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Summary. We study here a classical image denoising technique introduced by
L. Rudin and S. Osher a few years ago, namely the constrained minimization
of the total variation (TV) of the image. First, we give results of existence and
uniqueness and prove the link between the constrained minimization problem
and the minimization of an associated Lagrangian functional. Then we describe
a relaxation method for computing the solution, and give a proof of convergence.
After this, we explain why the TV-based model is well suited to the recovery of
some images and not of others. We eventually propose an alternative approach
whose purpose is to handle the minimization of the minimum of several convex
functionals. We propose for instance a variant of the original TV minimization
problem that handles correctly some situations where TV fails.
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1. Introduction

L. Rudin and S. Osher have proposed, quite a few years ago, the following
method for image reconstruction (see [14], [16], [17], [18] and the references in
these papers). Suppose your image (or your daa3 a function defined on a
bounded and smooth (or piecewise smooth) open subsaft RN — very often

£ will simply be a rectangle i? — , and suppose that this data is a “nice,”
say, piecewise smooth imagethat has been transformed via a linear operator
A (for instance, a blur) and to which a random namsbas then been added:

(1) Up =Au+n

You wish to recoveu, knowingug. Of course we must assume some knowledge
of A ‘andn in order to be able to solve the problem. Rudin and Osher’s approach
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168 A. Chambolle, P.-L. Lions

consists in solving the following constrained minimization problem:
Minimize / |Vu|

2 2
with/Au:/ Uo and/ |AU — Ug|? = 0.
(9] 2 (9]

The first constraint corresponds to the assumption that the noise has zero-
mean, and the second that its standard deviatien is
This problem is naturally linked to the following unconstrained problem:

(3) Minimize/Find a critical point of/ |[Vu| + 5 |Au — up|?
2

for a given Lagrange multipliea. As long as) is non-negative, this is just

a minimization problem, but i\ < 0, not much can be said about it. Notice
that in both problems (2) and (3),, |[Vu| is just an alternative notation for
|Du|(£2), common in image processing papers. We will not use it any longer, but
prefer to denote the total variation of a functiore BV((2) by J(u) = |Du|(£2).

In the remaining of the paped will be considered as a convex and lower
semicontinuous function obP(f2) (taking value o everytimeu ¢ BV({2)).

In the next section, we present an existence and uniqueness result for (2),
as well as a proof of the link between (2) and (3), under the assumptions stated
below. Then, in Sect. 3, we will explain how a classical relaxation method can
be used to solve (3), and show a proof of convergence for this method.

In the following sections, we will comment some results, and consider as
well variants of (3). In particular, we will propose to replatevith a functional
that takes into account several properties of the images, that we need to keep
or recover. This new functional will correspond to the convexification of the
minimum of two or more functionals, each one of those corresponding to one
desired property, so thdt{u) ~ 0 each timeu decomposes into functions having
the right properties. This general framework may prove useful in a wide class
of image reconstruction problems. For instance, the TV functional does not act
upon constants but does on affine functions. We explain how to construct, by this
general procedure, a simple modification of the TV that does not act on affine
functions.

First we need to state a few assumptions, that are necessary for our study,
but also quite natural.

H1. Ais a continuous and linear operatorIdf({?),

H2. A-1=1 (s [,A"u= [,u forall u e LP(£2)),

H3. n(x) is an oscillatory function, representing a white noise added to the
“clean” image,

H4. [,n =0, ando? = [, [n|? is known.

Herep = 2 if the dimension is 1 or 2, and = N/(N — 1) if N > 3. In
special casep may have some other value iINJ(N — 1), 2] (for instance, when
A is the identity operator, we may stay i(£2) even wherN > 3).
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Image recovery via total variation minimization and related problems 169

Remark 1.The second assumption may be seen as technical, as it ensures that
|Du|(£2)+||Au]|, is coercive on BV(?) [13], the space of functions with bounded

total variation (herdDu|({2) denotes the variation of function over {2), but

it is also a natural assumption in the case whAreepresents a blur (or any
mean-preserving linear filtering) of — for instance wheny, is a picture taken

with a defocused camera. This may not be suited to other interesting image
recontruction cases, like tomography or IRM reconstruction (see for instance [6]):
in these situations another hypothesis has to be made to ensure some control on
the L-norm of u (for instance A1 # 0).

Remark 2.Notice that

/|u0|2:/ |Au+n\2:/ |Au|2+/ |n\2+2/ Au.n,
2 2 2 2 2

and as it is reasonable to assume y"}gAu.n = 0 (which means that the “noise”
andAu are totally uncorrelated signals), this implies tigt/uo|? = [, |Au[*+0?
(to simplify we assume that the measurefdfss 1), and|[uo|3 = [, |uo|* > o2
Moreover,n also has to be orthogonal to constant functiof}§r( =0), and the
same argument shows now that for alE R, ||uy — c||3 has to be greater than

o?.

Therefore, we always will assume that:

H5. ||Uo—/ Uonzo'.
0

2. Existence and uniqueness for (2)

The following theorem shows that problem (2) is a well-posed problem:

Theorem 2.1. Assume H1-H2 hold, as well as H5:€ (0, [Jup — [, Uoll,]. As-
sume also thatqie X, where X is the closure in?((2) of L?(£2) N A(LP(£2) N
BV(£2)).! Then (2) has a solution & LP(£2)NBV(2), and Auc L2(£2) is unique.
Moreover, problem (2) is equivalent to (3) for a uniquedif< |juy — fQ Uol|,)
and non-negativd.agrange multiplieri (that depends on, and of course ongJ
). If Ais injective, then the solution u of both problems is unique.

Here as previouslyp =2 if N =1 or 2, andp = N/(N — 1) for N > 3,
so that BV(?) is continuously embedded it (£2). However, in some particular
cases we also may suppgse> N /(N — 1) and therLP(£2) N BV(£2) & BV(£2).

LIf up € X then one also has to assume that §, whereé is the distance betweex and up,
but everything else remains true. In fact, it suffices in this case to repiabg its L2(£2)-projection

onX, uj, ando by o’ = \/02 — 62, and all statements and proofs in the sequel turn correct
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170 A. Chambolle, P.-L. Lions

Remark. In the sequel we will sometimes assume t[fgtuo = 0. This may
be done without loss of generality: actually,uf = uy — fQ Up, we have the
following obvious fact that is due to Assumptidi? on A:
u is a solution of (2) (resp., (3))
&
u=u-— [,uis a solution of (2) (resp., (3)) withp instead ofuy.
Therefore, in almost all the proofs that follow we could assume that all functions
stay in{u € LP(2) : [,u =0}, which is a closed subspace — with respect to
both strong and weak topologies — I0f({2).
The following sections are devoted to the proof of Theorem (2.1).

2.1. Existence of a solution

The existence of a solution to problem (2) is proven in [14], in the case where
is a compact operator and for apy Here we adapt the proof to the case where
A is not compact (for instance, & is the identity operator), provided5 holds.
Suppose[, up = 0 and consider a minimizing sequence for (2), that we
denote byu,, n > 1. We assume the constraints are satisfied byqallherefore
un is bounded in BV(2) (as|Dul(£2) +||Aul|, is greater than the B\¢)-norm —
see the Poincérinequalities in [13], [21]) and ikP(f2) by Sobolev embedding,
with p € [1,+o0] if N =1, andp=N/(N — 1) if N > 3 (we choose = 2 for
both caseN =1 or 2). Thus we can assume thgtconverges weakly iP({2)
to u, while Du, converges weakly as a measurello. As Au, is bounded in
L2(£2), we also assume tha#tu, weakly converges in?(£2) to some function
which has to beAu because of Assumptiod1l.
We have,

J(u) < Iign inf J(uy),

/Au: lim /Aun:O,
.Q n—oo Q

|AU = o, < lim [|Auy — ||, = o
Consider now the continuous functidrft) = ||t.Au— Up||, for t € [0,1]. As
f(1) < o andf(0) > o, there exists somee [0, 1] such thaff (t) = 0. Function
u’ = t.u satisfies[, u’ = 0, |Au" — uo||, = o, and

J) =tI(u) < Iinnlinf J(un);

and provides a solution for the problem. (Moreover we see that int fact and
u’ =u, as we cannot havg(u’) < J(u)). O
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Remark 1.In this proof, instead of Assumptior2, we could just assume
that A1 # O (which implies that| [, u,| is bounded and therefore still en-
sures the weak compactness af)(in BV({2)). However, whenfQ U # 0 it
becomes more difficult to show that the limit of the minimizing sequence sat-
isfies [|[Au — uo||, = 0. One has to assume, for instance, thgtAl # 0 and

o < |up—(Al/ [, AlL) [, Wll,. If A1 =1, ando < |[up — [, Uo|l,, it is straight-
forward to adapt the proof to the cagg uop # O.

Remark 2.If we drop the constraint, Au = [, uo, then for anyo < ||uol|,,
we can find a minimizeu of J with ||JAu— W, = o (even if 1# Al # 0).
Moreover, we necessarily have that gag ||A(u + ¢) — Ug||, = o = ||Au — Ug||,,
which implies that(Al, Au — up) = 0. Therefore, Assumptiokl2 automatically
ensures that the minimizersatisfies/,, Au = [, uo. In the sequel we will always
assume thafl = 1 and forget the constraint of}2 Au.

Remark 3.Notice that if for somep within (N/(N — 1),2] we have|ju|, <
C||Aul|,, for instance ifA is the identity andp = 2, then the same existence
result holds withu € LP(£2).

The previous proof shows in fact that, as longaas< ||up — [, W, the
minimum of J in the set{||Au—w|, < o} is reached for somel with

[Au—uo||, = o, that satisfies/,, Au = [, up. Therefore, problem (2) is equiva-
lent to the constrained minimization problem

Minimize J(u)

4) with / |AU — Up|? < 02
2

in which the constraint is convex.

Moreover, if bothu and v are solutions to (2), we deduce thatu = Aw.
Actually, we havel (“}") < 2(J(u)+J(v)) = minJ and||A"}" — Wo||, < o, with
equality iff Au= Av. As we cannot hav§A">" — w||, < o, thenAu = Av.

2.2. Characterization of the solutions

The equivalence between (2) and (4) has interesting consequences. We first study
the simpler case wher& is a continuous operator frot®(£2) into L?(£2), and
will treat the general case later.

Proposition 2.1. If u is a solution of (2), and ALP(£2) — L?(£2) is continuous,
then there exista > 0 such that

—AA*(Au — up) € 9J(u).

HeredJ(u) C LP(£2) is the subdifferential off atu [11], [3].
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172 A. Chambolle, P.-L. Lions

Proof. Set

_ _[+oo ifugug+oB & |u—uwl, >0
G(U) = Xypros(U) = { 0 fucuw+oBs|u—uwl,<o

(B denotes the closed unit ball i?(£2)). J and G are convex lower semi-
continuous functions and problem (4) is equivalent to minimizlifg) + G(Au).
We have Do = {u : J(u) < +oo} = BV(£2) N LP(£2) and DonG = {u
G(u) < +oco} = ug + 0B, and as we assumed thaf € ADomJ, there exists
0 € DomJ with ||Al — Uol|, < 0/2. Then, asA is continuous fromLP(42) into
L%(£2), G o Ais continuous ati (i € Int(DomG o A)) and therefore for alli,

(J +G o A)(u) =9I (u) +I(G o A)(u).
Moreover, asG is continuous afAli, we have for allu,
9(G o A)(u) = A*0G(Au)

with 9G(u) = {0} if |ju—upll, < o and 9G(u) = {A\(u — up), A > O} if
[lu —uo||, = o. Thus,

8 +G o A)(u) = 9J (u) + A*IG(Au).

(See [11, Prop 5.6 and 5.7] or [3, Thm 4.4].)
If uis a solution of (2) and thus of (4), then®d(J + G o A)(u). As any
solution of (2) satisfie§Au — up||, = o, this shows that

x>0, 0 € 03 (u) + AA*(Au — up)
< A >0, —AA"(Au — Ug) € AJ(u). O

Note that it implies that for this\ > 0, u is a minimizer of the convex func-
tional J(u) + (\/2)]|Au — wpl|3 (which is the functional of problem (3)). Con-
versely, a minimizeru of this functional is obviously a solution of (2) for

o = ||Au — w||,. This establishes the equivalence between problems (2) (with
0 <o < |u— [, ll,) and (3) (withh > 0). We later on will show that the
correspondence betweenand ) is (almost) one-to-one, but before we have to
prove the equivalence between (2) and (3) in the general case (wlgmot
necessarily continuous froiP(£2) into L2(£2)).

Remark. The previous proof is still valid iN > 3, N/(N —1) < p < 2 and
Cilullp < [|Aull, < Ca|Juflp- In the sequel we will assume=N /(N — 1).

Now we suppose thdll > 3, A is an arbitrary continuous operator from
LP(£2) into LP(£2) (p = N /(N — 1)), satisfying Assumptiofd2, and such thatl
belongs to the closure df?(2) N ABV(£2)) in L2(£2). Let p. be a symmetric
smoothing kernel and set for amy e LP(£2), A.u = p. * Au, Au and all other
functions being extended @\ by the value zero outsid®. If ¢ € L?(£2) and
lo]l, < 1, we can write, lettingy’ =p/(p — 1)
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(D, AU) 2y 122y = (D, Pe * AU vy L2y
<ps * ¢,AU>

lloe * llp [[AU[p

< llpellpli@llallAullp

and as||¢|js < C||¢]l, < C and||Aullp < ||Allp|lu]lp, we have for anyp with
ol <1

AIA 1

(6, AcU) 2y 122y < Cllullp
and thus
[Acullz < Cllullp,

with C a finite constant, showing thdt. is a continuous operator frotP({2)
into L2(£2).
We will now consider a solution. of the problem

(5) Minimize J(u)
with [[Acu — U], < o

for a givenup . € L%(£2) that converges tap ase goes to zero. We first define
this up . as follows. Notice that iiu is a solution of (2) and. a constant that
goes to zero witle, we have

HAE(U + CE) — Pe * (UO + CE)”Z = ”pe * (AU - uO)HZ =0e — 0

ase goes to zero (and. does not depend o). We setug . = t.p. * (Up + C.)
with t. = o/o.. C. is chosen to be 0 wheltt. p. * ug||, > o, otherwise we choose
c. > 0 such that|t.p. * (U + ¢.)||, = o (notice that||t. p. * (Up + C)||, — +oo as
C — +00). As

[[tepe * (Uo +C)llp = o >t |(|[pe * Uol|p — C[|pe * 1[)]

C. is bounded and any limit poindy ase goes to 0 satisfiefug + co||, = o and
thereforecy = 0. Thus, lim_oc. =0, andup . goes toup in L2(2) ase — 0.2
Now consider problem (5): the same proof as in Sect.2.1 may be adapted
to show that there exists a minimizeg, moreover adlug.|, > o we have
|Acu: — Ug ||, = 0. Asug . was built in order to haveA.t.(u +c.) — Ug.|l, = o,
we have
J(u) < JI(t(u +co)) =tI(u).

Therefore we may extract a subsequence (still denat¢duch thatu. goes to
someu weakly in BV(f2) as well as inLP(f2). Moreover we may assume that
A.u. weakly converges to somec L?(£2) and if ¢ € C(£2),

e—0
(B, AcUc) = (p= * 9, Al) — (¢, Au)
ZIn fact, c. is just defined to ensure thiito,- ||, > o and therefore is useful only in the case

whereo = ||ug|l,- If o < ||uo|l,, then as soon as is small enough we haviuo .||, > o, even if
c: =0foralle
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(aspe * ¢ goes strongly tap in LP(£2)" and Au. weakly toAu in LP(£2)) which
shows thaty = Au. As A.u. — Ug. weakly converges téu — ug in L%(£2), we
have

AU = woll, < o = lim [[Acu. — uo.|,

and we also have
(6) J(u) <lim igf J(ue) < limsupd(u;) < J(u),

E— e—0
showing thatu is also a minimizer for problem (2). In particulafu = Au,
J(u) = J(u), which shows that the liminf and the limsup in (6) are in fact limits,
and||Au — up||, = o, which shows thafu is in fact the strong limit ofA.u. in
L2(£2).

Now, for reasons similar to those in the previous section (becausis
continuous fromLP(§2) into L2(£2)), there exists for alt a positive). such that

—AAL(AU: — Ug) € 8I(u.) C LP(92).

(Here the assumption théitiy c||, > O and thus|A.u. — ug ||, = o is essential.)
Among other things this implies that is a minimizer for

@ I+ 5 AU~ o B
and allows us to show that. is bounded. Actually, we have for all € LP({2),
@ ot <3+ AU o lB < I+ AU~ o
As o > 0, there is au € BV({2) such that, ife is small enough,
IA-U — uoc|[3 = [l pe * (Au — t.(uo + C.)) |13 < 0?/2
(asup € L2(£2) N A(BV(£2))). It follows that

<AL](u) <

= 0_2

Ae +00
Consider now a limit point\ > 0 of A.. The variational inequality (8)
converges as goes to zero to

A A
©) I+ AU = ol < I+ [IAu— ol

as eitherAu ¢ L?(£2) and the right-hand term of (9) iso¢, or Au € L2(£2) and
it is the L2-limit of A.u. Notice that even if we hava # u, still Au= Au and
J(u) = J(u) and (9) is also satisfied by. Conversely we will see in the next
section that any minimizew’ of the functional in (9) satisfieé&\u’ = Au and
J(u") = J(u) and therefore is also a solution of (2) with the samé his shows
the equivalence between problems (2) witke @ < [|up — [, Uo|, and (3) with
A > 0 in the general case.

We will now study the Lagrange problem and show that for a giwewith
o < |luo — [, Wwll,, there is a unique corresponding
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2.3. Study of problem (3) fox > 0

First of all, it is simple to show that wheh > 0, problem (3) has a solution
ut € L2(£2)NBV(£2), which is unique as soon &sis injective. Acar and Vogel [1]
have analyzed this problem in detail and have also studied perturbations of the
system, regularizations, etc. Far= 0 we need to add explicitely the condition
[, Au* = [, ug, otherwise any constant function is a solution, on the other hand
when A > 0, AssumptionH2 automatically ensures that the minimizers of the
energy in (3) satisfy/,, Au* = [, Uo.

Notice that, because of the strict convexity of the teAu — up||3 with
respect toAu, it is straightforward to check th#&u* is unique, even ifi* is not.
This implies that we can define a functiorf)) = ||Au* — uo||,. We then have
the following lemma:

Lemma 2.3. The functiono()\) is a nonincreasing and continuous function. It
mapsk. onto (0, ||up — fQ Uol|,]. Moreover, there exists > 0 such thato()\) is
strictly decreasing oifi\, +o0), ando(A) = [[up — [, Uoll, ifF O < A < A

Proof. Consider first\ > ¢ > 0. We have

A A
(10) I+ 5 AU — w3 < I(ur) + 7 [|Au" — uo 3
and u i
(11) I+ AU — Ul < I )+ [AU* — wol 3.

Combining both inequalities, we gex € 1)o(\)? < (A — p)o(1)? and this shows
thato(.) is nonincreasing.

As for anyop € (0, [[uo — [, Uo||,] problem (2) admits a solution, proposi-
tion (2.1) shows that there exists\a > 0 such thatr(\o) = 0o, and this implies
the continuity of the mapping(}), as well as the fact that goes to zero as
goes tooo.

We want to prove now that this mapping is strictly decreasing. Suppose there
exists A < p such thato(\) = o(). Equations (10) and (11) show this time that
J(u*) = J(u*) and, in fact, that* is a solution of (3) for any\’ € [\, u]. If A
is continuous fromLP(£2) into L?(f2), this means that

(12) YN €[\ ], —NA" AU — up) € DI () # 0.
Remember thap € 9J(u) is equivalent to
(p,u) =J(U)+JI"(p)

whereJ* is the Legendre-Fenchel transform of the convex funciiofsee for
instance [3, Prop 4.2]). Heré*(p) = xv(p) (=0 if p € V and +o if p € V)
whereV is a convex closed set (the’(£2)'-closure of {y = divgp : ¢ €
Co(12) and |6 < 1}).

Therefore,
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(13) YA € [\ ul, =N (Au* — ug, Aut) = J(u?)

which implies that) (u*) = 0 andu* = [, up (anda () = [lup — [, Uol|»)-

Now, in the general caséA(continuous operator dfP((2)), we cannot say
that (12) holds. If we consider the proof in Sect.2.2, we can see that for the
approximated problems, we have for each

_)\S(AUE - UO,E) €ad (ua)v

thus
—Ae (AU — Ug e, Au.) = J(U.)

and this converges to
—A (AU — Up, Au) = J(u).

However, we need this result fany A such thau minimizesJ (u) + (A/2)||Au—
Uo||2, and not just for the limit poinf\ of A.. In order to show this, we have to
consider now the approximated problem

_— A
(14) Minimize J(u) + ) |Acu — uol|3.
If u. is a solution of (14), we have

- <Aaua - UO7AEUE> = J(Ug),

and we must check thak.u. strongly converges tdu in L?(£2), and J(u.)
converges tad (u), ase goes to zero — whene is a minimizer of (3). (We recall
that, given\, neitherd (u) nor Au depend on this particular minimizer)

As J(u;) and||A.u. ||, are bounded). converges weakly to somein BV((2)
and inLP(f2), andA.u. converges weakly ih?(£2) to some limit which must be
Au. We have

A .. A
(15) I+ AU — ol < liminf J(uc) + || AUz — Uol|3

and thereforas minimizes (3).
Now call m = J(u) + 5||Au — uo||3. For anyn > 0, if ¢ is small enough, we
have||A.u — Aull, < n. As

[Acu — W3 = [|Au — Uo||3 + ||Acu — Aul|3 + 2 (A.u — Au, Au — Ug)

IAU — uol|Z +n? +Cr,

IA 1l

we get

A A A
M= 3(u) + AU — wl3 < I(W)+ 5 IAu — W]} < m+ (C+ .

This implies with (15) tham. — m ase goes to zero, moreover, as the liminf
in (15) is in fact valid independently for the term dnand for the term irj|-||3, it
also implies that) (u;) — J(u) and||A:u. — Ug||, — |JAu — Uol|,, Showing that
the limit of A.u. is strong inL2(£2). Thus (13) holds in the general case.
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Therefore in any case we have established thatig a solution of (3) for
both A and i, A < i, thenJ(u) = 0. The consequence of this fact is tldf\)
has to be strictly decreasing, except possibly am\Jdor some\ > 0, where it
takes the valugjuo — [, Uo||,. The proof of Lemma 2.3 is completeD

It is possible to have > 0: actually, (we assumﬁQ Up = 0), 0 is a solution
of (3) if (assumingA is continuous fromLP(£2) into L2(£2) — or up € LP(£2)"),

MUy € 9J(0) =V
WhereV = DomJ* is defined above. Thereforg, may be defined as
A=maxA @ M"up eV}
Notice that if we solve the problem (for any smooth functfonn 912)

Av=A*ug in 2
v=f on 912

we get a lower bounds > 1/||Vv|| which is non-zero as soon &8ug € L9({2)
with g > N (asv € W29(£2) c C(£2) in this case).

3. A relaxation algorithm for solving (3)

For numerical reasons, we do not solve exactly (3) but an approximation. We are
going to prove the convergence of a general relaxation algorithm, described in [6],
[19], and inspired mainly by works by D. Geman (for instance see [12]). [2] gives
a proof of convergence in the discrete case, while [20] proposes a similar method
for minimizing (via a gradient method descent) the total variation of an ifhage
See also [7] for a wide review of this kind of “Auxiliary Variables” approaches in
computer vision, with applications to many energy-based reconstruction or edge
detection problems.

Let &, be the followingC? function:

1
x? if x| <e
2e 1
(16) I N if e < |x| <

3

11 1
2 _ ; >
X +2(6 e) if |x| > -

and consider the problem
(17) Minimize / o (|Vul) + 2|Au — up?
Q

whereu € H(2) = W12(02). If we introduce (u) = J (u) whenu € H(£2) and
+oo whenu ¢ H(£2), then we can show thaf,(®.(|Vul) + 5) decreases and

3 We have just learned that Dobson and Vogel had also independently found a proof of convergence
for a similar iterative approach [10]
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converges pointwise td(u) ase goes to zero. A$ is the lower semi-continuous
envelope ofl, this implies (see [8, Prop 5.7]) th%(@s(wu\h 5) I'-converges
to J and that the functional in (17)-converges to the one in (3) asgoes to
zero. Therefore, ifA is injective, the unique solution of (17) will converge as
goes to zero to the solution of (3) (or,Afis not injective, the solutions of (17)
will have limit points that are solutions of (3)).

In the sequel we show how to minimize (17). We will set= 1 and, as
will be fixed, we will denoted. simply by &. Also, we will only treat the case
whereA is the identity operator, the general case being similar.

Consider the following functional:

(18) E(u,v)=/ v|Vul?+ 1+|u—u0|2
e} v

whereu € H(2) andv € L?(2), e < v < 1/e.
Start from anyu! andv? (for instancev! = 1) and let:

u™ = arg min E(u,v")
(19) ueH(1) L L
n+l — H n+l —
= arg min Eu™-, = eV A
v gsgvgl/s ( U) |vun+1| 5

where we used the notatiomsv b = max@, b) anda A b = min(a, b). u™?! is
therefore characterized by

Vo € H l(!2)7/ V"YU Ve + (UM = up)g = 0,
2
i.e. —div ("Vu™) +u™! =y in H1(£2)'.4 We have the following result.

Proposition 3.1. The sequencéu,) converges (strongly in3(2) and weakly in
H(£2)) to the minimizer of (17).

Proof. It is easy to establish that

o) EW —EWLT) > |V —um|E+ ut 3
f +
> min(L e)[[u” — u™ 51
and that
(21) E(un+l7vn) _ E(un+1’vn+l) Z €3||Un _ Un+l||§_

This implies that for allp € [1, +0),

4 Note here that the divergence operator is in this case has to be understood in a weak sense,
i.e. as a notation for the injectioh?(£2, RN) — H1(£2)" that maps a function to the linear form
¢ — — va¢; in fact, it will be always applied to functiong with divv € L?(£2) that satisfy an
homogeneous Neumann condition-(n = 0) on 8£2. The functionsu € L?(£2) are also identified
with the linear forms¢ — f u¢. We do not need in this work to know anything more about the

structure of the dual spadel((l)' which is simply endowed with its standard weakepology
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(22) im {|o" — " |uo() = 0

(for p < 2, as{? is bounded, and fop > 2, asv" is bounded).
Now take any test functiop € H1(£2). For alln we have

/ Unvun+l . V(b + (un+1 _ UO)(b - 0,

2

which may be written

(23) / vn+1vun+1 . v¢ + (un+1 _ u0)¢ - / (’Un+1 _ ,Un)vun+1 . V(;57
2 %)

and we have for alp, p’ with ; + pl +3=1,

[ W! < 0" — s [V [V

The last expression goes to zero as long as we can chposach that
VU™ ) is bounded.
This follows from a result by Meyers [15]: as’*! is the solution of the
equation inH 1(£2)’
—div (v"Vu) +u = ug € L3(12),

with 0 < ¢ <" < 1/e < +o0, there exists @’ > 2 (depending orz and the
dimensionN), andC’, C < oo such that

IVu™lp < C"fluo — u™l, < C.

Using this result if we choosp = p?’ilz < o0, the right hand term of (23) is

bounded byC |[v" — v"*1||15||V¢||, and goes to zero as goes to infinity. This
proves that
—divo"Vu" +u" — ug

goes to zero irH 1(£2)’.

Now, as the sequenag” is bounded inH(£2), and therefore compact in
L2(£2) (rememben? is bounded and smooth), we can extract a subsequg&hce
that converges strongly to soniec L2(£2). We also may assume th&u is the
weak limit of Vu™ ask goes to infinity.

As " =V gy A ¢ =P([VU"))/|VU"], all this leads to

/ Nk
—div {QS (vu |)Vu“k} —Ug—u

[Vu™|
in H(£2)'.
For all ¢ € H(£2), we denote
Py B (1)) 1o
_(¢) = —div { Vol v¢} e HY(Q).
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We know that. 4(u™) goes toT = up — u and we need to check that this
limit is exactly. 4(u): this would ensure that satisfies the Euler equation for
problem (17) (i.e.,4(u)+u—upy = 0) and is therefore the unique solution of (17).
In order to do so we shall use the celebrated trick due to Minty for monotone
equations (see for instance [5]).

Consider any € H(£2). As .4 is the derivative of a convex functional, it
is a monotone operator and we can write:

(24 (U) — ) U™ - 6) 20
As n — oo,
o [ POV, o [ PTG, e s
A Ky = . K — . = (.4
o= [ 0w v~ [0 vu= (o)

asVu™ converges tdvu weakly in L2(f2), and
(eu™),u™) = / (Uo — U™)U™ + (W™ — ") [Tu 2
2

goes to(T,u) using the strong convergence of< and Meyers’ result, once
again.
Therefore (24) becomes at the limit

<T - "'/77((23)7 u-— ¢> > 0.
We can takep = u + hy for anyh > 0 andy € C£°(42), and this leads to:

But (&'(|Vu +hVy|)/|[Vu + hVy|)(Vu+hVp) is a continuous function df
and goes tq®’'(|Vu|)/|Vu|) Vu ash goes to zero, moreover it may be uniformly
bounded (as soon dsis bounded) by a square integrable function and we may
invoque Lebesgue’s theorem to conclude that this limib @ampes to zero is also
a strong limit inL2(£2). Therefore,

P'(IVu +hvyl)

+h
Vu+hyy VUTRVOVY

(LU +hy),p) = /Q

@'(|Vul) ,

— VuVy = (.#4(u),p

| (W)

ash goes to zero and this shows that for@alE C(£2),
<T”¢)> S <U//J(U)710>a

which means thal =.-4(u) and concludes the proof.c0
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Fig. 2. Reconstructed images with= 60 ando = 67

Remark 1.1f Ais not injective, the solutions of problem (17) may form a closed
convex set (a®. is not uniformly convex). Theny, may not converge to one
solutionu of (17) but the proof shows that its limit points are solutions of the
problem. IfA is injective, thenu, has a unique limit point, therefore its limit.

Remark 2. In practice, in discrete images, the gradients are always bounded and
it is for instance unnecessary to consider, in equation (16), the|ghse1/c.

Also, it may turn simpler to minimize a functional like. (|Ou /9x|)+®.(|0u/dy|)

rather thand.(|Vul).

4. Some remarks about the model

We treated a few examples, using the algorithm described above. Results are
shown on Figs. 1-3. Here grey-level values range from 0 to 255, the dark squares
have value 73 (on the original image) and the light squares have value 183. This
model is excellent if the image to reconstruct is (almost) piecewise constant (cf
Fig. 2). For a piecewise smooth, or affine image, staircase-like structures will tend
to develop, and this is easy to explain. Actually, Figs. 4—6 show (in dimension
one) the worst case you could imagine: here the “original” signilat we want

to reconstruct is simply the function= x, and the “noise” has turned it into a
piecewise constant nondecreasing function. The standard deviation of this “noise”
is approximatelyr ~ 3.5 (so that Fig. 5 should be the “correct” reconstruction).
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Fig. 3. Original and reconstructiors(~ 30)

50

45 Up=0+n
ii —
40 solution U —
35
30 .
25
20
15 — -

10

0 5 10 15 20 25 30 35 40 45 50
Fig. 4.0 ~ 2

Then it is simple to imagine what happens: the total variation of the solution
u, which one expects to be nondecreasing and piecewise constant, is just the
differenceu(50) — u(0), and the easiest way to make it lower is to decrease
u(50) and increase(0). On the figures it is impossible to tell what the “best”
reconstruction is (you probably would say is better). The same kind of effect
appears on Fig.7 (here the standard deviation of the noise is 5.5). Clearly, the
model is not suited to the reconstruction of images that are not nearly piecewise
constant. This defect has already been mentioned and analysed in [9]. Further in
the paper we present a variant of this model that handles correctly signals such
as the ones treated in Figs. 4-7. The results are very good, see Fig. 13. (The
signal on Figs. 13 is a concatenation of the noisy signals of Figs.4—6 and of
Fig. 7.)

5. Inf-convolution of two convex potentials

The interest of denoising an image by minimizing a functional [f[K&u| rather
that [ |[VulP, p > 1, is clear. Actually, a functiom € BV may present disconti-
nuities along il — 1)-dimensional surfaces, whil/1P functions may not: it is
therefore theoretically impossible to reconstruct “edges” with functions/ ¥,
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50
45 Up =0+

co S

40 solution
35
30
25
20

15

10

0 5 10 15 20 25 30 35 40 45 50
Fig. 5.0 ~ 3.5

45 Up=u+n
u
40 solution U —

—

0 5 10 15 20 25 30 35 40 45 50

Fig. 6.0 ~ 5.8

Many authors [2, 6, 12] have proposed to minimize non-convex functionals of
the gradient of the image, and particularly functionals growing sublinearly at
infinity (for instance, choosing < 1). Their idea is to enhance the edges. This
seems mathematically absurd in a continuous setting, however, these methods
often give visually good results just because the discretization of the image au-
tomatically makes the problem finite-dimensional, in which case the convexity
of the functional is no more necessary. Unstability is almost always the main
drawback of this kind of approaches.

Here we want to present variants of another kind, based on the minimization
of several convex functionals of the gradient. Suppose, for instance, that you
want to build a low-diffusive filter, and that you process images in which appear
mostly horizontal and vertical features. You might want to minimizenti@mum
of two “horizontal” and “vertical” functionals, say, (we assunméd 2, 2 C [2?)

p p
(25) =[5 ww= [ |

ay
(We will consider the casgz=2 andp =1.)
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U=0>0+n
50 a
solution U —

0 10 20 30 40 50 60 70 80 90 100

Fig. 7. Another noisy signal, witlr ~ 5.5

Fig. 8. A minimizer of (29) — withA chosen in order to have = 60

Now the problem is the followingu — J;(u) A J>(u) is not a convex l.s.c.
functional of u. We propose two different ways of dealing with this problem.
One is to consider theonvex envelopef J; A J, i.e.,

(ZG)J(U)

sup{j(u) : j convex,j <Ji,j < Jy}
inf{6J;(u) + (1 — 6)Ja(uz) : Oup +(1—Oux =u,d €[0,1]},

or the lower semicontinuous convex envelopelph J,, i.e.,
27) JU) =L A)™ = v INH.

The second approach, that may turn to be simpler in some cases, is to consider
the inf-convolutionof J; andJ,, i.e.,

(28) J(u) = 1A (u) = inf{J1(ug) + Jo(up) : ug +up =u},

or its semicontinuous envelop&(u) = (Jy(u)* + Jo(u)*)*.

Notice that ifJ;, for instance, is 1-homogeneous, thinis the characteristic
function of some closed sé&t;, and if J; is non-negative otv; (for instance if
J2(0) = 0) thenJy(u)* + Jo(u)* = J;* v J; and both |.s.c. envelopes coincide.

Now consider); andJ, as defined by (25). The previous remark shows that
for p = 1, both notions (inf-convolution and convex envelope) are equivalent (it
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Fig. 10. Functionsu; andu, found in the minimization of (30)

is straightforward to check also that in this case (26) and (28) give the same
result). On the other hand, g = 2, those formulas define distinct functionals
that it is easy to compute in the case whé&és a rectangle or the whole plane
22, Actually in both cases we may use the Fourier transform, and it is simple to
check that the convex envelope &f andJ, is

J(U)= |nf |§|2|77|2 |0|2’
00,11 J 0€[% + (1 — 6)[n|?
whereas the inf-convolution is
|§|2|17|2 |0|2
2 +nl?
where U is the Fourier transform ofi and 2 the Fourier domain (i.eZ2 or

[®?). Using this last formula and a FFT algorithm, it is quite simple to solve the
following problem.

(29) Minimize J’(u) + ;Hu — Wll3.

J’(u)=J1AJ2(u)=/Q|

A result is shown on Fig. 8. The gradient descent flow) bfs associated to the
pseudo-differential operatoﬂ()*lafy.

For p = 1, we do not know how to compute the convex envelopé;adnd
J>. However, we can solve numerically the following problem (using a method
similar to the one described in Sect. 3).
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Fig. 11. A minimizer of (31), withe = 10 (left), and “first” and “second order” total variation
minimization (right)

60
Up=0+n

50 u
solution U —

40 _ IR
30 ) — !

20 - -

'_ '
10 - -

-10
0 20 40 60 80 100 120 140 160

Fig. 12. Total variation minimization

. A
(30) Minimize Ji(up) + Jo(up) + ) [lug + Uz — Uol|3.

See Figs. 9-10 for an example.

The same method could be used with any other kind of convex functions.
For instance, one might want to minimize a combination of the total variation
and the integral of the squared norm of the gradient. In this case the convex
envelope is equal to the inf-convolution and we getJifx) = fg |Vu| and
Ba(x) = (1/22) [, [Vul2,

1 €
e [ v,
2 |Vul<e |Vu|>e 2

which is straightforward to minimize with the method shown in Sect.3 — see
Fig. 11, left.

(31) IAT(U) =
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60
Up =0+ n
50 a
K solution U —
40 ‘ oo
30
20
10 ’
0

-10
0 20 40 60 80 100 120 140 160

Fig. 13.“First and second order variation” minimization

Or, one could try to minimize this way the inf-convolution of a first order
functional (like the total variation) and a second-order functional (like the total
variation of the gradient, or first derivative). Let us have a particular look at this
last idea. It may be written as the following minimization problem:

min/ |VU1| + a|d2U2| + )\|U1 + Uy — Uo|2
(]

Uz, U2

- Tin/ VU — Vol + a|V(V0)| + Alu — U2
v J

if we letu = u; +up, andv = up. Hereu (andu;) € BV(£2) andv € W1,

with Vo € BV(£2, BRN). The interpretation is very simple. In some sense we
“first” approximate locally the gradient of the functiag by Vv, that has itself

a (very) low total variation (we have to choose>> 1). Then, we findu as an
approximation ofuy such thatu — v has a low total variation. As a consequence
we do not get any more an almost piecewise constant result. In dimension one,
the improvement is remarkable, see Fig. 13 (compare with Fig. 12). Notice that
in this case the problem may simply be rewritten

min/ U — w| + alw’| + Au — up|?
uw Jo

if we let w = v'. This is related to standard signal reconstruction methods,
introduced in [4]. In dimension two, a result is shown on Fig. 11, right.
The interesting point here is that the functional we minimize

JU =0 +3)" =LA &)™,

with Jy(u) = [, |[Vu| and Jo(u) = - [, |d?ul, is a convex homogeneous func-
tional that is low when eitheK’u or d“u are low (and zero when is affine).

This idea could certainly be used in many other settings, when a signal or an
image presents various types of characteristic features that need to be preserved
and reconstructed.
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