level set { v = 0 ) .  This follows 
from the fact that they were designed to force the propagating 
level set ( ty = 0) to a complete stop in the neighborhood of an 
object boundary. However, the level set equation of motion is 
written for the function ydefined over the entire domain. Con- 
sequently, we require that the evolution equation has a consis- 

tent physical meaning for all the level sets, that is, at every 
point (x .  y )  E R. The speed function FI derives its meaning not 
from the geometry of y but from the configuration of the level 
set ( w  = 0)  in the image plane. Thus, our goal is to construct 
an image-based speed function that is globally defined. We 
call it an extension of F, off the level set { y = 0) because it 
extends the meaning of F, to other level sets [30]. Note that the 
level set ( 0)  lies in the image plane and therefore @, must 

equal F, on ( = 0) .  The same argument applies to the coeffi- 
cient k,. With the extensions so defined, the equation of motion 
for the case F = FA is given by 

and 

when F = FA + FG. 
If the level curves are moving with a constant speed, that is, FG 
= 0, then at any time t ,  a typical level set { y = C) , C E R,  is a 
distance C away from the level set ( y= 0) (see Fig. 3). Ob- 
serve that the above statement is a rephrased version of Huy-  
gen ’s principle which, from a geometrical standpoint, stipu- 
lates that the position of a front propagating with unit speed at 
a given time t should consist of only the set of points located a 
distance t away from the initial front. On the other hand, for FG 
# 0, the level sets will not remain a constant distance apart. 

With this in mind, there are several Gays to extend the 
speed function to the neighboring level sets. 

Fig. 3. Huygen’s principle construction. 

A.  Global Extension 

As a first attempt, we require that the external (image-based) 
speed function be such that level sets moving under this speed 
function cannot collide. 

We can construct one such extension to the image-based 
speed function by (see Fig. 4) letting the value of kI(i,) at a 

point P lying on a level set { y= C) be the value of 4(iI) at a 

point Q, such that point Q is closest to P and lies on the level 
set { v= 0). Thus, k,(L/) reduces to FI (k,) on { y= 0). 
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By updating the level set function on a grid, we are moving the 
level sets without constructing them explicitly. Therefore a 
straightforward algorithm consists of advancing from one time step 
to the next as follows: 

I X 

Fig. 4. Extension of image-based speed terms to other level sets. 

Algorithm 1 
1) At each grid point (iAx, jAy), where Ax and Ay are step sizes 

in either coordinate directions, the extension of image-based 
speed term is computed. This is done in accordance with the 
construction described in the previous section; that is, by 
searching for a point q which lies on the level set { ty= O ) ,  

and is closest to the point (iAx, jAy). The value of image- 
based speed term at the current point is simply its value at the 
point q. 

2) With the value of extended speed term 
($')i,j and Y:,~, calculate I,u~,;' using the upwind, finite 

difference schemes given in [30]. 
3) Construct an approximation for the level set ( ty = 0) from 

yts' . This is required to visualize the current position of the 
front in the image plane. A piecewise linear approximation 
for the front ~ t )  is constructed as follows. Given a cell C(i, 
j ) ,  if 

or 

then C(i, j )  @ $t) and is ignored, else, the entry and exit 
points where y =  0 are found by linear interpolation. This 
provides two nodes on r(t) and thus, one of the line segments 
which form the approximation to $t). The collection of all 
such line segments constitutes the approximation to the level 
set [ ty= 0}, which is used for future evaluation of the image- 
based speed term in the update equation. 

4) Replace n by n + 1 and return to step 1. 

B. Global Extension with Reinitialization 

The above construction can create a discontinuous velocity 

extension away from the zero level set, since the distance func- 
tion is not differentiable. One solution to this is to reinitialization 
the level set function every fixed number of time steps to keep 
the level sets evenly spaced around the front. A straightforward 
way to do this is to recompute the distance from each point of 
the grid to the zero level set. However, this is an O(N3) opera- 
tion, if we assume that there are N points in each coordinate di- 
rection, plus approximately O(N) points on the interfaces. 

An alternative to this reconstruction is provided by [31], 
based on an idea of Morel. The idea is simply to iterate on the 
level set function at a given time according to the following 
equation: 

In the limit as k + m, this convergences to the distance func- 
tion, with some error in relocating the original zero level set. For 
details, see [ 5 ] .  

The most expensive step in either of these algorithms is the 
computation of the extension for image-based speed term. This 
is because at each grid point, we must search for the closest 
point lying on the level set { ty = 0). Moreover, if FG = 0, then 
the stability requirement for thi explicit method for solving our 
level set equation is At = O(Ax). For the full Equation (12), the 
stability requirement is At = O(Axz). This could potentially force 
a very small time step for fine grids. These two effects, indi- 
vidually and compounded, make the computation exceedingly 
slow. In the case of reinitializing using the above iteration for- 
mula, additional labor is involved. 

C. Narrow-Band Extension with Reinitialization 

As a efficient alternative, we observe that the front can be 
moved by updating the level set function at a small set of points 
in the neighborhood of the zero set instead of updating it at all 
the points on the grid. In Fig. 5 the bold curve depicts the level 
set { ty= 0) and the shaded region around it is the narrow band. 
The narrow band is bounded on either side by two curves which 
are a distance 6 apart, that is, the two curves are the level sets ( ty 
= f &2). The value of 6 determines the number of grid points 
that fall within the narrow band. Since, during a given time step 
the value of wj is not updated at points lying outside the narrow 
band, the level sets [lM > 6'2) remain stationary. The zero set 
which lies inside moves until it collides with the boundary of the 
narrow band. Which boundary the front collides with depends on 
whether it is moving inward or outward; either way, it cannot 
move past the narrow band. A complete discussion of the narrow 
band techniques for interface propagation may be found in [ 13. 

As a consequence of our update strategy, the front can be 
moved through a maximum distance of 8 2 ,  either inward or 
outward, at which point we must rebuild an appropriate (a 
new) narrow band. We reinitialize the tyfunction by treating 
the current zero set configuration, that is, { ty = 01, as the ini- 
tial curve $0). Chopp [8] observed that the reinitialization step 
can be made cheaper by treating the interior and exterior mesh 
points as sign holders. Note that the reinitialization procedure 
must account for the case when ( ty = 0)  changes topology. 
This procedure will restore the meaning of ty function by cor- 
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recting the inaccuracies introduced as a result of our update al- 
gorithm. Once a new w function is defined on the grid, we can 
create a new narrow band around the zero set, and go through 
another set of, say I, iterations in time to move the front ahead 

IY 

5 

Fig. 5. A narrow band of width 6 around the level set ( y = 0). 

by a distance equal to &2. The value of I is set to the number 
of time steps required to move the front by a distance roughly 
equal to &2. This choice depends on some experimentation. 
Thus, a faster algorithm for shape recovery consists of the 
following steps: 

the narrow band, the issue of specifying boundary conditions 
for points lying on the edge of the band becomes pertinent. 
With our relatively simple speed motion, the free-end bound- 
ary condition is adequate, however, in more complex applica- 

tions such as crystal growth, and flame propagation, accurate 
specification of boundary conditions is necessary [ 13. 

We now show that this new faster approach provides a 
correct approximation to the propagating front problem. In 
Fig. 6, we show the result of applying narrow-band algorithm 
to a star shaped front propagating with speed F = -K, where 
K is the curvature as in Equation (1 1). The calculation was 
done on a unit box with 64 points in either direction, and a 
time step of At = 0.00003 was employed. The width of the 
narrow band has been set to 6 = 0.075, and the w function 
was recomputed once every (I =) 40 time steps. In Fig. 6(a), 

we show the initial curve along with the level sets (I v/l e 0.2). 
After 40 narrow-band updates (Fig. 6(b)), only the level sets 
{lv/l e 0.0375) move and the rest remain stationary. We note 
the inconsistency between the level sets lying on either side of 
the narrow band, making the reinitialization step necessary in 
order to restore the meaning of the ty function. Following the 
reinitialization step, another 40 update steps are applied 
(Fig. 6(c)), which “diffuses” the high curvature regions of the 
front even further. In subsequent figures, the results of repeat- 
edly applying the same strategy are shown. Finally, in 
Fig. 6(f), the peaks and troughs on the front get completely dif- 
fused, and it attains a smooth circular configuration after four 

Algorithm 2 
1) Set the iteration number m = 0 and go to step 2. 
2)At each grid point ( i ,  j )  lying inside the narrow band, 

3) With the above value of extended speed term 
(@), , and yTj, calculate y:’’ using the upwind, finite 

the extension k ,  Of image-based ’peed term. reinitialization steps and a total of 200 time steps. 

D. Straighqorward Narrow-Band Extension 
1.1 

difference scheme given in [30]. 
4)Construct a polygonal approximation for the level set 

[ VI= 0) from wr;’ . A contour tracing procedure is used 
to obtain a polygonal approximation. Given a cell ( i ,  J )  
which contains $t), this procedure traces the contour by 
scanning the neighboring cells in order to find the next 
cell which contains $t) .  Once such a cell is found, the 
process is repeated until the contour closes on itself. The 
set of nodes visited during this tracing process constitutes 
the polygonal approximation to st). In general, to collect 
all the closed contours, the above tracing procedure is 
started at a new, as yet unvisited, cell which contains the 
level set { w = 0). A polygonal approximation is required 
in step 2 for the evaluation of image-based speed term 
and more importantly, in step 6 for reinitializing the 
function. 

5) Increment m by one. If the value of m equals I, go to 
step 6, else, go to step 2. 

6)Compute the value of signed distance function w by 
treating the polygonal approximation of { w = 0) as the 
initial contour $0). As mentioned earlier, a more general 
method of reinitialization is required when { ly = 0) 
changes topology. Go to step 1. 

at points lying in In this approach, since we only update 

The narrow-band approach, in addition to being computationally 
efficient, allows us to return to the original construction of the 
speed function extension and replace it with a more mathe- 
matically appealing version. Since the narrow-band mecha- 
nism periodically “recalibrates” the front, we can in fact sim- 
ply move each level set with the speed determined by the im- 
age gradient as given in Equations (14) and (15). In other 
words, for points inside the narrow band, the external speed 
values are picked directly from their corresponding image lo- 
cations. Thus, we can ignore the previous extension velocity 
and provide a purely geometric one based on the local image 
gradient. Although this may cause many other level sets to 
temporarily stop, the narrow-band reinitialization resets them 
all around the zero level set. This will ensure that the zero 
level set is drawn close to the object boundary as well as retain 
other desirable properties of the level set approach, such as 
topological merge and split. Also, since the extension compu- 
tation does not involve any search, the time complexity of this 
approach is identical to that of a basic narrow-band front 
propagation algorithm. We currently use this computationally 
efficient algorithm and suggest it for others interested in this 
work. 

V. SHAPE RECOVERY RESULTS 

In this section we present several shape recovery results that 
were obtained by applying the narrow-band level set algorithm 
to image data. Given an image, our method requires the user to 
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(a) t = 0.0000 (b) t = 0.0012 

(d) t = 0.0036 ( c )  t = 0.0024 

(e) t = 0.0048 (f) t = 0.0060 
Fig. 6.  Narrow-band algorithm applied to a star-shaped front propagating with speed F = -K. Calculations were done with a 64 x 64 grid with a time step 
Af = 0.00003. Ywas recomputed after every 40 time iterations. 

provide an initial contour y(0). The initial contour can be 
placed anywhere in the image plane. However, it must be 
placed inside a desired shape or enclose all the constituent 
shapes. Our front seeks the object boundaries by either propa- 
gating inward or outward in the normal direction. This choice 
is made at the time of initialization. Note that after the specifi- 
cation of initial shape of y(O), our algorithm does not require 
any further user interaction. On the other hand, the user may 
interact with the model by varying the smoothness control pa- 

rameter E until a desired amount of smoothness is achieved in 
a given shape. 

The initial value of the function I,U that is, Hx,  0) is com- 
puted from $0). We first discretize the level set function won 
the image plane and denote wij as the value of I,U at a grid point 
(idx, jAy) ,  where Ax and Ay are step sizes in either coordinate 
directions. We define the distance from a point (i, j )  to the ini- 
tial curve to be the shortest distance from (i, j )  to y(0). The 
magnitude of w, is set to this value. We use the plus sign if 
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(a)  Original image (b)  Image-based speed term 

, with (T = 3.25, synthesized from the CT image. 
1 

Fig. 7. Image-based speed term kdx, y) = 
I+IVG, *I(X,Y)l 

is outside y(0) and minus sign if (i, j )  is inside. Once the value 
of yjj is computed at time t = 0 by following the above proce- 
dure, we use algorithms from the previous section to move the 
front. 

We now present our shape recovery results in 2D. First, we 
consider a 256 x 256 CT (computed tomography) image of an 
abdominal section shown in Fig. 7(a), with the goal of recover- 
ing the shape of the stomach in this particular slice. The func- 
tion yhas been discretized on a 128 x 128 mesh, that is, calcu- 
lations are performed at every second pixel. In Fig. 8(a), we 
show the closed contour that the user places inside the desired 
shape at time t = 0. The function y i s  then made to propagate 
in the normal direction with speed 

F = k,(-1.0 - 0.025K). 

We employed the narrow-band update algorithm to move the 
front with a time step size set to At = 0.0005, and the yfunc- 
tion was recomputed after every 50 time steps. Fig. 7(b) shows 
the image-based speed term which is synthesized according to 
Equation (14). Note that in Fig. 7(b), kdx, y) values lying in 
the interval [0..1] have been mapped into the interval [0..255]. 
In Fig. 8(b) through Fig. 8(e) we depict the configuration of 
the level set { y = 0) at four intermediate time instants. The fi- 
nal result is achieved after 575 time iterations and is shown in 
Fig. 8(f). We emphasize that our method does not require that 
the initial contour be placed close to the object boundary. In 
addition, observe how the front overshoots all the isolated 
spurious edges present inside the shape (see Fig. 7(b)) and set- 
tles in the neighborhood of edges which correspond to the true 
shape. This feature is a consequence of EK component in the 
speed which diffuses regions of high curvature on the front and 
forces it to attain a smooth shape. 
As mentioned in Section 111, smoothness of the front can be 
controlled by choosing an appropriate curvature component in 
the speed function F = 1 - EK. The objective of our next ex- 
periment is to demonstrate smoothness control in the context 

of shape recovery. In Fig. 9(a) through Fig. 9(c), we show the 
results of applying our narrow-band shape recovery algorithm 
to an image consisting of three synthetic shapes. Initialization 
was performed by drawing a curve enclosing each one of the 
three shapes. We compute the signed distance function ytx, y) 
from these curves. The level sets of are then made to propa- 
gate with speed F = k, (1 .O - EK). First, as shown in Fig. 9(a), 
we perform shape recovery with the value of E = 0.05. The 
process is repeated with different values of E; 0.25 in Fig. 9(b) 
and 0.75 in Fig. 9(c). Clearly, with every increment in the 
value of E, the level set ( ly= 0} attains a configuration that is 
relatively smoother. This is analogous to the smoothness pro- 
vided by the second order term in the internal energy of a thin 
flexible rod [ 151. 

In our third experiment we recover the complicated struc- 
ture of an arterial tree. The real image has been obtained by 
clipping a portion of a digital subtraction angiogram. This is 
an example of a shape with extended branches or significant 
protrusions. In this experiment we compare the performance of 
our scheme with the active contour model. First, an attempt is 
made to reconstruct the arterial structure using a snake model 
with inflation forces [lo]. In Fig. 10(a) through Fig. lO(i), we 
show a sequence of pictures depicting the snake configuration 
in the image. We present the final equilibrium state of the 
snake in Fig. lO(c), Fig. lO(f), and Fig. 1O(i) corresponding to 
three distinct initializations, each better than the preceding one 
- in terms of the closeness to the desired final shape. In all 
three cases the active contour model, even after 1000 time it- 
erations, barely recovers the main stem of the artery and com- 
pletely fails to account for the branches. Due to the existence 
of multiple local minima in the (nonconvex) energy functional 
which the numerical procedure explicitly minimizes, the final 
result depends on the initial guess. Observe how, in the third 
case, despite a good initialization (Fig. lO(g)), the snake snaps 
back into a relatively bumpless configuration in Fig. 10(h). 
This is due to the snake’s arc-length length (elasticity) and cur- 
vature (rigidity) minimizing property. Snakes prefer regular 
shapes because shapes with protrusions have very high defor 
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(a) t = 0.0000 (b) t = 0.0500 

( c )  t = 0.0875 (d) t = 0.1500 

( e )  t = 0.2250 (f)  t = 0.2875 
Fig. 8. Recovery of the stomach shape from a CT image of an abdominal section. Narrow-band computation was done on a 128 x 128 grid - the front was made 

to propagate with speed F = k,(-1.0 - 0.025 K )  and the time step At was set to 0.OOOS. ylwas recomputed once every SO time steps. 
,. 

mation energies. Note that it is important to maintain a bal- 
ance between the image-based force and the inflation force. 
Therefore, we cannot increase the latter arbitrarily. One pos- 
sible way to account for significant protrusions in a shape is 
via an adaptive resampling of the first order “balloon-snake” 
model. This however is a cumbersome solution to the problem. 
Now, we apply our level set algorithm to reconstruct the same 
shape. After the initialization in Fig. 1 l(a), the front is made to 

propagate in the normal direction. We employ the narrow-band 
algorithm with a band width of 6 = 0.045 to move the front. It 
can be seen that in subsequent frames the front evolves into the 
branches and finally in Fig. 1 l(h) it completely reconstructs 
the complex tree structure. Thus, a single instance of our shape 
model sprouts branches and recovers all the connected compo- 
nents of a given shape. Calculations were carried out on a 
128 x 128 grid and a time step At = 0.00025 was used. The 
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( a )  E = 0.05 (b) E 

Fig. 9. Smoothness control in shape recovery can be achieved by varying the CUI 

plots of w(x, t = 0) and w(x, t = 0.375) are shown in 
Fig. 1 l(b) and Fig. 1 l(i), respectively. 

In the next experiment, we depict a situation when the front 
undergoes a topological transformation to reconstruct the 
constituent shapes in an image. The image shown in Fig. 12(a) 
consists of three distinct shapes. Initial curve is placed in such 
a way that it envelopes all the objects. The front is then ad- 
vanced in the direction of the negative normal. Alternately, we 
could perform the initialization by placing a curve in each one 
of the individual shapes and propagating them in the normal 
direction. We choose the former option. The level set { ty= 0 )  
first wraps itself tightly around the objects (see Fig. 12(d) 
through Fig. 12(f)). Subsequently it changes connectivity and 
splits twice - in Fig. 12(g) and Fig. 12(h), thereby recovering 
three shapes. Fig. 12(i) shows the final result. Again it should 
be noted that a single instance of our shape model dynamically 
splits into three instances to represent each object. The func- 
tion v/ was discretized on a 64 x 64 grid and At was set to 
0.00025. 

Next, we show that our approach can also be used to re- 
cover shapes with holes. The shapes in the Fig. 13 are exam- 
ples of shapes with holes. The outer and inner boundaries of a 
given shape are recovered without requiring separate initiali- 
zations. In Fig. 13(a), we show the initial contour which en- 
closes both the shapes. This contour is then made to propagate 
inward with a constant speed. Fig. 13(b) through Fig. 13(d) are 
intermediate stages in the front evolution. In Fig. 13(e), it 
splits into two separate contours. The calculation comes to a 
halt when, in Fig. 13(f), the level set { v/ = 0) recovers the 
outer boundaries of two disconnected shapes. In the second 
stage of our computation, we treat the zero set configuration in 
Fig. 13(f) as an initial state, and propagate the front inward by 
momentarily relaxing the image-based speed term. This causes 
the zero set to move into the shapes as shown in Fig. 13(g), 
and recover the holes, thereby achieving a complete shape re- 
covery (see 13(h)). The calculations for this experiment were 
done on a 128 x 128 grid, and the time step At was set to 
0.00025. 

In our last experiment, we recover the shape of a flat super- 
quadric using the level set front propagation scheme in 3D. Vol- 

= 0.25 

mature component in the speed F = k ,  (1.0 - EK) , 

( c )  E = 0.75 

ume data for this experiment consists of 32 slices each with a 
particular cross section of the superquadric. The image-based 
speed term kI is computed from these images according to an 
equation in 3D which is analogous to Equation (14). A sphere, 
which is the level surface { w =  O }  of a function N x ,  y, z) = 2 + 
yz+ zz-O.Ol, forms our initialization (see Fig. 14(a)). This initial 
surface is moved with speed F = i, by updating the value of w 
on a discrete 3D grid. The initial surface expands smoothly in all 
directions until a portion of it collides with the superquadric 
boundary. At points with high gradient, the k, values are close 
to zero and cause the zero set to locally come to stop near the 
boundary of the superquadric shape. This situation is depicted in 
Fig. 14(b) through Fig. 14(e), wherein the initial spherical shape 
transforms into a flat superquadric. Finally, in Fig. 14(f), all the 
points on our shape model are stopped, thereby recovering the 
entire shape of the flat superquadric. Calculations were done on 
a 32 x 32 x 32 grid with a time step Af = 0,0025. 

e 

VI. CONCLUDING REMARKS 
In this paper we have presented a new shape modeling 

scheme. Our approach retains some of the desirable features of 
existing methods for shape modeling and overcomes some of 
their deficiencies. We adopt the level set techniques first intro- 
duced in Osher and Sethian [23] to the problem of shape recov- 
ery. With this approach, complex shapes can be recovered from 
images. The final result in our method is relatively independent 
of the initial guess. This is a very desirable feature to have, es- 
pecially in applications such as automatic shape recovery from 
image data. Moreover, our scheme makes no a priori assump- 
tion about the object’s topology. Other salient features of our 
shape modeling scheme include its ability to split and merge 
freely without any additional bookkeeping during the evolution- 
ary process, and its easy extensibility to higher dimensions. We 
believe that this shape modeling algorithm will have numerous 
applications in the areas of computer vision and computer 
graphics. For an extension of this work to a level set based shape 
description and recognition scheme, the reader is referred to 
Malladi and Sethian [21]. 
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(a) Initialization 1 (b) 500 iterations (c) 1000 iterations 

(d) Initialization 2 (e) 500 i terations ( f )  1000 i terations 

(g) Initialization 3 (h) 500 iterations (i) 1000 iterations 

Fig. 10. An unsuccessful attempt to reconstruct a complex shape with significant protrusions using an active contour model. Three different results are shown in 
parts (c), (0, and (i) corresponding to three distinct initializations in parts (a), (d), and (g), respectively. The following parameter values were employed in this 
experiment: y (damping) = 1.0, At = 0.50, W I  (elasticity) = 0.035, w2 (rigidity) = 0.015, coefficient of inflation force = 0.50, and coefficient of image 
force = 2.50. 
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(a) t = 0.0000 ( c )  t = 0.0625 

(d) t = 0.1250 ( e )  t = 0.1875 (f) t = 0.2500 

(g) t = 0.3050 (h) t = 0.3750 (i) $(x, 0.375) 

Fig. 11 .  Reconstruction of a shape with significant protrusions: an arterial tree structure. Computation was done on a 128 x 128 grid with a time step 
At = 0.00025. The narrow-band algorithm was used with a band width of S= 0.045. 
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(a) t = 0.0000 

(d) t = 0.1250 

( 9 )  t = 0.1875 

(b) t = 0.0250 

( e )  t = 0.1625 

( c )  t = 0.0875 

(f) 2 = 0.1750 

(h) t = 0.2000 (i) t = 0.2500 

Fig. 12. Topological split: A single instance of the shape model splits into three instances to reconstruct the individual shapes. Computation was done on a 
64 x 64 mesh with a time step A t = 0.00025. 
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(a) t = 0.0000 (b) t = 0.0500 ( c )  t = 0.1000 

(d) t = 0.1750 ( e )  t = 0.2137 (f) t = 0.2400 

(g) t = 0.2500 (h) t = 0.2700 (i) t = 0.2950 

Fig. 13. Shapes with holes: A two-stage scheme is used to arrive at a complete shape description of both simple shapes and shapes with holes. Computation was 
performed on 128 x 128 grid and the time step A t was set to 0.00025. 
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(a) t = 0.0000 (b) t = 0.0500 

( c )  t = 0.1000 (d) t = 0.1750 

(e) 1 = 0.2250 (f) t = 0.3000 

Fig. 14. Shape recovery in 3D: a flat superquadric shape. Calculations were done on a 32 x 32 x 32 grid with a time step At = 0.0025. 
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