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Deterministic Edge-Preserving
Regularization in Computed Imaging

Pierre Charbonnier, Laure Blan&faud, Gilles Aubert, and Michel Barlausiember, IEEE

Abstract—Many image processing problems arell posedand  [6], [20], [26]. In our first contribution of this paper, we
must be regularized. Usually, a roughness penalty is imposed ontry to unify these different approaches by proposing three
the solution. The difficulty is to avoid the smoothing of edges, conditions for edge preservatiorThese define a class of

which are very important attributes of the image. In this paper, . . . - . L
we first give conditions for the design of such aredge-preserving potential functions which yield edge-preserving regularization.

regularization Under these conditions, we show that it is possible ~ An important characteristic of edge-preserving regulariza-
to introduce an auxiliary variable whose role is twofold. First, it tion is that the computations involve the minimization of

marks the discontinuities and ensures their preservation from possibly nonconvex energy functionals. In many applications
smoothing. Second, it makes the criterionhalf-quadratic. The computation time is critical, so a deterministic strategy is

optimization is then easier. We propose a deterministic strategy, ferable. Al has to f th bl £ minimi
based on alternate minimizations on the image and the auxiliary preferable. AlSO, oneé has to face the problem of minimiz-

variable. This leads to the definition of an original reconstruction INg nonquadratic energy functionals or, equivalently, solving
algorithm, called ARTUR. Some theoretical properties of ARTUR nonlinear simultaneous equations. In our second contribution

are discussed. Experimental results illustrate the behavior of the of this paper, we show that, when the conditions for edge
algorithm. These results are shown in the field of tomography, preseryation are satisfied, it is possible to transform the non-
but this method can be applied in a large number of applications - . . .
in image processing. quaqratlc energy into aaugmentegl energlyy mtroducmg an
auxiliary variable,b, whose role is twofold. Firsth marks
the location of discontinuities, and thus takes part in their
preservation. Second, makes the augmented energy func-
N COMPUTED imaging, reconstructing an imagefrom tional becomehalf-quadratic i.e., quadratic with respect to
data p is often an ill-posed problem in the sense ofhe image variable when is fixed. We also show that the
Hadamard. Knowledge of the direct model is not alwaygugmented functional is convex with respectitavhen the
sufficient to determine a satisfying solution, and it is necessamage variable is fixed, and we gi\/e an exact expression for
to regularizethe solution by imposing aa priori constraint. the minimum@é.
Mathematically, this constraint is often expressed through aysing the auxiliary variable permits us tinearize the
regularization function—which is also calledpatential func- problem and to derive aleterministic algorithm based on
tion in the Markov random field approach [15]. A simple an@jternate minimizations on the image variable and the auxiliary
well-known regularization supposes that images are globaifgriable. This relaxation algorithm, called ARTUR, is based
smooth, and enforces a roughness penalty on the solutionpA the general principle of minimizing a sequence of energy
quadratic potential function yields oversmooth solutions. functionals. Well-known deterministic algorithms, such as
more realistic image model assumes that images are madegy@fduated nonconvexity (GNC) [3] or mean-field annealing
smooth regions, separated by sharp edges [15]. This is calfffFA) [14], use the same principle. However, in contrast
edge-preserving regularizatioand requires a nonquadraticto these methods, ARTUR can be applied to many energies
potential function. having an edge-preserving potential function and to many
Edge-preserving regularization has provided an abundant fifpes of inverse problems (tomography, restoration, motion
erature in the last decade, but curiously, to our knowledge theigtimation, stereovision, etc.). In our third contribution of this
is no unified theory about the design of potential funCtiorﬁ‘aper, we show experimenta| results in tomography, with both
for this purpose. For example, the question: “what propertiggnthetic and real data, to illustrate the way the algorithm
must a potential function satisfy to ensure the preservation\gérks and the behavior of different potential functions.
edges?” has different and sometimes contradictory answersthis paper is organized as follows. The conditions for
For Geman and Reynolds, one of the two important attributegge-preservation are defined and discussed in Section II. In
of an edge-preserving potential function is its finite asymptotigection 111, we discuss edge-preserving regularization and the
behavior [17], while other authors advocate convex functiopginciple of half-quadratic regularization. Sections IV and V
Manuscript received March 4, 1994; revised April 16, 1996. are, respectively, devoted to the theoretical and experimental
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indexed by: (row number) and; (column number), or as
N? x 1 lexicographically ordered (column) vectors indexed by O (\.
k. The index transformation between the two representations

isk=1x N+ 7.
L ! 2 0/) ® : Pixel (i)

A. Regularized Image Reconstruction Fig. 1. Cliques of the model at sité, ().
In many computed imaging applications, the observed data

p can be related to the original imagg, through a linear s sought. For example, the use of second-order derivatives
model of the form promotes the formation of piecewise planar areas in the
_ solution [17]. In our case, though, the theory we develop is also
p=Rf+n 1) . , o _
valid for higher-order derivatives, we only use a simple model
wheren is assumed to be white Gaussian noise, &his a in which the image is supposed to be piecewise constant.
linear operator. In image restoration, for examgieis block- Therefore, we consider first-order differences between pixels
Toeplitz and represents the point spread function (PSF) of thelonging to the two-neighbor cliques of a second-order model
imaging system [23]. [15] (see Fig. 1). In order to simplify our presentation, we
In computed tomography (CT); models the Radon trans-“forget” about diagonal differences for the moment. Their case
form [23]. The reader might object that a white Gaussian noigéll be discussed in Section IV-D. This leads to the following
model is not realistic in CT, because it is well known thagxpression for the regularization term
the photon counts have a Poisson statistic. Though all that
is developed in this paper can be adapted to the case of the Jo(f) = Z‘P[(D’”f)k] + Z‘P[(Dyf)k] (5)
Poisson model, we use the Gaussian approximation becau?]e k k
it yields additive algorithms while the Poisson model leads ghere

multiplicative—and hence slower—algorithms. However, for (Def)iy = (fij+1 = fij)/]6
a sufficient number of counts, the Poisson distribution camd
be successfully approximated by a Gaussian one (as in [13] (Dyf)i; = (fiyry — Fii)/6. (6)

for example). Theoretically, our noise model should include

a covariance matrix. We considesite noise for the sake of A% in (3) andé in (6) are the parameters of the model. The
simplicity and because we have experimentally found that okegularization coefficient\?, balances the effects of the data
model yields good results even for low photon dosages [2%rm and thea priori term. The second parametef, is a
Anyway, considering a general covariance matrix would maleealing parameter which tunes the value of the gradient above
no theoretical or practical difficulty. which a discontinuity is detected.

For some other applications (as stereovision and motion esin the Bayesian frameworky in (5) is known as the
timation [4], [22]) the model is nonlinear, but approximationgotential function This function assigns a cost to every value
can be made to linearize it, and all that will be developedf the image gradient, and thus should have some obvious
hereafter can be applied in these cases too. properties. First, it seems natural to give positive values to

The problem of regularized image reconstruction has betire potential. We will therefore require that(t) > 0V¢,
widely investigated in the past (see for example [12] fawith ©(0) = 0 for practical reasons. Second, in designing a
an overview), with two main approaches. On one hangptential function, it is natural to assume thais an increasing
some authors [27], [29], [32] consider the problem from #unction for ¢ > 0. Also, it is necessary to give the same
deterministic point of view. On the other hand, other authoisiportance to gradients of equal values but opposite signs.
[2], [6], [7], [15], [24], [28] use a stochastic approach. WeThus, ¢ is assumed to be an even function. We can then limit
consider a framework either called penalized least-squamy study to positive values of the gradient.
or maximum a posteriori (MAP) estimation, in which the In order to avoid introducing instability into the reconstruc-

estimated imagef is given by tion process, differentiability is desirable fgr We will focus
. ] on continuously differentiable potential functions. Note that
f=arg H}m(‘](f)) (2)  this excludes functions lik| [2], which are not differentiable

) . . at 0, or like the truncated quadratic [3].
where.J is the sum of a term which measures the faithfulness These general assumptions are summarized in 12(a)—(d). In

of the estimate to the data and a regularization term Section 1I-B, we discuss desirable properties of the potential
J(f) = JL(F) + N2 Da(f). 3) functions for edge preservation.
In our case, the data term takes the following form: B. Edge-Preserving Regularization
Ji(f) = |lp - Rf|I% () A priori information imposed on the solution is expressed

via the potential function. In this section, we try to answer
The regularization term is defined as a sum of potentials whitie following question: “What properties should the potential
are, in general, functions of a derivative of the image. THanction satisfy to define an edge-preserving regularization?”
order of the derivative depends on the kind of image th&uriously, this question has several different answers in the
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] Z ] J Fig. 3. Coefficients of the weighted Laplacian around pixélj) in a
S AN A5+ AE Y homogeneous area (a) and in the case of a discontinuity (b) (first-order
neighborhood).
Fig. 2. Coefficients of the weighted Laplacian around pixe} ) (first-order
neighborhood).

Now, let us suppose that there is a discontinuity in the

) neighborhood of pixe{z, 5), for example between pixél, j —
IlteraFure. For. exam_plg, Geman a.nd Reyn.olds [17] advocaltje and pixel (¢, 7). Then, all finite differences around pixel
functions having a finite asymptotic behavior. Other authorﬁs.

as Green [20], Bouman and Sauer [6], Schultz and Stevenshc}’ﬂlc),[i{:‘)rr:a issm:lzléﬁxt%i?ﬁw_l Ji.j- Suppose that the weighting
[31], and Lange [26] prefer using convex potentials in order ,
to ensure uniqueness of the solution. Lastly, other authors, ‘P_(t) — 0. (11)
as Hebert and Leahy [21] propose a compromise between 2t todeo
both approaches. Having a view to unify these approachd$en, the corresponding weight of the Laplacian vanishes (see
we propose a local heuristic study of the first-order necessaig. 3(b)) and there is no smoothing in this direction.
conditions associated with the minimization of the energy Lastly, we suppose thap’(t)/2¢ is continuous, because
in (3). Suppose tha has a minimum inf, then we have we do not want a small variation of the gradient to produce
necessarily a large change in the value of the weight. Otherwise, this
1, might produce instabilities in the presence of noise. Also, it
§J (f)=0 (7)  seems natural that there should be a one-to-one correspondence
L. o ) . . between values of the gradient and values of the weight.
where J" is the derivative of/. A simple calculation (details Thgrefore the weighting function must be strictly monotonous
are given in Appendix A) shows that, (7) can be written as 5, [0, +00).
R'Rf — R'p — N2 Aponaf =0 (8) All the conditions that we impose op are summarized in
12).
where A,nq IS @ matrix that represents a weighted discre(@e%eral:Basic assumptions
approximation of the Laplacian operator. The matrix-vector a) o(t) > 0 Vi with ¢(0) = 0.
multiplication A ona f iS €quivalent to a nonstationary filtering b) o(t) — o(—1).
of f by a 3x 3 weighted Laplacian filter, which is shown in c) o continuously differentiable.
Fig. 2. The weights of the Laplacian are given by the function d) J(t) > 0V > 0.
¢'(t)/2¢, which we call theweighting functionNote that since o .
@ is even, the weighting function is even. General:Edge pre§ervat|on _ _
Now, let us consider the case of a homogeneous area of) ¥'(t)/2¢ continuous and strictly decreasing iy +oc).

the image: All gradients around pixél, j) are close to zero. f) lim #(E) — 0.
Suppose that the weighting function is such that t=teo ,%E)
<p’(t) o 9 Q) tl_i)%l+ <p2t =M, 0< M < +o0.
2% =0 < He ©) Algorithm: Convergence proof
then, all weights around pixédli, j) are approximately equal h) ¢"”’(0) = 0.
to M and the weighted Laplacian behaves as the usual Laplai) ¢ (0) exists (12)

cian (see Fig. 3(a)). The necessary conditions then localfyie basic assumptions a) to d) define the limits of our
reduce to the usual normal equations associated with Tikhorgiudy. Conditions e), f), and g) are the threenditions for
regularization edge-preservatianAdditional requirements orp, h) and i),
R'Rf — R'p— XXMAf =0 (10) are tgchnical hypothegis for Fhe convergence proofs of the
algorithm we propose in Section IV.
whereAf is the usual discrete Laplacian 6f In other words,  Note that in the above study, we have considered that
there is diffusion (i.e., smoothing) all around pixg| ;). small gradients must be smoothed, while large gradients must
We define the value of the weighting function at 0 to bbe preserved. Hence, we have implicitly made the following
equal toM, with M finite. Most of the functions that canassumption: A large value of the gradient corresponds to an
be found in the literature satisfy this condition. This is noédge while a small value of the gradient is an effect of noise.
the case wherp(t) = |t|*(1 < «a < 2) [6]. Therefore, using This assumption is not necessarily satisfied in practice: small
these functions would create problems at 0. First, writing (10alues of the gradient may as well correspond to an actual low
would make no sense. Second, an infinite valuébfvould amplitude discontinuity in the image. On the other hand, large
involve numerical problems using the algorithm we propoggadients may be due to noise. Undoubtedly, this is a limitation
in Section V. of the model: Especially in presence of strong noise, it may not
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TABLE | When ¢ is edge-preserving in the sense of conditions
FOUR EDGE-PRESERVING POTENTIAL FUNCTIONS (12(e)_(g)), it is always possible [11] to find a functioﬁ
AND THEIR ASSOCIATED WEIGHTING FUNCTIONS such that
Potential E f o(t E f @’(1)/2¢t | Ref. . "
rotenti xpression of ¢(¢) xpression of @(t)/ o(t) = I,Iul)f{90 (t,w)} (13)
Oom P 1 [16] and such thaty* is quadratic int whenw is fixed.
1+ (1+,2)2 It can then be shown that the MAP criterion can be written
as the minimum of aual energy
Pur log(l + t2) 1 [21]
<7 J(f)= 1nf J*(f ba, by) (14)
Puis 2W1+17 -2 ! [TO1 " where J* is given by
147 [11]
* _ 2 2 *
Der 210g[c0sh(t)] . 1 t=0 {20] J (f7 bl‘v by) - ”p - Rf” + A Z ¥ [(Dl‘f)kv (bl‘)k]
tanh(f)/r t£0 b

+ A2 (Dy i, (by)il- (15)
%

always be possible to discriminate real features of the imaf@te that the dual energy is quadraticfinvhenb is fixed. This

from the effects of noise. is why this kind of regularization is called “half-quadratic”
We would like to stress that conditions (12) are satisfia@gularization. Consequently, when the auxiliary variable is

by many of the edge-preserving potential functions proposfiged, the first-order necessary conditions are lineaf.in

in the literature. In Table | we give four examples of well-

known potential functions and their corresponding weighting, Transforming the MAP Energy

functions. The potential functions have been normalized in

order to haveM = 1 for all the weighting functions in .

Table I. Note that even if the potential functions have different

behaviors at the infinity (some have an horizontal asymptote

as v, others do not), all the weighting functions in Table

| satisfy (12). Contrarily to what was suggested in [17],

The following theorem, proved in Appendix B, gives an
mplementation of the transformation in (13).

Theorem 1:Let ¢ be a potential function that satisfies
conditions (12(a)) to (12(9)).

it 1) Then there exists a strictly convex and decreasing func-

appears that the existence of an horizontal asymptote is not 10N ¥: (0, M] — [0,5), where

necessary to ensure edge-preservation. Moreover, it shows . A

that edge-preservation can be achieved even by smmeex p= tl}{gloo <<P(t) -1 7)

potentials, asprs or ¢ggr. This is an important result since

using convex potentials generally make the minimization such that

problem well posed [6]. Furthermore, these two functions are o(t) = inf (wt? +p(w))

continuously differentiable and satisfy (12 g), so they do not 0<w<M

involve numerical difficulties as when using(t) = [¢|* (1 < 2) For every fixedt > 0, the valuew, for which the
a < 2). Note that we propose a new potential functign;s. minimum is reached, i.e., such that

It has the same behavior ag;g, but its associated weighting

function is simpler than that ap¢ . inf (wt? +P(w)) = (wit? + ¢(wy))

O<w<M

lIl. HALF-QUADRATIC REGULARIZATION is unique and given by

Even in the convex case, minimizing the MAP criterion w, = w
is a difficult task because the necessary conditions (8) are 2t
nonlinear. In order to simplify the minimization task, wewe give in Table Il the analytical expression o¢ffor three
propose to usdalf-quadratic regularization edge-preserving potentials.
Applying Theorem 1 to the MAP energy, with= (D, f)

A. Principle of Half-Quadratic Regularization andw = (bg), (respectively, witht = (D,f), andw =

The expression “half-quadratic regularization” was defindd@y)x), we obtain the followingaugmentedenergy:
by Geman and Yang in 1993 [18]. To quote these authors, J*(f.ba,by)
“The basic idea is to introduce a new objective function T

2 2
which, although defined over an extended domain, has the = lp— RAIZ+A Z{(bw)k(Dw r Tl k]}
same minimum inf asJ and can be manipulated with linear
algebraic methods.” The principle is to introduce a couple of + A2 Z{ k(Dy )3 4 P[(b )k} (16)
N x N auxiliary variablesp = (b,, b,),! in order to make the
manipulation of the MAP criterion easier. It is easy to verify that when the auxiliary variable is fixed, the

LFor clarity, we will use hereaftdr instead of(b.., b, ) whenever possible. augmented energy becomes quadratig,ias stated in Section
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llI-A. But the augmented energy has another interesting TABLE I
property: Sincey is convex inb (from Theorem 1).J* is THREE EDGE-PRCESERV'NG POTEN;'AL FUNCTIONS
convex inb when f is fixed. Moreover, also from Theorem 1, AND THE L-ORRESPONDINGFUNCTIONS
the minimum value ob is unique and is given by Potential | Expression of ¢(r) Expression of y(w)
function
¢' (Do f )k ¢ (Dy.f)r
bop = ——2=  and (b)) = ———2 Vi (17) 2 _
1+t

These properties are the basis for the reconstruction algorithm . o (l+t2) w—log(w)—1
proposed in Section IV. Before describing the algorithm, le &
us make some additional remarks about Theorem 1.

First, since for any fixedt the minimizer of ¢(w) is Pus 2401+¢2 -2 W+L_2
wy = ¢'(t)/2t, the central role of the weighting function w

is confirmed. According to the properties of this function,
(b2 ) is close to zero for large gradients, andtb for small
gradients (same remark f@b,);). In other words, the value
of b depends on the presence of an edgptays the role of a

discontinuity marker, similar to the continuous “line process” . ., ¢ [(Dmf")k] il ¢’ [(Dyf")k]
defined by Geman and Reynolds in [17]. (B), = 2(D, /") and (by™t), 2(Dy ™) Vk.

Second, it might be noticed that Theorem 1 is quite similar (19)
to the first theorem in [17]. However, there are two importarithe minimization overf is also very simple sincé*( f, ")
differences. First, the Geman and Reynolds theorem ondyquadratic. The new image estimaf&;t!, is solution of the
allows the introduction of the line variable when the potentizlormal equations
function has a finite asymptotic behavior. Theorem 1 is also " "
valid for certain potential functions that do not have an (RtR_)‘QAAH)f T =Rp (20)
asymptote, and even for certain convex functions. Second, thieere Affrl = —D!BMD, — D!B'D, Brtl =
expression for the minimurh is not explicitly given in [17]. diag[(b7*1),] and B{]*l = diag[(bg“)k]. These equations
Therefore, we think that Theorem 1 is a significant contributioftn be solved by many iterative algorithms (cf. [30]), starting
to the theory of half-quadratic regularization. each step from the previous step’s image estimate.

In fact, there is a third more subtle difference between theseThis algorithm, called ARTUR [8]-[10], solves the origi-
theorems. We have supposed that the weighting function mgal nonquadratic minimization problem using a sequence of
be strictly decreasing (condition (12(e))). This implies thajuadratic minimizations, which are easy to solve. In contrast
¢(V/t) is supposed to bstrictly concave, while in [17] it needs to many reconstruction algorithms, this strategy can be applied
only be concave (even though the proof is given for the strictigr any potential function that satisfies the conditions for edge
concave case). As a consequence, Theorem 1 does not appdservation (12).
to some potential functions like the truncated quadratic or theLastly, we would like to point out the importance éf
Huber function [31]. This restriction, however, allows a oneand, in the preservation of edges. Since their value at each
to-one correspondence between the gradient and the auxilipixel site depends on the presence of an edge (through the
variable, which is important for the convergence proof of thgeighting function),b, andb, play the role of discontinuity
following reconstruction algorithm. maps. At every step of the algorithm, new discontinuity maps

are computed (from the last image estimate) and then taken
into account for the computation of the new estimate. It

Since at step + 1, f™ is fixed, b"*! is simply computed
using the following expressions:

IV. DETERMINISTIC RECONSTRUCTIONALGORITHM can be observed (see Section V-A) that the discontinuity
maps are very rough at first and become sharper as the
A. Description of the Algorithm algorithm is proceeding. Therefore, we can say that ARTUR

. : . is a “progressive discontinuity intr ion” (PDI) algorithm.
As we have seen in the previous section, minimizing the & Progressive discontinuity introduction” (PDI) algorit

MAP energyJ(f) in fis e_quwalent to m|n|m|2|ng] (f,b) _B. Theoretical Study
in (f,b). In order to exploit the properties of half-quadratic ] o . S
regularization, we propose to use a strategy based on alternatEhe goal of this section is to give a justification to our

minimizations overf andb as follows: algorithmic strategy. We have seen how the MAP energy can
be transformed into a half-quadratic energy by setting
=0 min J(f) = minmin J*(f, b). (21)
f Foob
Repeat

) Since it is possible to reverse the order of the minimizations
with respect tof and b, we have

m}nJ(f) = m}nmbinj*(f, b) = mbinlr}in J(f, ). (22)

bt = arg miny [J*(f7,b)] (18
[t = argming [J7(f, b7 )]
Until convergence.
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Now, let us define
() = m}n JE(f,b). (23)

Hence, we have
m}n J(f) = mbin T(b). (24)

Since J*(f,b) is quadratic with respect t¢ whenb is fixed,
(23) has a unique solution, which we will denofg

Let us also denote the minimizer @Y%) by b. It is possible
to show (see Appendix C) the following results.

(b)
Theorem 2: Fig. 4. (a) Synthetic phantom Nice and (b) unregularized solution after 50

iterations.

if b=arg mbin T(b) then f; = arg m}n J(f).

This result means that all minimizers @f(b) yield image D. Remarks

estlmatez thar;[ m|n|r|1q1|zehthe MAP energy. he following TS @ we wrote in Section II-A, we use in practice
It can be shown that these minimizers satisfy the fo owing two-pixel cliqgues of a second-order model. In particular,

fixed-point equations our complete model involves an additional term of the form

—wl[(Dxfi’)’“] and (lAJy)k:i(p/[(Dyfi’)k] V. AJalf), with

2D=hi) 2Pl o COEDSECIRED SN

If the MAP energy is convex, then its minimum is unique
and it is possible to show (see Section IV-C) that ARTURVhich is a function ofdiagonal gradients

converges to this solution.
(Darf)ij = (fir a1 — fij)/6V2
C. Convergence of the Algorithm and (27)

Suppose that the potential function satisfies conditions (12). (Dazf)ing = (Figrjm1 = fij)/6V2.

Then it is possible to demonstrate (see proof in Appendix D) . . .
the following convergence results. All the above theory remains valid for diagonal terms. The

Theorem 3: Let ¢ be a potential function that satisfies al nly modification to the algorithm is that the values of diagonal
conditions (1'2) Tﬁen ine variables are weighted bi/2

« the sequencd,, = J*(f",b" 1) = J(f™) is convergent; 1¢'[(Darf™),]

n—+1
* we have (bar )k T 9 (2Da1 f7)
k
n+1 7 n+1 n
(b2t — o) =70 and (bt =) o and —— (28)
and @
(Dyf™ = Dyf*=t) — 0 Second, we would like to make a remark about positivity.
Y Y n—too In certain applications, as tomography, the solution is known

«if ¢ is convex on [0,4+00), then the sequencesto be positive. This is an importarat priori information. In
Rf™ D, f* D,f" and,b” are convergent. Moreover, if fact, a nonnegativity condition can be imposed on the solution

R is full rank, then the sequencgg, is convergent. bg adding to the MAP energy a penalty term of the form
When ¢ is strictly convex, the MAP energy can be strictly?” /+(/), with
convex too. In fact, to ensure the strict convexity of the MAP
¢ J(F) =D or(fr), o4(t) = wyt?

energy, it is necessary that the null-spacesioD,, and D,
do not intersect each other, which is generally the case. Jfq4
this case, the minimum of the MAP energy is unique. The 1 ift<0
minimum inb of 7°(b) is thus unique too, and there exists only wy = {0 if+>0 }
one point where the derivative @f(b) vanishes. WherR is -
full rank, the sequencg™ converges. The computed estimatdhis term involves a variable which marks negative values and
is then the unique solution of (2). which can be used in the same way as the discontinuity maps:
When is nonconvex, the first two results remain valid, irAt each step, a new negativity map is first computed, and then
particular the convergence of the sequerdge However, the taken into account in the computation of the new estimate.
algorithm probably computes a local minimum of the MAP herefore, the introduction of a nonnegativity penalty only
energy (see experimental results), which is not theoreticajtyovokes slight modifications to the algorithm and gives good
characterized yet. results.

(29)
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Fig. 5. Values of the auxillliary variables (from left to righit;, b.., bs;, andbgz) and the image estimate after 1, 2, 3, 10, and 18 steps of the algorithm.

V. EXPERIMENTAL RESULTS of reconstruction with real data (250000 counts) is given in

In this section, we illustrate the behavior of ARTUR in the€ction V-B.

case of 2-D single photon emission tomography (SPECT) with19- 4(b) shows an unregularized solution obtained by
both synthetic and real data. iteratively minimizing J1(f), as defined in (4), using a
Gauss—Seidel algorithm. The algorithm has been stopped after

50 iterations. The SNR between the reconstructed image and
the original one is 8.18 dB (variances ratio). This illustrates

) ] ] the noise amplification effect due to the ill posedness of the
We first present an example of reconstruction with Syntheﬁ!ﬁoblem.

data. The synthetic phantom named Nice is presented inkjg 5 shows a regularized reconstruction with ARTUR. For
Fig. 4(a). This phantorrj is @ 64 64-pixel image derived s reconstruction, we useca;, which is nonconvex. The
from Shepp and Logan's head phantom, and models a Cro§giameters of the model are experimentally fixeddo= 525

section of the brain with ellipses. Synthetic SPECT data ateqs — 7. we let ARTUR proceed until the relative norm
computed by projecting the 2-D phantom along 64 angles,

on a 64-element detector. Projections in a certain direction £ = 2011

are computed by summing the photons emitted by the object ) )
along this direction. Projections are then artificialy corruptddcomes smaller than=-6 (n being the step number). In this

by Poisson noise. The resulting total number of counts (i.£25€: the normal equations at each step are solved using a
number of detected photons) in the projection vector is abdgguss—Seidel algorithm, which stops when the relative norm
6000 000. The signal-to-noise ratio (SNR) on projection vector || frrlmL gl (2 ) prdlm)2

is 26.7 dB (variances ratio). Undoubtedly, 6 000 000 counts is

an order of magnitude too high for SPECT, but our aim ihecomes smaller thaihe-6 (m being the iteration number).
this section is just to illustrate the running of the algorithniThe algorithm stopped after 18 steps, for a total number of
Therefore, we take a very favorable situation. An exampl#4 iterations (processing time: 10 second per iteration).

A. Running of the Algorithm
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Note that other algorithms than Gauss—Seidel can be used 3 SR s
to solve the normal equations at each step. For example, the s End step 1
same reconstruction with a conjugate gradient (CG) algorithm -
needs about 80 iterations, and the reconstruction time is 1 s per
iteration for a 64x 64 image on a DEC-5000/240 workstation.

The evolution of both auxiliary variables and image esti-
mates are shown in Fig. 5 after= 1,2, 3,10 and 18 steps.

For a better visualization, auxiliary variables are plotted in
grey levels, while image estimates are in inverse grey levels
(the colormap is given in Fig. 4). It can be noticed that
diagonal line variables appear in darker grey than horizontal
and vertical variables. This is because they are weighted by L End step 2
1/2, as remarked in Section IV-3. -

It can also be observed in Fig. 5 that all auxiliary variables
are homogeneous at step 1. This is normal since they are
computed from the original guess, which is a uniformly : LA B T T T
null image. Thend! is uniformly equal to 1 and the first : Iteration roe
image estimate then corresponds to the solution that would @)
be estimated with a Tikhonov regularization (i.e., using a
guadratic potential), with regularization parameter equal to
525, which is a high value in this case. This explains the very
smooth aspect of the first estimate. At step 2, new values of the
auxiliary variables are computed using the first image estimate,
and utilized to calculate the new image estimate, and so on. s

Note that other initial guesses could be used [10]. However,
we prefer using a null image because this allows an important
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noise elimination during the first step. We think that this 29,

explains the good results we obtain in the nonconvex case. z° -
The role of discontinuity maps played by the auxiliary ] i

variables clearly appears in Fig. 5. Since they are computed o -

from smooth images, the first discontinuity maps are very 3 i

rough. As the algorithm proceeds, they become more precise. ] 5

In fact, the joint estimation of the image and its discontinuity 1 -

maps progresses as follows. At each step, discontinuities are g ] —

introduced into the new image estimate. The new discontinuity ¢ |~~~ '~

maps that are computed from this image are then sharper. More Iteration

discontinuities are then introduced into the image estimate, (b)

and so on. Fig. 6. Evolution of the MAP energy (left-hand curve) and of the NMSE

In Fig. 6, we show plots of the MAP energy, and of between the estimate and the original image across the iterations.

the NMSE between the original and estimated images versus

the iteration number. They both illustrate the convergence

properties of ARTUR. The left-hand curve confirms the firdirst idea these figures illustrate is the superiority of edge-

result of Theorem 3, namely the fact that the sequence of fH&serving models over quadratic regularization for recon-

MAP energies at the beginning of each step is convergentSifucting piecewise constant images. The second idea is that
can also be observed that most of the “work” of the algorithffonconvex potentials seem to provide better reconstructions
is concentrated into the first steps, as it can also be seerffian convex potentials. More precisely, nonconvex potentials

Fig. 5. seem to yield sharper edges. Of course, the convergence
of ARTUR to the solution of the MAP is not theoretically

B. Examples of Reconstruction with proved. However, we find that the computed (local) minimum

Different Potential FunCtionS is Visua”y Very Satisfying_

In Figs. 7 to 10, we give examples of reconstruction with The same observations about the quality of reconstructed
different potentials, all satisfying (12) except for the quadratighages can be made about Fig. 10, that shows reconstructions
function ¢g(t) = 2. Our aim is not to provide a rigorousof a real Jaszczak phantom, shown in Fig. 9. The data were
comparison between these potential functions—in fact thequired in clinical conditions, the total number of counts
would require more experiments and the definition of qualifyeing about 250000 for the considered cross-section. Note
criteria—but to give some indications about their behavior. that no physical correction was made in this case. This is why

Fig. 7 shows reconstructions of the synthetic phantom Nidde center of the reconstructed object is not homogeneous.
Profiles of these reconstructed images are shown in Fig. 8. TAlso, it can be noticed that ARTUR yields better results than
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(b)
(d)

@ (b)

© (d)

Fig. 8. Profiles of the synthetic object (dotted line) and reconstructed images
(solid line) with (@)8¢,(t) = t2; (b) 8cir; (€) 6 ; and (d)8cas -

©

=

Fig. 9. Jaszczak phantom, left, and its projections, right.

propose threeonditions for edge preservatioifhese condi-
© tions are not imposed on the potential functign,but on the
Fig. 7. (a) Synthetic object and (b) reconstructed images with diﬁere‘r’]‘(elghtmg funct|0n<p’(t)/2t. Th_ey are §atISerd by many of the
potential functions as follows: (g (t) = t2; (¢) e r; (d) 57L; (€) Ocas functions that can be found in the literature. A consequence
is that edge preservation can be performed using functions
that do not have a finite asymptotic behavior and even by
Eonvex potentials. This is important since strict convexity
enerally ensures uniqueness of the solution. We also propose

convex differentiable and practical edge-preserving potential,

the usual convolution back-projection (CBP) algorithm. Th
results obtained by ARTUR witl s, are comparable to those
obtained by Green’s MAP expectation-maximization “one st
late” (MAP-EM-OSL) [20] algorithm. With the same potential
(see Figs. 10(d) and (c)), ARTUR vyields better results thafZs:

the MAP-EM-OSL algorithm, for a lower total reconstruction The §econd cgntr_|but|on of this paper concerns half-
time [25]. quadratic regularization. We have shown that when the

potential function satisfies the conditions for edge preservation,
it is possible to introduce an auxiliary variablg,whose role
VI.  CONCLUSION is twofold: to mark discontinuitiesb(corresponds in fact to
In this paper, we have considered the problem of edgée continuous “line process” defined in [17]), and to allow
preserving regularization in computed imaging. Our first aifttie linearization of the problem. Whéenis fixed, the energy
was to give a unified answer to the question, “What propertibecomes quadratic with respectftoOn the other hand, when
must a potential function (or its derivative) satisfy to ensurg is fixed, the energy is convex with respect to the auxiliary
the preservation of edges?” We have proposed a heuristicafiable. Moreover, in this case Theorem 1 gives an explicit
study of the first-order necessary conditions which led us éxpression for thé that minimizes the energy.
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@ (b) ©

(d) (e)
Fig. 10. Reconstructions of the Jaszczak phantom. Top row: ARTUR with(g) (b) 6777.; () b ar. Bottom row: MAP-EM-OSL with (d¥:ar; (e) CBP.

We have exploited the properties of half-quadratic reguladimensional (3-D) case, in order to make 3-D reconstruction
ization to derive a new adaptive deterministic reconstructi@tcessible to most of the usual workstations.
algorithm based on alternate minimizations pandb, called
ARTUR, which is a progressive discontinuity introduction
(PDI) algorithm. The PDI principle is very general in the APPENDIX A
sense that it can be applied to any edge-preserving function FIRST-ORDER NECESSARY CONDITIONS

in the sense of (12), in many reconstruction problems (e.g., . . -
(12) y P (e.g A minimum of J necessarily satisfie8J/af = 0. The

Computed tomography, stereovision, restoration, motion es- . :
timation). It is very simple to implement since it is base alculus ofd.J;/af is straightforward. Now, let us calculate

on quadratic minimizations. Finally, it is efficient: the con- e local expression _foﬁb/&] at site(i, j). To S|mpI|fy,_ we
. . . .suppose that sitg, j) is not located at the border of the image.
vergence to the unique minimum of the MAP is proved i . . ;
. . I'he case of boundaries needs a special treatment that will not
the convex case, and the results are very satisfactory in be :
L e discussed here. We have then
nonconvex case. Note that the PDI principle has already been
used to develop two other reconstruction algorithms. The first /5 J
! /
one, called LEGEND [1], [10], [11], corresponds to the case <8_f> == i = Jig) ¢ (fig = fij-1)
where the principle and auxiliary variables interact with each t:J , ,
other in an additive way (in this paper we have considered a =@ (fivrg — Jig) +¢'(fij — fim15)-
multiplicative interaction). The second one is called MOISE _ o o _ _ _
[10]. In this case, we consider a Poisson noise model insteadPPosing thal satisfies (12g), it is possible to rewrite this
of the Gaussian model in (1). expression as
Our future work on this subject will follow three main

directions. First, we have seen that even if the PDI principle O\ ol s ¢ (fig+1 = fig)
T (fm+1 fw)
2,3

can be applied to a large variety of functions, the quality aof 2(fi g1 — fig)
of reconstructed images depends on the potential. It would & (fij = fij—1)
be interesting to make theoretical and practical comparisons + (fig — fi,j—l)m
between different potentials. This work is initiated in [5]. ,(}fj . iJJ: )
A second perspective of work would be the quantitative = (fit1j —fihj)w
comparison between ARTUR and other existing reconstruc- /(f i1 — fij)
tion algorithms in both terms of quality and computational +(fij— fi—l,j)(p (fig = fim14)

efficiency. Finally, we are adapting ARTUR to the three- 2(fi; — fi-1.4)



308 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 6, NO. 2, FEBRUARY 1997

or Letting v = t? we obtain the definition of given in Theorem
aJ 1. Note that3 is not necessarily finite.
<8—f2> = _Q{Agfi7j+l Y XS i Finally, the expression of” (w) is
]
N / Y
+A fi—l,j - Z fZ,J} f(/)”(w) = }hn%) ”(/) (w + h}z ”(/) (w)

with the definitions given in Fig. 2. In other words, the
derivative of.J, at site(i, ;) is obtained by filtering the image h—=0 (w+h)— (w)
f by the (position dependent) filter shown in Fig. 2, which

is a 3 x 3 weighted Laplacian. If all weights are equal tavhich can be written as

1, this filter is the usual 3« 3 Laplacian filter. This can be
written as a matrix-vector multiplication, and then we obtain
the following expression for the necessary conditions

voy e 8N w) = 0w+ h)
(] (w) - }ILIL% 9’[9’_1(111)] — 9/[9’—1(111 + h)]

3] . .
8_; =0 (R'R— AApond) f=R'p Letting v = #~'(w) ande = #'~(w + h), we obtain
where A4 is the matrix corresponding to the weighted P (w) = — lim v—¢ )
discrete approximation of the Laplacian. When all weights e=v 0'(v) — ¢'(e)
are equal to 1, we havA,,,q = A, whereA is the matrix
corresponding to the usual Laplacian operator. Hence, we have)’(w) = 9——&) which is strictly positive.

Thus, v is strictly convex.
2) From (B1), it is obvious that ifu is fixed, then the
minimum is reached fory = w, i.e., forw = 6(v). With

o v = ¢ we have theny = £(8).
The proof is similar to the one of Geman and Reynolds

[17]. Let us defined(t) = p(/t). Since satisfies (12(e)),

APPENDIX B
PROOF OF THEOREM 1

it is straightforward tha#/(¢) is strictly concave. Therefore, APPENDIX C

we have i PROOF OF THEOREM 2
; / — gVt i i i i

) &'@) = N strictly decreasing function By construction

(6':10,+00) — (0,M])
i) Yu,w,in[0,+00),0(u) < 6(v)+(u—v)d (v) with equality
only if uw = ».
From i), it is clear that#’(¢) is one-to-one and admits an
inverse:(¢)~!(w): (0, M] — [0, +00). From ii), we deduce
that

J(f) =min J*(f,b) Vf

J(H) < JTJ(f,b) Yf Vb
6(u) = {8/ (v)u+ 6(v) — 08 (v)}. (B1) (f) < J*(f.b) Vf

1) Let us definew = '(v) or equivalentlyy = (¢)~L(w) M Particular
andy(w) = 0((0") " (w)) —w(#)~L(w). Then, (B1) becomes .
J(f) £ I (f30) (C1)
0(u) = inf{wu + p(w)}.
_ , _ Now, since by definition ofb: 7(b) < T(b) Vb, from the
Letting v = ¢, we obtain definition of 7°(b) it is clear that
2y _ _ 2 .
A simple calculation shows that'(w) = —(6")~*(w). Since
(#)~* takes its values if0, +o0), this shows that) is strictly So in particular
decreasing orf0, M|]. Hence, its limits ab* and +cc exist.

From the definition ok, we have on one hand J*(fgj,) < mbin H}in J*(f,b)= m}n mbin J*(f, b):m}n J(f).
= 1 = lim (8(v) — v¥'(v). (€2)
o= Jm plw) = lm (6(v) —v¥(v)) Combining (C1) and (C2) yields
From (12(a)), we havé(0) = 0. From (12(f)), we also have )
6'(0) = M < +oc. Thus, clearlya = 0. On the other hand J(h) < v J(F)-

p= lim plw) = lim (#(v)- v#'(v)). So f; minimizes the MAP energy/(f).
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APPENDIX D
PROOF OF THEOREM 3

First, let us consider the sequentg= J*(f™,"1). From
(14), we haveJ(f™) = min, J*(f",b) From the definition
of ARTUR (principle of alternate minimizations)?*! is the
minimizer of J*(f™, ). Hence we havd,, = J*(f*,b"*1) =
J().

Now, let us show that it is convergent. Siri¢e™* minimizes
J*(f™,b), it satisfies

JHFTY) < T b)Y, Yn. (D1)
On the other hand™ minimizes J*(f, ")
T S TS0 Y, n. (D2)
We have
Jnet = o = [T 00) = T )]
F [T = T (0] (D3)

Applying (D1) for b = b™ and (D2) forf = f™~!, we obtain
T = T ) > 0 (D4)
TR = TH() 2 0. (D5)
From (D4) and (D5), we deduce thd}, is decreasing
Jp1—=Jn 20 Vn.
Moreover, it is clear thal,,(f) > 0 Vf becausep(t) > 0 V.

Since it is decreasing and bounded below, the sequéhce

is convergent.
Now, let us show tha(6"+1); — (b )x]n—+co — 0 VEk. For

309

We have(g;)"(w) = 4" (w). We also know (see Appendix
B) that v (w) = —1/6"(¢?). With w = ¢'(t?) = ¢'(t)/2t, a
simple calculus shows that

= (2020

T2

Since this function is continuous, it is bounded on any bounded
interval[t;,t2], with ¢; > 0,t2 < 4+o00. We know from (12e—f)
that¢’(¢) /2t is continuous and strictly decreasing and that its
limit when ¢t — 40 is zero, so its derivative is negative and
necessarily vanishes wheén— +oo. Thus

w”(ﬂ) =0

/ / /
im (2O - oy L0 _
t—+oo 2t t—+oo 2¢ t

1 (e(t)  ¢"(2)
S 2t2< t A

Now, for ¢ = 0, a Taylor development yields

12

(remember that condition (12(h)) is”(0) = 0, and note that
conditions (12(b)-12(c)) imply’(0) = 0).

Thus, —6"(t?) can be bounded above for all values #of
i.e.,?""(w) can be bounded below. Thefi¢ > 0 such that
(gk)”(w) >c¢ VYw.

n

a better readability, we consider hereafter the one-dimensiof&en. finally

(1-D) case. We noté the line process and the derivation
operator.
Let us calculate

T = T b
= XY {0 [0}
k

=AY @D+ 9 [(0e] }. (D6)

k
Let us definegi(w) = w(Df™)3 + ¢(w). Using a Taylor
development ofg}}(-), we have
TH) = T
= A2 ([0 = 0] (90) [0 Hx])
k
S ([ = ) (@) ©D)
k
with ¢ € (b7, b7Fh). Since b+ minimizes J*(f",b), we
have
(9) [ 0] = (DFF +4' [0 0] = 0.
Consequently
TE(f ) = T (0

(L@ = @] (g7)" (eR))- (D8)

J*(fn,bn) _ J*(fn,bn—i—l) Z %)\QCan _ bn+l||2
and, accordingly to (D3) and (D5)
1
o1 —Jp > §A2c||b" — "2

As the sequencé, is convergent, we conclude thé+* —

b™) = 0 is convergent too. Also, ag’(u)/2u is one-to-
one, we have(Df" — Df*~1) =0

Finally, let us show that, in the convex case, the sequence
/™ converges and thus that ARTUR finds the global minimizer
of J(f).

Whenbd" is fixed, J*( f,b™) is convex inf and the minimum
is attained forf = f™. Thus

(R'IR+XD'B"D)f* — R'p=0 (D9)
with B™ = diag{(h")y, k& =
gUDI Ol vy,

2(Df=1),
On the other hand, the minimum of f;, is unique and

satisfies the first-order necessary conditions

1---N?} and (b%);, =

(R'R+ N*D'BD)f; — R'p =0 (D10)

‘P’[(ng)k} Vk.

with B = diag{(0)x, k = 1--- N2} and(b);, = DT
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Subtracting (D10) to (D9) and making the scalar produtt is clear that (D12) and (D13) imply

with (f* — f;), we obtain "
( ”)2 A Jim pic([|DS" = Dfll) =
[Z(f" = )"+ A(B"Df" = BDf;, D(f" = £;)) = o o
. But py is strictly increasing withpx (0) = 0. Thus, we have
Let us introduceB™+1D f" necessarilfim o |[Df" — Df;
n 2 n n > n Df* — D
|R(f™ = fi)||” + N(B™"'Df* = BDf;, D(f"* - f;)) "GPl
+ )\2 Bn _ Bn-l—l D n7D n
{ )Df (f f”)>( 11) ACKNOWLEDGMENT
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