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Deterministic Edge-Preserving
Regularization in Computed Imaging

Pierre Charbonnier, Laure Blanc-Féraud, Gilles Aubert, and Michel Barlaud,Member, IEEE

Abstract—Many image processing problems areill posed and
must be regularized. Usually, a roughness penalty is imposed on
the solution. The difficulty is to avoid the smoothing of edges,
which are very important attributes of the image. In this paper,
we first give conditions for the design of such anedge-preserving
regularization. Under these conditions, we show that it is possible
to introduce an auxiliary variable whose role is twofold. First, it
marks the discontinuities and ensures their preservation from
smoothing. Second, it makes the criterionhalf-quadratic. The
optimization is then easier. We propose a deterministic strategy,
based on alternate minimizations on the image and the auxiliary
variable. This leads to the definition of an original reconstruction
algorithm, called ARTUR. Some theoretical properties of ARTUR
are discussed. Experimental results illustrate the behavior of the
algorithm. These results are shown in the field of tomography,
but this method can be applied in a large number of applications
in image processing.

I. INTRODUCTION

I N COMPUTED imaging, reconstructing an imagefrom
data is often an ill-posed problem in the sense of

Hadamard. Knowledge of the direct model is not always
sufficient to determine a satisfying solution, and it is necessary
to regularize the solution by imposing ana priori constraint.
Mathematically, this constraint is often expressed through a
regularization function—which is also called apotential func-
tion in the Markov random field approach [15]. A simple and
well-known regularization supposes that images are globally
smooth, and enforces a roughness penalty on the solution. A
quadratic potential function yields oversmooth solutions. A
more realistic image model assumes that images are made of
smooth regions, separated by sharp edges [15]. This is called
edge-preserving regularizationand requires a nonquadratic
potential function.

Edge-preserving regularization has provided an abundant lit-
erature in the last decade, but curiously, to our knowledge there
is no unified theory about the design of potential functions
for this purpose. For example, the question: “what properties
must a potential function satisfy to ensure the preservation of
edges?” has different and sometimes contradictory answers.
For Geman and Reynolds, one of the two important attributes
of an edge-preserving potential function is its finite asymptotic
behavior [17], while other authors advocate convex functions
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[6], [20], [26]. In our first contribution of this paper, we
try to unify these different approaches by proposing three
conditions for edge preservation. These define a class of
potential functions which yield edge-preserving regularization.

An important characteristic of edge-preserving regulariza-
tion is that the computations involve the minimization of
possibly nonconvex energy functionals. In many applications
computation time is critical, so a deterministic strategy is
preferable. Also, one has to face the problem of minimiz-
ing nonquadratic energy functionals or, equivalently, solving
nonlinear simultaneous equations. In our second contribution
of this paper, we show that, when the conditions for edge
preservation are satisfied, it is possible to transform the non-
quadratic energy into anaugmented energyby introducing an
auxiliary variable, , whose role is twofold. First, marks
the location of discontinuities, and thus takes part in their
preservation. Second, makes the augmented energy func-
tional becomehalf-quadratic, i.e., quadratic with respect to
the image variable when is fixed. We also show that the
augmented functional is convex with respect towhen the
image variable is fixed, and we give an exact expression for
the minimum .

Using the auxiliary variable permits us tolinearize the
problem and to derive adeterministic algorithm based on
alternate minimizations on the image variable and the auxiliary
variable. This relaxation algorithm, called ARTUR, is based
on the general principle of minimizing a sequence of energy
functionals. Well-known deterministic algorithms, such as
graduated nonconvexity (GNC) [3] or mean-field annealing
(MFA) [14], use the same principle. However, in contrast
to these methods, ARTUR can be applied to many energies
having an edge-preserving potential function and to many
types of inverse problems (tomography, restoration, motion
estimation, stereovision, etc.). In our third contribution of this
paper, we show experimental results in tomography, with both
synthetic and real data, to illustrate the way the algorithm
works and the behavior of different potential functions.

This paper is organized as follows. The conditions for
edge-preservation are defined and discussed in Section II. In
Section III, we discuss edge-preserving regularization and the
principle of half-quadratic regularization. Sections IV and V
are, respectively, devoted to the theoretical and experimental
presentation of ARTUR. Section VI concludes the paper.

II. EDGE-PRESERVING REGULARIZATION

In this paper, the image and auxiliary variables will be
either considered as two-dimensional (2-D) fields
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indexed by (row number) and (column number), or as
lexicographically ordered (column) vectors indexed by

. The index transformation between the two representations
is .

A. Regularized Image Reconstruction

In many computed imaging applications, the observed data
can be related to the original image,, through a linear

model of the form

(1)

where is assumed to be white Gaussian noise, andis a
linear operator. In image restoration, for example,is block-
Toeplitz and represents the point spread function (PSF) of the
imaging system [23].

In computed tomography (CT), models the Radon trans-
form [23]. The reader might object that a white Gaussian noise
model is not realistic in CT, because it is well known that
the photon counts have a Poisson statistic. Though all that
is developed in this paper can be adapted to the case of the
Poisson model, we use the Gaussian approximation because
it yields additive algorithms while the Poisson model leads to
multiplicative—and hence slower—algorithms. However, for
a sufficient number of counts, the Poisson distribution can
be successfully approximated by a Gaussian one (as in [13]
for example). Theoretically, our noise model should include
a covariance matrix. We considerwhite noise for the sake of
simplicity and because we have experimentally found that our
model yields good results even for low photon dosages [25].
Anyway, considering a general covariance matrix would make
no theoretical or practical difficulty.

For some other applications (as stereovision and motion es-
timation [4], [22]) the model is nonlinear, but approximations
can be made to linearize it, and all that will be developed
hereafter can be applied in these cases too.

The problem of regularized image reconstruction has been
widely investigated in the past (see for example [12] for
an overview), with two main approaches. On one hand,
some authors [27], [29], [32] consider the problem from a
deterministic point of view. On the other hand, other authors
[2], [6], [7], [15], [24], [28] use a stochastic approach. We
consider a framework either called penalized least-squares
or maximum a posteriori (MAP) estimation, in which the
estimated image is given by

(2)

where is the sum of a term which measures the faithfulness
of the estimate to the data and a regularization term

(3)

In our case, the data term takes the following form:

(4)

The regularization term is defined as a sum of potentials which
are, in general, functions of a derivative of the image. The
order of the derivative depends on the kind of image that

Fig. 1. Cliques of the model at site (i; j).

is sought. For example, the use of second-order derivatives
promotes the formation of piecewise planar areas in the
solution [17]. In our case, though, the theory we develop is also
valid for higher-order derivatives, we only use a simple model
in which the image is supposed to be piecewise constant.
Therefore, we consider first-order differences between pixels
belonging to the two-neighbor cliques of a second-order model
[15] (see Fig. 1). In order to simplify our presentation, we
“forget” about diagonal differences for the moment. Their case
will be discussed in Section IV-D. This leads to the following
expression for the regularization term

(5)

where

and

(6)

in (3) and in (6) are the parameters of the model. The
regularization coefficient, , balances the effects of the data
term and thea priori term. The second parameter,, is a
scaling parameter which tunes the value of the gradient above
which a discontinuity is detected.

In the Bayesian framework, in (5) is known as the
potential function. This function assigns a cost to every value
of the image gradient, and thus should have some obvious
properties. First, it seems natural to give positive values to
the potential. We will therefore require that ,
with for practical reasons. Second, in designing a
potential function, it is natural to assume thatis an increasing
function for . Also, it is necessary to give the same
importance to gradients of equal values but opposite signs.
Thus, is assumed to be an even function. We can then limit
our study to positive values of the gradient.

In order to avoid introducing instability into the reconstruc-
tion process, differentiability is desirable for. We will focus
on continuously differentiable potential functions. Note that
this excludes functions like [2], which are not differentiable
at 0, or like the truncated quadratic [3].

These general assumptions are summarized in 12(a)–(d). In
Section II-B, we discuss desirable properties of the potential
functions for edge preservation.

B. Edge-Preserving Regularization

A priori information imposed on the solution is expressed
via the potential function. In this section, we try to answer
the following question: “What properties should the potential
function satisfy to define an edge-preserving regularization?”
Curiously, this question has several different answers in the
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Fig. 2. Coefficients of the weighted Laplacian around pixel(i; j) (first-order
neighborhood).

literature. For example, Geman and Reynolds [17] advocate
functions having a finite asymptotic behavior. Other authors,
as Green [20], Bouman and Sauer [6], Schultz and Stevenson
[31], and Lange [26] prefer using convex potentials in order
to ensure uniqueness of the solution. Lastly, other authors,
as Hebert and Leahy [21] propose a compromise between
both approaches. Having a view to unify these approaches,
we propose a local heuristic study of the first-order necessary
conditions associated with the minimization of the energy
in (3). Suppose that has a minimum in , then we have
necessarily

(7)

where is the derivative of . A simple calculation (details
are given in Appendix A) shows that, (7) can be written as

(8)

where is a matrix that represents a weighted discrete
approximation of the Laplacian operator. The matrix-vector
multiplication is equivalent to a nonstationary filtering
of by a 3 3 weighted Laplacian filter, which is shown in
Fig. 2. The weights of the Laplacian are given by the function

, which we call theweighting function. Note that since
is even, the weighting function is even.
Now, let us consider the case of a homogeneous area of

the image: All gradients around pixel are close to zero.
Suppose that the weighting function is such that

(9)

then, all weights around pixel are approximately equal
to and the weighted Laplacian behaves as the usual Lapla-
cian (see Fig. 3(a)). The necessary conditions then locally
reduce to the usual normal equations associated with Tikhonov
regularization

(10)

where is the usual discrete Laplacian of. In other words,
there is diffusion (i.e., smoothing) all around pixel .

We define the value of the weighting function at 0 to be
equal to , with finite. Most of the functions that can
be found in the literature satisfy this condition. This is not
the case when [6]. Therefore, using
these functions would create problems at 0. First, writing (10)
would make no sense. Second, an infinite value ofwould
involve numerical problems using the algorithm we propose
in Section IV.

Fig. 3. Coefficients of the weighted Laplacian around pixel(i; j) in a
homogeneous area (a) and in the case of a discontinuity (b) (first-order
neighborhood).

Now, let us suppose that there is a discontinuity in the
neighborhood of pixel , for example between pixel

and pixel . Then, all finite differences around pixel
are small, except . Suppose that the weighting

function is such that

(11)

Then, the corresponding weight of the Laplacian vanishes (see
Fig. 3(b)) and there is no smoothing in this direction.

Lastly, we suppose that is continuous, because
we do not want a small variation of the gradient to produce
a large change in the value of the weight. Otherwise, this
might produce instabilities in the presence of noise. Also, it
seems natural that there should be a one-to-one correspondence
between values of the gradient and values of the weight.
Therefore the weighting function must be strictly monotonous
on .

All the conditions that we impose on are summarized in
(12).
General:Basic assumptions

a) with
b)
c) continuously differentiable.
d)

General:Edge preservation

e) continuous and strictly decreasing on

f)

g)

Algorithm: Convergence proof

h)
i) exists (12)

The basic assumptions a) to d) define the limits of our
study. Conditions e), f), and g) are the threeconditions for
edge-preservation. Additional requirements on , h) and i),
are technical hypothesis for the convergence proofs of the
algorithm we propose in Section IV.

Note that in the above study, we have considered that
small gradients must be smoothed, while large gradients must
be preserved. Hence, we have implicitly made the following
assumption: A large value of the gradient corresponds to an
edge while a small value of the gradient is an effect of noise.
This assumption is not necessarily satisfied in practice: small
values of the gradient may as well correspond to an actual low
amplitude discontinuity in the image. On the other hand, large
gradients may be due to noise. Undoubtedly, this is a limitation
of the model: Especially in presence of strong noise, it may not
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TABLE I
FOUR EDGE-PRESERVING POTENTIAL FUNCTIONS

AND THEIR ASSOCIATED WEIGHTING FUNCTIONS

always be possible to discriminate real features of the image
from the effects of noise.

We would like to stress that conditions (12) are satisfied
by many of the edge-preserving potential functions proposed
in the literature. In Table I we give four examples of well-
known potential functions and their corresponding weighting
functions. The potential functions have been normalized in
order to have for all the weighting functions in
Table I. Note that even if the potential functions have different
behaviors at the infinity (some have an horizontal asymptote,
as , others do not), all the weighting functions in Table
I satisfy (12). Contrarily to what was suggested in [17], it
appears that the existence of an horizontal asymptote is not
necessary to ensure edge-preservation. Moreover, it shows
that edge-preservation can be achieved even by someconvex
potentials, as or . This is an important result since
using convex potentials generally make the minimization
problem well posed [6]. Furthermore, these two functions are
continuously differentiable and satisfy (12 g), so they do not
involve numerical difficulties as when using

. Note that we propose a new potential function, .
It has the same behavior as , but its associated weighting
function is simpler than that of .

III. H ALF-QUADRATIC REGULARIZATION

Even in the convex case, minimizing the MAP criterion
is a difficult task because the necessary conditions (8) are
nonlinear. In order to simplify the minimization task, we
propose to usehalf-quadratic regularization.

A. Principle of Half-Quadratic Regularization

The expression “half-quadratic regularization” was defined
by Geman and Yang in 1993 [18]. To quote these authors,
“The basic idea is to introduce a new objective function
which, although defined over an extended domain, has the
same minimum in as and can be manipulated with linear
algebraic methods.” The principle is to introduce a couple of

auxiliary variables, ,1 in order to make the
manipulation of the MAP criterion easier.

1For clarity, we will use hereafterb instead of(bx; by) whenever possible.

When is edge-preserving in the sense of conditions
(12(e)–(g)), it is always possible [11] to find a function
such that

(13)

and such that is quadratic in when is fixed.
It can then be shown that the MAP criterion can be written

as the minimum of adual energy

(14)

where is given by

(15)

Note that the dual energy is quadratic inwhen is fixed. This
is why this kind of regularization is called “half-quadratic”
regularization. Consequently, when the auxiliary variable is
fixed, the first-order necessary conditions are linear in.

B. Transforming the MAP Energy

The following theorem, proved in Appendix B, gives an
implementation of the transformation in (13).

Theorem 1: Let be a potential function that satisfies
conditions (12(a)) to (12(g)).

1) Then there exists a strictly convex and decreasing func-
tion , where

such that

2) For every fixed , the value for which the
minimum is reached, i.e., such that

is unique and given by

We give in Table II the analytical expression of for three
edge-preserving potentials.

Applying Theorem 1 to the MAP energy, with
and (respectively, with and

), we obtain the followingaugmentedenergy:

(16)

It is easy to verify that when the auxiliary variable is fixed, the
augmented energy becomes quadratic in, as stated in Section
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III–A. But the augmented energy has another interesting
property: Since is convex in (from Theorem 1), is
convex in when is fixed. Moreover, also from Theorem 1,
the minimum value of is unique and is given by

and (17)

These properties are the basis for the reconstruction algorithm
proposed in Section IV. Before describing the algorithm, let
us make some additional remarks about Theorem 1.

First, since for any fixed the minimizer of is
, the central role of the weighting function

is confirmed. According to the properties of this function,
is close to zero for large gradients, and to for small

gradients (same remark for ). In other words, the value
of depends on the presence of an edge:plays the role of a
discontinuity marker, similar to the continuous “line process”
defined by Geman and Reynolds in [17].

Second, it might be noticed that Theorem 1 is quite similar
to the first theorem in [17]. However, there are two important
differences. First, the Geman and Reynolds theorem only
allows the introduction of the line variable when the potential
function has a finite asymptotic behavior. Theorem 1 is also
valid for certain potential functions that do not have an
asymptote, and even for certain convex functions. Second, the
expression for the minimum is not explicitly given in [17].
Therefore, we think that Theorem 1 is a significant contribution
to the theory of half-quadratic regularization.

In fact, there is a third more subtle difference between these
theorems. We have supposed that the weighting function must
be strictly decreasing (condition (12(e))). This implies that

is supposed to bestrictly concave, while in [17] it needs
only be concave (even though the proof is given for the strictly
concave case). As a consequence, Theorem 1 does not apply
to some potential functions like the truncated quadratic or the
Huber function [31]. This restriction, however, allows a one-
to-one correspondence between the gradient and the auxiliary
variable, which is important for the convergence proof of the
following reconstruction algorithm.

IV. DETERMINISTIC RECONSTRUCTIONALGORITHM

A. Description of the Algorithm

As we have seen in the previous section, minimizing the
MAP energy in is equivalent to minimizing
in . In order to exploit the properties of half-quadratic
regularization, we propose to use a strategy based on alternate
minimizations over and as follows:

Repeat

Until convergence.

(18)

TABLE II
THREE EDGE-PRESERVING POTENTIAL FUNCTIONS

AND THE CORRESPONDINGFUNCTIONS

Since at step is fixed, is simply computed
using the following expressions:

and

(19)
The minimization over is also very simple since
is quadratic. The new image estimate, , is solution of the
normal equations

(20)

where
and . These equations

can be solved by many iterative algorithms (cf. [30]), starting
each step from the previous step’s image estimate.

This algorithm, called ARTUR [8]–[10], solves the origi-
nal nonquadratic minimization problem using a sequence of
quadratic minimizations, which are easy to solve. In contrast
to many reconstruction algorithms, this strategy can be applied
for any potential function that satisfies the conditions for edge
preservation (12).

Lastly, we would like to point out the importance of
and in the preservation of edges. Since their value at each
pixel site depends on the presence of an edge (through the
weighting function), and play the role of discontinuity
maps. At every step of the algorithm, new discontinuity maps
are computed (from the last image estimate) and then taken
into account for the computation of the new estimate. It
can be observed (see Section V-A) that the discontinuity
maps are very rough at first and become sharper as the
algorithm is proceeding. Therefore, we can say that ARTUR
is a “progressive discontinuity introduction” (PDI) algorithm.

B. Theoretical Study

The goal of this section is to give a justification to our
algorithmic strategy. We have seen how the MAP energy can
be transformed into a half-quadratic energy by setting

(21)

Since it is possible to reverse the order of the minimizations
with respect to and , we have

(22)



CHARBONNIER et al.: EDGE-PRESERVING REGULARIZATION 303

Now, let us define

(23)

Hence, we have

(24)

Since is quadratic with respect to when is fixed,
(23) has a unique solution, which we will denote.

Let us also denote the minimizer of by . It is possible
to show (see Appendix C) the following results.

Theorem 2:

if then

This result means that all minimizers of yield image
estimates that minimize the MAP energy.

It can be shown that these minimizers satisfy the following
fixed-point equations

and

(25)
If the MAP energy is convex, then its minimum is unique
and it is possible to show (see Section IV-C) that ARTUR
converges to this solution.

C. Convergence of the Algorithm

Suppose that the potential function satisfies conditions (12).
Then it is possible to demonstrate (see proof in Appendix D)
the following convergence results.

Theorem 3: Let be a potential function that satisfies all
conditions (12). Then

• the sequence is convergent;
• we have

and

and

• if is convex on , then the sequences
and, are convergent. Moreover, if

is full rank, then the sequence , is convergent.

When is strictly convex, the MAP energy can be strictly
convex too. In fact, to ensure the strict convexity of the MAP
energy, it is necessary that the null-spaces of , and
do not intersect each other, which is generally the case. In
this case, the minimum of the MAP energy is unique. The
minimum in of is thus unique too, and there exists only
one point where the derivative of vanishes. When is
full rank, the sequence converges. The computed estimate
is then the unique solution of (2).

When is nonconvex, the first two results remain valid, in
particular the convergence of the sequence. However, the
algorithm probably computes a local minimum of the MAP
energy (see experimental results), which is not theoretically
characterized yet.

(a) (b)

Fig. 4. (a) Synthetic phantom Nice and (b) unregularized solution after 50
iterations.

D. Remarks

First, as we wrote in Section II-A, we use in practice
all two-pixel cliques of a second-order model. In particular,
our complete model involves an additional term of the form

, with

(26)

which is a function ofdiagonal gradients

and (27)

All the above theory remains valid for diagonal terms. The
only modification to the algorithm is that the values of diagonal
line variables are weighted by

and (28)

Second, we would like to make a remark about positivity.
In certain applications, as tomography, the solution is known
to be positive. This is an importanta priori information. In
fact, a nonnegativity condition can be imposed on the solution
by adding to the MAP energy a penalty term of the form

, with

and
if
if

(29)

This term involves a variable which marks negative values and
which can be used in the same way as the discontinuity maps:
At each step, a new negativity map is first computed, and then
taken into account in the computation of the new estimate.
Therefore, the introduction of a nonnegativity penalty only
provokes slight modifications to the algorithm and gives good
results.
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Fig. 5. Values of the auxillliary variables (from left to right:by; bx; bd1; andbd2) and the image estimate after 1, 2, 3, 10, and 18 steps of the algorithm.

V. EXPERIMENTAL RESULTS

In this section, we illustrate the behavior of ARTUR in the
case of 2-D single photon emission tomography (SPECT) with
both synthetic and real data.

A. Running of the Algorithm

We first present an example of reconstruction with synthetic
data. The synthetic phantom named Nice is presented in
Fig. 4(a). This phantom is a 64 64-pixel image derived
from Shepp and Logan’s head phantom, and models a cross-
section of the brain with ellipses. Synthetic SPECT data are
computed by projecting the 2-D phantom along 64 angles,
on a 64-element detector. Projections in a certain direction
are computed by summing the photons emitted by the object
along this direction. Projections are then artificialy corrupted
by Poisson noise. The resulting total number of counts (i.e.,
number of detected photons) in the projection vector is about
6 000 000. The signal-to-noise ratio (SNR) on projection vector
is 26.7 dB (variances ratio). Undoubtedly, 6 000 000 counts is
an order of magnitude too high for SPECT, but our aim in
this section is just to illustrate the running of the algorithm.
Therefore, we take a very favorable situation. An example

of reconstruction with real data (250 000 counts) is given in
Section V-B.

Fig. 4(b) shows an unregularized solution obtained by
iteratively minimizing , as defined in (4), using a
Gauss–Seidel algorithm. The algorithm has been stopped after
50 iterations. The SNR between the reconstructed image and
the original one is 8.18 dB (variances ratio). This illustrates
the noise amplification effect due to the ill posedness of the
problem.

Fig. 5 shows a regularized reconstruction with ARTUR. For
this reconstruction, we use , which is nonconvex. The
parameters of the model are experimentally fixed to
and . We let ARTUR proceed until the relative norm

becomes smaller than - ( being the step number). In this
case, the normal equations at each step are solved using a
Gauss–Seidel algorithm, which stops when the relative norm

becomes smaller than - ( being the iteration number).
The algorithm stopped after 18 steps, for a total number of
104 iterations (processing time: 10 second per iteration).
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Note that other algorithms than Gauss–Seidel can be used
to solve the normal equations at each step. For example, the
same reconstruction with a conjugate gradient (CG) algorithm
needs about 80 iterations, and the reconstruction time is 1 s per
iteration for a 64 64 image on a DEC-5000/240 workstation.

The evolution of both auxiliary variables and image esti-
mates are shown in Fig. 5 after and steps.
For a better visualization, auxiliary variables are plotted in
grey levels, while image estimates are in inverse grey levels
(the colormap is given in Fig. 4). It can be noticed that
diagonal line variables appear in darker grey than horizontal
and vertical variables. This is because they are weighted by

, as remarked in Section IV-3.
It can also be observed in Fig. 5 that all auxiliary variables

are homogeneous at step 1. This is normal since they are
computed from the original guess, which is a uniformly
null image. Then is uniformly equal to 1 and the first
image estimate then corresponds to the solution that would
be estimated with a Tikhonov regularization (i.e., using a
quadratic potential), with regularization parameter equal to
525, which is a high value in this case. This explains the very
smooth aspect of the first estimate. At step 2, new values of the
auxiliary variables are computed using the first image estimate,
and utilized to calculate the new image estimate, and so on.

Note that other initial guesses could be used [10]. However,
we prefer using a null image because this allows an important
noise elimination during the first step. We think that this
explains the good results we obtain in the nonconvex case.

The role of discontinuity maps played by the auxiliary
variables clearly appears in Fig. 5. Since they are computed
from smooth images, the first discontinuity maps are very
rough. As the algorithm proceeds, they become more precise.
In fact, the joint estimation of the image and its discontinuity
maps progresses as follows. At each step, discontinuities are
introduced into the new image estimate. The new discontinuity
maps that are computed from this image are then sharper. More
discontinuities are then introduced into the image estimate,
and so on.

In Fig. 6, we show plots of the MAP energy,, and of
the NMSE between the original and estimated images versus
the iteration number. They both illustrate the convergence
properties of ARTUR. The left-hand curve confirms the first
result of Theorem 3, namely the fact that the sequence of the
MAP energies at the beginning of each step is convergent. It
can also be observed that most of the “work” of the algorithm
is concentrated into the first steps, as it can also be seen in
Fig. 5.

B. Examples of Reconstruction with
Different Potential Functions

In Figs. 7 to 10, we give examples of reconstruction with
different potentials, all satisfying (12) except for the quadratic
function . Our aim is not to provide a rigorous
comparison between these potential functions—in fact this
would require more experiments and the definition of quality
criteria—but to give some indications about their behavior.

Fig. 7 shows reconstructions of the synthetic phantom Nice.
Profiles of these reconstructed images are shown in Fig. 8. The

(a)

(b)

Fig. 6. Evolution of the MAP energy (left-hand curve) and of the NMSE
between the estimate and the original image across the iterations.

first idea these figures illustrate is the superiority of edge-
preserving models over quadratic regularization for recon-
structing piecewise constant images. The second idea is that
nonconvex potentials seem to provide better reconstructions
than convex potentials. More precisely, nonconvex potentials
seem to yield sharper edges. Of course, the convergence
of ARTUR to the solution of the MAP is not theoretically
proved. However, we find that the computed (local) minimum
is visually very satisfying.

The same observations about the quality of reconstructed
images can be made about Fig. 10, that shows reconstructions
of a real Jaszczak phantom, shown in Fig. 9. The data were
acquired in clinical conditions, the total number of counts
being about 250 000 for the considered cross-section. Note
that no physical correction was made in this case. This is why
the center of the reconstructed object is not homogeneous.
Also, it can be noticed that ARTUR yields better results than
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(a) (b)

(c) (d)

(e)

Fig. 7. (a) Synthetic object and (b) reconstructed images with different
potential functions as follows: (b)�Q(t) = t

2; (c) �GR; (d) �HL; (e) �GM .

the usual convolution back-projection (CBP) algorithm. The
results obtained by ARTUR with are comparable to those
obtained by Green’s MAP expectation-maximization “one step
late” (MAP-EM-OSL) [20] algorithm. With the same potential
(see Figs. 10(d) and (c)), ARTUR yields better results than
the MAP-EM-OSL algorithm, for a lower total reconstruction
time [25].

VI. CONCLUSION

In this paper, we have considered the problem of edge-
preserving regularization in computed imaging. Our first aim
was to give a unified answer to the question, “What properties
must a potential function (or its derivative) satisfy to ensure
the preservation of edges?” We have proposed a heuristical
study of the first-order necessary conditions which led us to

(a) (b)

(c) (d)

Fig. 8. Profiles of the synthetic object (dotted line) and reconstructed images
(solid line) with (a)�Q(t) = t

2; (b) �GR; (c) �HL; and (d)�GM .

Fig. 9. Jaszczak phantom, left, and its projections, right.

propose threeconditions for edge preservation. These condi-
tions are not imposed on the potential function,, but on the
weighting function, . They are satisfied by many of the
functions that can be found in the literature. A consequence
is that edge preservation can be performed using functions
that do not have a finite asymptotic behavior and even by
convex potentials. This is important since strict convexity
generally ensures uniqueness of the solution. We also propose
a convex differentiable and practical edge-preserving potential,

.
The second contribution of this paper concerns half-

quadratic regularization. We have shown that when the
potential function satisfies the conditions for edge preservation,
it is possible to introduce an auxiliary variable,, whose role
is twofold: to mark discontinuities (corresponds in fact to
the continuous “line process” defined in [17]), and to allow
the linearization of the problem. Whenis fixed, the energy
becomes quadratic with respect to. On the other hand, when

is fixed, the energy is convex with respect to the auxiliary
variable. Moreover, in this case Theorem 1 gives an explicit
expression for the that minimizes the energy.
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(a) (b) (c)

(d) (e)

Fig. 10. Reconstructions of the Jaszczak phantom. Top row: ARTUR with (a)�GR; (b) �HL; (c) \�GM . Bottom row: MAP-EM-OSL with (d)�GM ; (e) CBP.

We have exploited the properties of half-quadratic regular-
ization to derive a new adaptive deterministic reconstruction
algorithm based on alternate minimizations onand , called
ARTUR, which is a progressive discontinuity introduction
(PDI) algorithm. The PDI principle is very general in the
sense that it can be applied to any edge-preserving function
in the sense of (12), in many reconstruction problems (e.g.,
Computed tomography, stereovision, restoration, motion es-
timation). It is very simple to implement since it is based
on quadratic minimizations. Finally, it is efficient: the con-
vergence to the unique minimum of the MAP is proved in
the convex case, and the results are very satisfactory in the
nonconvex case. Note that the PDI principle has already been
used to develop two other reconstruction algorithms. The first
one, called LEGEND [1], [10], [11], corresponds to the case
where the principle and auxiliary variables interact with each
other in an additive way (in this paper we have considered a
multiplicative interaction). The second one is called MOISE
[10]. In this case, we consider a Poisson noise model instead
of the Gaussian model in (1).

Our future work on this subject will follow three main
directions. First, we have seen that even if the PDI principle
can be applied to a large variety of functions, the quality
of reconstructed images depends on the potential. It would
be interesting to make theoretical and practical comparisons
between different potentials. This work is initiated in [5].
A second perspective of work would be the quantitative
comparison between ARTUR and other existing reconstruc-
tion algorithms in both terms of quality and computational
efficiency. Finally, we are adapting ARTUR to the three-

dimensional (3-D) case, in order to make 3-D reconstruction
accessible to most of the usual workstations.

APPENDIX A
FIRST-ORDER NECESSARY CONDITIONS

A minimum of necessarily satisfies . The
calculus of is straightforward. Now, let us calculate
the local expression for at site . To simplify, we
suppose that site is not located at the border of the image.
The case of boundaries needs a special treatment that will not
be discussed here. We have then

Supposing that satisfies (12g), it is possible to rewrite this
expression as
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or

with the definitions given in Fig. 2. In other words, the
derivative of at site is obtained by filtering the image

by the (position dependent) filter shown in Fig. 2, which
is a 3 3 weighted Laplacian. If all weights are equal to
1, this filter is the usual 3 3 Laplacian filter. This can be
written as a matrix-vector multiplication, and then we obtain
the following expression for the necessary conditions

where is the matrix corresponding to the weighted
discrete approximation of the Laplacian. When all weights
are equal to 1, we have , where is the matrix
corresponding to the usual Laplacian operator.

APPENDIX B
PROOF OF THEOREM 1

The proof is similar to the one of Geman and Reynolds
[17]. Let us define . Since satisfies (12(e)),
it is straightforward that is strictly concave. Therefore,
we have

i) , is a strictly decreasing function

ii) , in with equality
only if .

From i), it is clear that is one-to-one and admits an
inverse: . From ii), we deduce
that

(B1)

1) Let us define or equivalently
and . Then, (B1) becomes

Letting , we obtain

A simple calculation shows that . Since
takes its values in , this shows that is strictly

decreasing on . Hence, its limits at and exist.
From the definition of , we have on one hand

From (12(a)), we have . From (12(f)), we also have
. Thus, clearly, . On the other hand

Letting we obtain the definition of given in Theorem
1. Note that is not necessarily finite.

Finally, the expression of is

which can be written as

Letting and , we obtain

Hence, we have , which is strictly positive.
Thus, is strictly convex.

2) From (B1), it is obvious that if is fixed, then the
minimum is reached for , i.e., for . With

we have then .

APPENDIX C
PROOF OF THEOREM 2

By construction

so

In particular

(C1)

Now, since by definition of , from the
definition of it is clear that

So in particular

(C2)
Combining (C1) and (C2) yields

So minimizes the MAP energy, .
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APPENDIX D
PROOF OF THEOREM 3

First, let us consider the sequence . From
(14), we have From the definition
of ARTUR (principle of alternate minimizations), is the
minimizer of . Hence we have

.
Now, let us show that it is convergent. Since minimizes

, it satisfies

(D1)

On the other hand minimizes

(D2)

We have

(D3)

Applying (D1) for and (D2) for , we obtain

(D4)

(D5)

From (D4) and (D5), we deduce that is decreasing

Moreover, it is clear that because .
Since it is decreasing and bounded below, the sequence
is convergent.

Now, let us show that . For
a better readability, we consider hereafter the one-dimensional
(1-D) case. We note the line process and the derivation
operator.

Let us calculate

(D6)

Let us define . Using a Taylor
development of , we have

(D7)

with . Since minimizes , we
have

Consequently

(D8)

We have . We also know (see Appendix
B) that . With , a
simple calculus shows that

Since this function is continuous, it is bounded on any bounded
interval , with . We know from (12e–f)
that is continuous and strictly decreasing and that its
limit when is zero, so its derivative is negative and
necessarily vanishes when . Thus

Now, for , a Taylor development yields

(remember that condition (12(h)) is , and note that
conditions (12(b)–12(c)) imply ).

Thus, can be bounded above for all values of,
i.e., can be bounded below. Then, such that

Then, finally

and, accordingly to (D3) and (D5)

As the sequence is convergent, we conclude that,
is convergent too. Also, as is one-to-

one, we have: .

Finally, let us show that, in the convex case, the sequence
converges and thus that ARTUR finds the global minimizer

of .
When is fixed, is convex in and the minimum

is attained for . Thus

(D9)

with and

.
On the other hand, the minimum of , is unique and

satisfies the first-order necessary conditions

(D10)

with and .
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Subtracting (D10) to (D9) and making the scalar product
with , we obtain

Let us introduce

(D11)
Let us recall that

and

Since is supposed to be convex (i.e.,
we have

Consequently, from (D11) we have

or

It is possible to show that the norm of the gradient is always
bounded above by a constant,. Then we have

and we conclude that because

. If is full rank, it follows that .

Even if is not full rank, we can show that
. According to (D11), we have

This expression can be rewritten as

(D12)
To finish the proof, we use a standard result in convex analysis.
For a proof of this theorem, the reader is refered to [19].

Theorem: Let be a strictly convex and
function, then , there exists a function

, continuous, strictly increasing with and such
that

such that and

Applying this theorem with
, and , we know that there exists a

function such that

(D13)

It is clear that (D12) and (D13) imply

But is strictly increasing with . Thus, we have
necessarily and we conclude that

.

ACKNOWLEDGMENT

The authors thank J. Darcourt and O. Migneco from Nice
Faculty of Medicine for their fruitful collaboration and for
providing us with real data. They also thank two anonymous
reviewers for their very careful reading of the manuscript and
their sound advice.

REFERENCES

[1] G. Aubert, L. Blanc-F́eraud, M. Barlaud, and P. Charbonnier, “A
deterministic algorithm for edge-preserving computed imaging using
Legendre transform,” inProc. 12th Int. Conf. on Pattern Recognition,
Jerusalem, Isra¨el, Oct. 1994, pp. 188–191.

[2] J. Besag, “On the statistical analysis of dirty pictures,”J. Roy. Stat..
Soc., pp. 259–302, 1986.

[3] A. Blake and A. Zisserman,Visual Reconstruction. Cambridge, MA:
MIT Press, 1987.
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