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Summary. We study here a classical image denoising technique introduced by
L. Rudin and S. Osher a few years ago, namely the constrained minimization
of the total variation (TV) of the image. First, we give results of existence and
uniqueness and prove the link between the constrained minimization problem
and the minimization of an associated Lagrangian functional. Then we describe
a relaxation method for computing the solution, and give a proof of convergence.
After this, we explain why the TV-based model is well suited to the recovery of
some images and not of others. We eventually propose an alternative approach
whose purpose is to handle the minimization of the minimum of several convex
functionals. We propose for instance a variant of the original TV minimization
problem that handles correctly some situations where TV fails.
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1. Introduction

L. Rudin and S. Osher have proposed, quite a few years ago, the following
method for image reconstruction (see [14], [16], [17], [18] and the references in
these papers). Suppose your image (or your data)u0 is a function defined on a
bounded and smooth (or piecewise smooth) open subsetΩ of RN – very often
Ω will simply be a rectangle inR2 – , and suppose that this data is a “nice,”
say, piecewise smooth imageu that has been transformed via a linear operator
A (for instance, a blur) and to which a random noisen has then been added:

u0 = Au + n(1)

You wish to recoveru, knowingu0. Of course we must assume some knowledge
of A andn in order to be able to solve the problem. Rudin and Osher’s approach
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consists in solving the following constrained minimization problem:

Minimize
∫
Ω

|∇u|

with
∫
Ω

Au =
∫
Ω

u0 and
∫
Ω

|Au− u0|2 = σ2.
(2)

The first constraint corresponds to the assumption that the noise has zero-
mean, and the second that its standard deviation isσ.

This problem is naturally linked to the following unconstrained problem:

Minimize/Find a critical point of
∫
Ω

|∇u| +
λ

2
|Au− u0|2(3)

for a given Lagrange multiplierλ. As long asλ is non-negative, this is just
a minimization problem, but ifλ < 0, not much can be said about it. Notice
that in both problems (2) and (3),

∫
Ω
|∇u| is just an alternative notation for

|Du|(Ω), common in image processing papers. We will not use it any longer, but
prefer to denote the total variation of a functionu ∈ BV(Ω) by J (u) = |Du|(Ω).
In the remaining of the paper,J will be considered as a convex and lower
semicontinuous function onLp(Ω) (taking value +∞ everytimeu 6∈ BV(Ω)).

In the next section, we present an existence and uniqueness result for (2),
as well as a proof of the link between (2) and (3), under the assumptions stated
below. Then, in Sect. 3, we will explain how a classical relaxation method can
be used to solve (3), and show a proof of convergence for this method.

In the following sections, we will comment some results, and consider as
well variants of (3). In particular, we will propose to replaceJ with a functional
that takes into account several properties of the images, that we need to keep
or recover. This new functional will correspond to the convexification of the
minimum of two or more functionals, each one of those corresponding to one
desired property, so thatJ (u) ' 0 each timeu decomposes into functions having
the right properties. This general framework may prove useful in a wide class
of image reconstruction problems. For instance, the TV functional does not act
upon constants but does on affine functions. We explain how to construct, by this
general procedure, a simple modification of the TV that does not act on affine
functions.

First we need to state a few assumptions, that are necessary for our study,
but also quite natural.

H1. A is a continuous and linear operator ofLp(Ω),
H2. A· 1 = 1 (⇔ ∫

Ω
A∗u =

∫
Ω

u for all u ∈ Lp(Ω)′),
H3. n(x) is an oscillatory function, representing a white noise added to the

“clean” image,
H4.

∫
Ω

n = 0, andσ2 =
∫
Ω
|n|2 is known.

Here p = 2 if the dimension is 1 or 2, andp = N/(N − 1) if N ≥ 3. In
special casesp may have some other value in [N/(N −1), 2] (for instance, when
A is the identity operator, we may stay inL2(Ω) even whenN ≥ 3).
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Remark 1.The second assumption may be seen as technical, as it ensures that
|Du|(Ω)+‖Au‖2 is coercive on BV(Ω) [13], the space of functions with bounded
total variation (here|Du|(Ω) denotes the variation of functionu over Ω), but
it is also a natural assumption in the case whereA represents a blur (or any
mean-preserving linear filtering) ofu – for instance whenu0 is a picture taken
with a defocused camera. This may not be suited to other interesting image
recontruction cases, like tomography or IRM reconstruction (see for instance [6]):
in these situations another hypothesis has to be made to ensure some control on
the L1-norm of u (for instance,A1 /= 0).

Remark 2.Notice that∫
Ω

|u0|2 =
∫
Ω

|Au + n|2 =
∫
Ω

|Au|2 +
∫
Ω

|n|2 + 2
∫
Ω

Au.n,

and as it is reasonable to assume that
∫
Ω

Au.n = 0 (which means that the “noise”n
andAu are totally uncorrelated signals), this implies that

∫
Ω
|u0|2 =

∫
Ω
|Au|2 +σ2

(to simplify we assume that the measure ofΩ is 1), and‖u0‖2
2 =

∫
Ω
|u0|2 ≥ σ2.

Moreover,n also has to be orthogonal to constant functions (
∫
Ω

n = 0), and the
same argument shows now that for allc ∈ R, ‖u0 − c‖2

2 has to be greater than
σ2.

Therefore, we always will assume that:

H5. ‖u0 −
∫
Ω

u0‖2 ≥ σ.

2. Existence and uniqueness for (2)

The following theorem shows that problem (2) is a well-posed problem:

Theorem 2.1. Assume H1-H2 hold, as well as H5 :σ ∈ (0, ‖u0 −
∫
Ω

u0‖2]. As-
sume also that u0 ∈ X , where X is the closure in L2(Ω) of L2(Ω) ∩ A(Lp(Ω) ∩
BV(Ω)).1 Then (2) has a solution u∈ Lp(Ω)∩BV(Ω), and Au∈ L2(Ω) is unique.
Moreover, problem (2) is equivalent to (3) for a unique (ifσ < ‖u0 −

∫
Ω

u0‖2)
andnon-negativeLagrange multiplierλ (that depends onσ, and of course on u0,
Ω). If A is injective, then the solution u of both problems is unique.

Here as previously,p = 2 if N = 1 or 2, andp = N/(N − 1) for N ≥ 3,
so that BV(Ω) is continuously embedded inLp(Ω). However, in some particular
cases we also may supposep > N/(N − 1) and thenLp(Ω)∩BV(Ω) ⊆6 BV(Ω).

1 If u0 6∈ X then one also has to assume thatσ ≥ δ, whereδ is the distance betweenX and u0,
but everything else remains true. In fact, it suffices in this case to replaceu0 by its L2(Ω)-projection

on X, u′
0, andσ by σ′ =

√
σ2 − δ2, and all statements and proofs in the sequel turn correct
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Remark. In the sequel we will sometimes assume that
∫
Ω

u0 = 0. This may
be done without loss of generality: actually, ifu0 = u0 −

∫
Ω

u0, we have the
following obvious fact that is due to AssumptionH2 on A:

u is a solution of (2) (resp., (3))
⇔

u = u − ∫
Ω

u is a solution of (2) (resp., (3)) withu0 instead ofu0.
Therefore, in almost all the proofs that follow we could assume that all functions
stay in{u ∈ Lp(Ω) :

∫
Ω

u = 0}, which is a closed subspace – with respect to
both strong and weak topologies – ofLp(Ω).

The following sections are devoted to the proof of Theorem (2.1).

2.1. Existence of a solution

The existence of a solution to problem (2) is proven in [14], in the case whereA
is a compact operator and for anyσ. Here we adapt the proof to the case where
A is not compact (for instance, ifA is the identity operator), providedH5 holds.

Suppose
∫
Ω

u0 = 0 and consider a minimizing sequence for (2), that we
denote byun, n ≥ 1. We assume the constraints are satisfied by allun. Therefore
un is bounded in BV(Ω) (as |Du|(Ω) + ‖Au‖2 is greater than the BV(Ω)-norm –
see the Poincaré inequalities in [13], [21]) and inLp(Ω) by Sobolev embedding,
with p ∈ [1,+∞] if N = 1, andp = N/(N − 1) if N ≥ 3 (we choosep = 2 for
both casesN = 1 or 2). Thus we can assume thatun converges weakly inLp(Ω)
to u, while Dun converges weakly as a measure toDu. As Aun is bounded in
L2(Ω), we also assume thatAun weakly converges inL2(Ω) to some function
which has to beAu because of AssumptionH1.

We have,

J (u) ≤ lim inf
n→∞ J (un),

∫
Ω

Au = lim
n→∞

∫
Ω

Aun = 0,

‖Au− u0‖2 ≤ lim
n→∞ ‖Aun − u0‖2 = σ.

Consider now the continuous functionf (t) = ‖t .Au− u0‖2 for t ∈ [0, 1]. As
f (1)≤ σ and f (0)≥ σ, there exists somet ∈ [0, 1] such thatf (t) = σ. Function
u′ = t .u satisfies

∫
Ω

u′ = 0, ‖Au′ − u0‖2 = σ, and

J (u′) = tJ (u) ≤ lim inf
n→∞ J (un);

and provides a solution for the problem. (Moreover we see that in factt = 1 and
u′ = u, as we cannot haveJ (u′) < J (u)). ut
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Remark 1. In this proof, instead of AssumptionH2, we could just assume
that A1 /= 0 (which implies that| ∫

Ω
un| is bounded and therefore still en-

sures the weak compactness of (un) in BV(Ω)). However, when
∫
Ω

u0 /= 0 it
becomes more difficult to show that the limit of the minimizing sequence sat-
isfies ‖Au− u0‖2 = σ. One has to assume, for instance, that

∫
Ω

A1 /= 0 and
σ ≤ ‖u0 − (A1/

∫
Ω

A1)
∫
Ω

u0‖2. If A1 = 1, andσ ≤ ‖u0 −
∫
Ω

u0‖2, it is straight-
forward to adapt the proof to the case

∫
Ω

u0 /= 0.

Remark 2. If we drop the constraint
∫
Ω

Au =
∫
Ω

u0, then for anyσ ≤ ‖u0‖2,
we can find a minimizeru of J with ‖Au− u0‖2 = σ (even if 1 /= A1 /= 0).
Moreover, we necessarily have that minc∈R ‖A(u + c)− u0‖2 = σ = ‖Au− u0‖2,
which implies that〈A1,Au− u0〉 = 0. Therefore, AssumptionH2 automatically
ensures that the minimizeru satisfies

∫
Ω

Au =
∫
Ω

u0. In the sequel we will always
assume thatA1 = 1 and forget the constraint on

∫
Ω

Au.

Remark 3. Notice that if for somep within (N/(N − 1), 2] we have‖u‖p ≤
C‖Au‖2, for instance ifA is the identity andp = 2, then the same existence
result holds withu ∈ Lp(Ω).

The previous proof shows in fact that, as long asσ ≤ ‖u0 −
∫
Ω

u0‖2, the
minimum of J in the set {‖Au− u0‖2 ≤ σ} is reached for someu with
‖Au− u0‖2 = σ, that satisfies

∫
Ω

Au =
∫
Ω

u0. Therefore, problem (2) is equiva-
lent to the constrained minimization problem

Minimize J (u)

with
∫
Ω

|Au− u0|2 ≤ σ2.
(4)

in which the constraint is convex.
Moreover, if bothu and v are solutions to (2), we deduce thatAu = Av.

Actually, we haveJ ( u+v
2 ) ≤ 1

2(J (u) +J (v)) = minJ and‖Au+v
2 − u0‖2 ≤ σ, with

equality iff Au = Av. As we cannot have‖Au+v
2 − u0‖2 < σ, thenAu = Av.

2.2. Characterization of the solutions

The equivalence between (2) and (4) has interesting consequences. We first study
the simpler case whereA is a continuous operator fromLp(Ω) into L2(Ω), and
will treat the general case later.

Proposition 2.1. If u is a solution of (2), and A: Lp(Ω) → L2(Ω) is continuous,
then there existsλ ≥ 0 such that

−λA∗(Au− u0) ∈ ∂J (u).

Here∂J (u) ⊂ Lp(Ω)′ is the subdifferential ofJ at u [11], [3].
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Proof. Set

G(u) = χu0+σB(u) =

{
+∞ if u 6∈ u0 + σB ⇔ ‖u − u0‖2 > σ
0 if u ∈ u0 + σB ⇔ ‖u − u0‖2 ≤ σ

(B denotes the closed unit ball inL2(Ω)). J and G are convex lower semi-
continuous functions and problem (4) is equivalent to minimizingJ (u) + G(Au).
We have DomJ = {u : J (u) < +∞} = BV(Ω) ∩ Lp(Ω) and DomG = {u :
G(u) < +∞} = u0 + σB, and as we assumed thatu0 ∈ ADomJ , there exists
ũ ∈ DomJ with ‖Aũ − u0‖2 < σ/2. Then, asA is continuous fromLp(Ω) into
L2(Ω), G ◦ A is continuous at ˜u (ũ ∈ Int(DomG ◦ A)) and therefore for allu,

∂(J + G ◦ A)(u) = ∂J (u) + ∂(G ◦ A)(u).

Moreover, asG is continuous atAũ, we have for allu,

∂(G ◦ A)(u) = A∗∂G(Au)

with ∂G(u) = {0} if ‖u − u0‖2 < σ and ∂G(u) = {λ(u − u0), λ ≥ 0} if
‖u − u0‖2 = σ. Thus,

∂(J + G ◦ A)(u) = ∂J (u) + A∗∂G(Au).

(See [11, Prop 5.6 and 5.7] or [3, Thm 4.4].)
If u is a solution of (2) and thus of (4), then 0∈ ∂(J + G ◦ A)(u). As any

solution of (2) satisfies‖Au− u0‖2 = σ, this shows that

∃λ ≥ 0, 0 ∈ ∂J (u) + λA∗(Au− u0)
⇔ ∃λ ≥ 0, −λA∗(Au− u0) ∈ ∂J (u). ut

Note that it implies that for thisλ ≥ 0, u is a minimizer of the convex func-
tional J (u) + (λ/2)‖Au− u0‖2

2 (which is the functional of problem (3)). Con-
versely, a minimizeru of this functional is obviously a solution of (2) for
σ = ‖Au− u0‖2. This establishes the equivalence between problems (2) (with
0 < σ ≤ ‖u0 −

∫
Ω

u0‖2) and (3) (withλ ≥ 0). We later on will show that the
correspondence betweenσ andλ is (almost) one-to-one, but before we have to
prove the equivalence between (2) and (3) in the general case (whenA is not
necessarily continuous fromLp(Ω) into L2(Ω)).

Remark. The previous proof is still valid ifN ≥ 3, N/(N − 1) < p ≤ 2 and
C1‖u‖p ≤ ‖Au‖2 ≤ C2‖u‖p. In the sequel we will assumep = N/(N − 1).

Now we suppose thatN ≥ 3, A is an arbitrary continuous operator from
Lp(Ω) into Lp(Ω) (p = N/(N − 1)), satisfying AssumptionH2, and such thatu0

belongs to the closure ofL2(Ω) ∩ A(BV(Ω)) in L2(Ω). Let ρε be a symmetric
smoothing kernel and set for anyu ∈ Lp(Ω), Aεu = ρε ∗ Au, Au and all other
functions being extended toRN by the value zero outsideΩ. If φ ∈ L2(Ω) and
‖φ‖2 ≤ 1, we can write, lettingp′ = p/(p − 1)
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〈φ,Aεu〉L2(Ω),L2(Ω) = 〈φ, ρε ∗ Au〉L2(RN ),L2(RN )

= 〈ρε ∗ φ,Au〉
≤ ‖ρε ∗ φ‖p′‖Au‖p

≤ ‖ρε‖p′‖φ‖1‖Au‖p

and as‖φ‖1 ≤ C‖φ‖2 ≤ C and ‖Au‖p ≤ ‖A‖p‖u‖p, we have for anyφ with
‖φ‖2 ≤ 1

〈φ,Aεu〉L2(Ω),L2(Ω) ≤ C‖u‖p

and thus
‖Aεu‖2 ≤ C‖u‖p,

with C a finite constant, showing thatAε is a continuous operator fromLp(Ω)
into L2(Ω).

We will now consider a solutionuε of the problem

Minimize J (u)
with ‖Aεu − u0,ε‖2 ≤ σ

(5)

for a givenu0,ε ∈ L2(Ω) that converges tou0 asε goes to zero. We first define
this u0,ε as follows. Notice that ifu is a solution of (2) andcε a constant that
goes to zero withε, we have

‖Aε(u + cε)− ρε ∗ (u0 + cε)‖2 = ‖ρε ∗ (Au− u0)‖2 = σε → σ

asε goes to zero (andσε does not depend oncε). We setu0,ε = tερε ∗ (u0 + cε)
with tε = σ/σε. cε is chosen to be 0 when‖tερε ∗ u0‖2 ≥ σ, otherwise we choose
cε ≥ 0 such that‖tερε ∗ (u0 + cε)‖2 = σ (notice that‖tερε ∗ (u0 + c)‖2 → +∞ as
c → +∞). As

‖tερε ∗ (u0 + cε)‖2 = σ ≥ tε |(‖ρε ∗ u0‖2 − cε‖ρε ∗ 1‖2)|

cε is bounded and any limit pointc0 asε goes to 0 satisfies‖u0 + c0‖2 = σ and
thereforec0 = 0. Thus, limε→0 cε = 0, andu0,ε goes tou0 in L2(Ω) asε→ 0.2

Now consider problem (5): the same proof as in Sect. 2.1 may be adapted
to show that there exists a minimizeruε, moreover as‖u0,ε‖2 ≥ σ we have
‖Aεuε − u0,ε‖2 = σ. As u0,ε was built in order to have‖Aεtε(u + cε)− u0,ε‖2 = σ,
we have

J (uε) ≤ J (tε(u + cε)) = tεJ (u).

Therefore we may extract a subsequence (still denoteduε) such thatuε goes to
someu weakly in BV(Ω) as well as inLp(Ω). Moreover we may assume that
Aεuε weakly converges to somev ∈ L2(Ω) and if φ ∈ C∞

c (Ω),

〈φ,Aεuε〉 = 〈ρε ∗ φ,Auε〉 ε→0−→ 〈φ,Au〉
2 In fact, cε is just defined to ensure that‖u0,ε‖2 ≥ σ and therefore is useful only in the case

whereσ = ‖u0‖2. If σ < ‖u0‖2, then as soon asε is small enough we have‖u0,ε‖2 ≥ σ, even if
cε = 0 for all ε
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(asρε ∗ φ goes strongly toφ in Lp(Ω)′ andAuε weakly toAu in Lp(Ω)) which
shows thatv = Au. As Aεuε − u0,ε weakly converges toAu − u0 in L2(Ω), we
have

‖Au − u0‖2 ≤ σ = lim
ε→0

‖Aεuε − u0,ε‖2

and we also have

J (u) ≤ lim inf
ε→0

J (uε) ≤ lim sup
ε→0

J (uε) ≤ J (u),(6)

showing thatu is also a minimizer for problem (2). In particular,Au = Au,
J (u) = J (u), which shows that the liminf and the limsup in (6) are in fact limits,
and‖Au − u0‖2 = σ, which shows thatAu is in fact the strong limit ofAεuε in
L2(Ω).

Now, for reasons similar to those in the previous section (becauseAε is
continuous fromLp(Ω) into L2(Ω)), there exists for allε a positiveλε such that

−λεA∗ε(Aεuε − u0,ε) ∈ ∂J (uε) ⊂ Lp(Ω)′.

(Here the assumption that‖u0,ε‖2 ≥ 0 and thus‖Aεuε − u0,ε‖2 = σ is essential.)
Among other things this implies thatuε is a minimizer for

J (u) +
λε
2
‖Aεu − u0,ε‖2

2,(7)

and allows us to show thatλε is bounded. Actually, we have for allu ∈ Lp(Ω),

λε
2
σ2 ≤ J (uε) +

λε
2
‖Aεuε − u0,ε‖2

2 ≤ J (u) +
λε
2
‖Aεu − u0,ε‖2

2.(8)

As σ > 0, there is au ∈ BV(Ω) such that, ifε is small enough,

‖Aεu − u0,ε‖2
2 = ‖ρε ∗ (Au− tε(u0 + cε))‖2

2 ≤ σ2/2

(asu0 ∈ L2(Ω) ∩ A(BV(Ω))). It follows that

λε ≤ 4J (u)
σ2

< +∞.

Consider now a limit pointλ ≥ 0 of λε. The variational inequality (8)
converges asε goes to zero to

J (u) +
λ

2
‖Au − u0‖2

2 ≤ J (u) +
λ

2
‖Au− u0‖2

2(9)

as eitherAu 6∈ L2(Ω) and the right-hand term of (9) is +∞, or Au ∈ L2(Ω) and
it is the L2-limit of Aεu. Notice that even if we haveu /= u, still Au = Au and
J (u) = J (u) and (9) is also satisfied byu. Conversely we will see in the next
section that any minimizeru′ of the functional in (9) satisfiesAu′ = Au and
J (u′) = J (u) and therefore is also a solution of (2) with the sameσ. This shows
the equivalence between problems (2) with 0< σ ≤ ‖u0 −

∫
Ω

u0‖2 and (3) with
λ ≥ 0 in the general case.

We will now study the Lagrange problem and show that for a givenσ, with
σ < ‖u0 −

∫
Ω

u0‖2, there is a unique correspondingλ.

Numerische Mathematik Electronic Edition
page 174 of Numer. Math. (1997) 76: 167–188



Image recovery via total variation minimization and related problems 175

2.3. Study of problem (3) forλ ≥ 0

First of all, it is simple to show that whenλ ≥ 0, problem (3) has a solution
uλ ∈ L2(Ω)∩BV(Ω), which is unique as soon asA is injective. Acar and Vogel [1]
have analyzed this problem in detail and have also studied perturbations of the
system, regularizations, etc. Forλ = 0 we need to add explicitely the condition∫
Ω

Auλ =
∫
Ω

u0, otherwise any constant function is a solution, on the other hand
whenλ > 0, AssumptionH2 automatically ensures that the minimizers of the
energy in (3) satisfy

∫
Ω

Auλ =
∫
Ω

u0.
Notice that, because of the strict convexity of the term‖Au− u0‖2

2 with
respect toAu, it is straightforward to check thatAuλ is unique, even ifuλ is not.
This implies that we can define a functionσ(λ) = ‖Auλ − u0‖2. We then have
the following lemma:

Lemma 2.3. The functionσ(λ) is a nonincreasing and continuous function. It
mapsR+ onto (0, ‖u0 −

∫
Ω

u0‖2]. Moreover, there existsλ ≥ 0 such thatσ(λ) is
strictly decreasing on[λ,+∞), andσ(λ) = ‖u0 −

∫
Ω

u0‖2 if 0≤ λ ≤ λ.

Proof. Consider firstλ > µ ≥ 0. We have

J (uλ) +
λ

2
‖Auλ − u0‖2

2 ≤ J (uµ) +
λ

2
‖Auµ − u0‖2

2(10)

and
J (uµ) +

µ

2
‖Auµ − u0‖2

2 ≤ J (uλ) +
µ

2
‖Auλ − u0‖2

2.(11)

Combining both inequalities, we get (λ−µ)σ(λ)2 ≤ (λ−µ)σ(µ)2 and this shows
thatσ(.) is nonincreasing.

As for anyσ0 ∈ (0, ‖u0 −
∫
Ω

u0‖2] problem (2) admits a solution, proposi-
tion (2.1) shows that there exists aλ0 ≥ 0 such thatσ(λ0) = σ0, and this implies
the continuity of the mappingσ(λ), as well as the fact thatσ goes to zero asλ
goes to∞.

We want to prove now that this mapping is strictly decreasing. Suppose there
existsλ < µ such thatσ(λ) = σ(µ). Equations (10) and (11) show this time that
J (uλ) = J (uµ) and, in fact, thatuλ is a solution of (3) for anyλ′ ∈ [λ, µ]. If A
is continuous fromLp(Ω) into L2(Ω), this means that

∀λ′ ∈ [λ, µ], −λ′A∗(Auλ − u0) ∈ ∂J (uλ) /= ∅.(12)

Remember thatp ∈ ∂J (u) is equivalent to

〈p, u〉 = J (u) + J∗(p)

whereJ∗ is the Legendre-Fenchel transform of the convex functionJ (see for
instance [3, Prop 4.2]). HereJ∗(p) = χV (p) (= 0 if p ∈ V and +∞ if p 6∈ V )
where V is a convex closed set (theLp(Ω)′-closure of{/υ = divφ : φ ∈
C∞

c (Ω) and‖φ‖∞ ≤ 1}).
Therefore,
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∀λ′ ∈ [λ, µ], −λ′ 〈Auλ − u0,Auλ
〉

= J (uλ)(13)

which implies thatJ (uλ) = 0 anduλ =
∫
Ω

u0 (andσ(λ) = ‖u0 −
∫
Ω

u0‖2).
Now, in the general case (A continuous operator ofLp(Ω)), we cannot say

that (12) holds. If we consider the proof in Sect. 2.2, we can see that for the
approximated problems, we have for eachε

−λε(Auε − u0,ε) ∈ ∂J (uε),

thus
−λε 〈Auε − u0,ε,Auε〉 = J (uε)

and this converges to
−λ 〈Au − u0,Au〉 = J (u).

However, we need this result foranyλ such thatu minimizesJ (u) + (λ/2)||Au−
u0||2, and not just for the limit pointλ of λε. In order to show this, we have to
consider now the approximated problem

Minimize J (u) +
λ

2
‖Aεu − u0‖2

2.(14)

If uε is a solution of (14), we have

−λ 〈Aεuε − u0,Aεuε〉 = J (uε),

and we must check thatAεuε strongly converges toAu in L2(Ω), and J (uε)
converges toJ (u), asε goes to zero – whereu is a minimizer of (3). (We recall
that, givenλ, neitherJ (u) nor Au depend on this particular minimizeru.)

As J (uε) and‖Aεuε‖2 are bounded,uε converges weakly to someu in BV(Ω)
and inLp(Ω), andAεuε converges weakly inL2(Ω) to some limit which must be
Au. We have

J (u) +
λ

2
‖Au− u0‖2

2 ≤ lim inf
ε→0

J (uε) +
λ

2
‖Aεuε − u0‖2

2(15)

and thereforeu minimizes (3).
Now call m = J (u) + λ

2‖Au− u0‖2
2. For anyη > 0, if ε is small enough, we

have‖Aεu − Au‖2 ≤ η. As

‖Aεu − u0‖2
2 = ‖Au− u0‖2

2 + ‖Aεu − Au‖2
2 + 2〈Aεu − Au,Au− u0〉

≤ ‖Au− u0‖2
2 + η2 + Cη,

we get

mε = J (uε) +
λ

2
‖Aεuε − u0‖2

2 ≤ J (u) +
λ

2
‖Aεu − u0‖2

2 ≤ m +
λ

2
(C + η)η.

This implies with (15) thatmε → m asε goes to zero, moreover, as the liminf
in (15) is in fact valid independently for the term inJ and for the term in‖·‖2

2, it
also implies thatJ (uε) → J (u) and‖Aεuε − u0‖2 → ‖Au− u0‖2, showing that
the limit of Aεuε is strong inL2(Ω). Thus (13) holds in the general case.
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Therefore in any case we have established that ifu is a solution of (3) for
both λ andµ, λ < µ, thenJ (u) = 0. The consequence of this fact is thatσ(λ)
has to be strictly decreasing, except possibly on [0, λ] for someλ ≥ 0, where it
takes the value‖u0 −

∫
Ω

u0‖2. The proof of Lemma 2.3 is complete.ut
It is possible to haveλ > 0: actually, (we assume

∫
Ω

u0 = 0), 0 is a solution
of (3) if (assumingA is continuous fromLp(Ω) into L2(Ω) – or u0 ∈ Lp(Ω)′),

λA∗u0 ∈ ∂J (0) = V

WhereV = DomJ∗ is defined above. Therefore,λ may be defined as

λ = max{λ : λA∗u0 ∈ V}.
Notice that if we solve the problem (for any smooth functionf on ∂Ω){

∆v = A∗u0 in Ω
v = f on ∂Ω

we get a lower bound:λ ≥ 1/‖∇v‖∞ which is non-zero as soon asA∗u0 ∈ Lq(Ω)
with q > N (asv ∈ W2,q(Ω) ⊂ C1(Ω) in this case).

3. A relaxation algorithm for solving (3)

For numerical reasons, we do not solve exactly (3) but an approximation. We are
going to prove the convergence of a general relaxation algorithm, described in [6],
[19], and inspired mainly by works by D. Geman (for instance see [12]). [2] gives
a proof of convergence in the discrete case, while [20] proposes a similar method
for minimizing (via a gradient method descent) the total variation of an image3.
See also [7] for a wide review of this kind of “Auxiliary Variables” approaches in
computer vision, with applications to many energy-based reconstruction or edge
detection problems.

Let Φε be the followingC1 function:

Φε : x 7→


1
2ε

x2 if |x| ≤ ε

|x| − ε

2
if ε ≤ |x| ≤ 1

ε
ε

2
x2 +

1
2

(
1
ε
− ε) if |x| ≥ 1

ε

(16)

and consider the problem

Minimize
∫
Ω

Φε(|∇u|) +
λ

2
|Au− u0|2(17)

whereu ∈ H 1(Ω) = W1,2(Ω). If we introduceJ̃ (u) = J (u) whenu ∈ H 1(Ω) and
+∞ when u 6∈ H 1(Ω), then we can show that

∫
Ω

(Φε(|∇u|) + ε
2) decreases and

3 We have just learned that Dobson and Vogel had also independently found a proof of convergence
for a similar iterative approach [10]
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converges pointwise tõJ (u) asε goes to zero. AsJ is the lower semi-continuous
envelope ofJ̃ , this implies (see [8, Prop 5.7]) that

∫
Ω

(Φε(|∇u|)+ ε
2) Γ -converges

to J and that the functional in (17)Γ -converges to the one in (3) asε goes to
zero. Therefore, ifA is injective, the unique solution of (17) will converge asε
goes to zero to the solution of (3) (or, ifA is not injective, the solutions of (17)
will have limit points that are solutions of (3)).

In the sequel we show how to minimize (17). We will setλ = 1 and, asε
will be fixed, we will denoteΦε simply byΦ. Also, we will only treat the case
whereA is the identity operator, the general case being similar.

Consider the following functional:

E(u, v) =
∫
Ω

v|∇u|2 +
1
v

+ |u − u0|2(18)

whereu ∈ H 1(Ω) andv ∈ L2(Ω), ε ≤ v ≤ 1/ε.
Start from anyu1 andv1 (for instancev1 ≡ 1) and let:

un+1 = arg min
u∈H 1(Ω)

E(u, vn)

vn+1 = arg min
ε≤v≤1/ε

E(un+1, v) = ε ∨ 1

|∇un+1| ∧
1
ε

(19)

where we used the notationsa ∨ b = max(a, b) and a ∧ b = min(a, b). un+1 is
therefore characterized by

∀φ ∈ H 1(Ω),
∫
Ω

vn∇un+1 · ∇φ + (un+1 − u0)φ = 0,

i.e.−div (vn∇un+1) + un+1 = u0 in H 1(Ω)
′
.4 We have the following result.

Proposition 3.1. The sequence(un) converges (strongly in L2(Ω) and weakly in
H 1(Ω)) to the minimizer of (17).

Proof. It is easy to establish that

E(un, vn)− E(un+1, vn) ≥ ε‖∇(un − un+1)‖2
2 + ‖un − un+1‖2

2

≥ min(1, ε)‖un − un+1‖2
H 1(Ω)

(20)

and that
E(un+1, vn)− E(un+1, vn+1) ≥ ε3‖vn − vn+1‖2

2.(21)

This implies that for allp ∈ [1,+∞),

4 Note here that the divergence operator is in this case has to be understood in a weak sense,
i.e. as a notation for the injectionL2(Ω,RN ) → H 1(Ω)′ that maps a functionv to the linear form
φ 7→ −

∫
v∇φ; in fact, it will be always applied to functionsv with div v ∈ L2(Ω) that satisfy an

homogeneous Neumann condition (v · n = 0) on ∂Ω. The functionsu ∈ L2(Ω) are also identified
with the linear formsφ 7→

∫
uφ. We do not need in this work to know anything more about the

structure of the dual spaceH 1(Ω)′ which is simply endowed with its standard weak-∗ topology
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lim
n→∞ ‖vn − vn+1‖Lp(Ω) = 0(22)

(for p < 2, asΩ is bounded, and forp > 2, asvn is bounded).
Now take any test functionφ ∈ H 1(Ω). For all n we have∫

Ω

vn∇un+1 · ∇φ + (un+1 − u0)φ = 0,

which may be written∫
Ω

vn+1∇un+1 · ∇φ + (un+1 − u0)φ =
∫
Ω

(vn+1 − vn)∇un+1 · ∇φ,(23)

and we have for allp, p′ with 1
p + 1

p′ + 1
2 = 1,∣∣∣∣∫

Ω

(vn+1 − vn)∇un+1 · ∇φ
∣∣∣∣ ≤ ‖vn − vn+1‖Lp‖∇un+1‖Lp′ ‖∇φ‖2.

The last expression goes to zero as long as we can choosep′ such that
‖∇un+1‖Lp′ (Ω) is bounded.

This follows from a result by Meyers [15]: asun+1 is the solution of the
equation inH 1(Ω)

′

−div (vn∇u) + u = u0 ∈ L2(Ω),

with 0 < ε ≤ vn ≤ 1/ε < +∞, there exists ap′ > 2 (depending onε and the
dimensionN ), andC ′,C <∞ such that

‖∇un+1‖p′ ≤ C ′‖u0 − un+1‖2 ≤ C .

Using this result if we choosep = 2p′

p′−2 <∞, the right hand term of (23) is

bounded byC‖vn − vn+1‖Lp‖∇φ‖2 and goes to zero asn goes to infinity. This
proves that

−div vn∇un + un − u0

goes to zero inH 1(Ω)
′
.

Now, as the sequenceun is bounded inH 1(Ω), and therefore compact in
L2(Ω) (rememberΩ is bounded and smooth), we can extract a subsequenceunk

that converges strongly to someu ∈ L2(Ω). We also may assume that∇u is the
weak limit of∇unk ask goes to infinity.

As vn = ε ∨ 1
|∇un| ∧ 1

ε = Φ′(|∇un|)/|∇un|, all this leads to

−div

{
Φ′(|∇unk |)
|∇unk | ∇unk

}
⇀ u0 − u

in H 1(Ω)
′
.

For all φ ∈ H 1(Ω), we denote

A(φ) = −div

{
Φ′(|∇φ|)
|∇φ| ∇φ

}
∈ H 1(Ω)

′
.
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We know thatA(unk ) goes toT = u0 − u and we need to check that this
limit is exactly A(u): this would ensure thatu satisfies the Euler equation for
problem (17) (i.e.,A(u)+u−u0 = 0) and is therefore the unique solution of (17).
In order to do so we shall use the celebrated trick due to Minty for monotone
equations (see for instance [5]).

Consider anyφ ∈ H 1(Ω). As A is the derivative of a convex functional, it
is a monotone operator and we can write:

〈A(unk )−A(φ), unk − φ〉 ≥ 0(24)

As n →∞,

〈A(φ), unk 〉 =
∫
Ω

Φ′(|∇φ|)
|∇φ| ∇φ · ∇unk →

∫
Ω

Φ′(|∇φ|)
|∇φ| ∇φ · ∇u = 〈A(φ), u〉

as∇unk converges to∇u weakly in L2(Ω), and

〈A(unk ), unk 〉 =
∫
Ω

(u0 − unk )unk + (vnk − vnk−1)|∇unk |2

goes to〈T, u〉 using the strong convergence ofunk and Meyers’ result, once
again.

Therefore (24) becomes at the limit

〈T −A(φ), u − φ〉 ≥ 0.

We can takeφ = u + h/υ for any h > 0 and/υ ∈ C∞
c (Ω), and this leads to:

〈T −A(u + h/υ), /υ〉 ≤ 0, ∀/υ ∈ C∞
c (Ω), ∀h > 0.

But
(
Φ′(|∇u + h∇/υ|)/|∇u + h∇/υ|)(∇u +h∇/υ) is a continuous function ofh

and goes to
(
Φ′(|∇u|)/|∇u|)∇u ash goes to zero, moreover it may be uniformly

bounded (as soon ash is bounded) by a square integrable function and we may
invoque Lebesgue’s theorem to conclude that this limit ash goes to zero is also
a strong limit inL2(Ω). Therefore,

〈A(u + h/υ), /υ〉 =
∫
Ω

Φ′(|∇u + h∇/υ|)
|∇u + h∇/υ| (∇u + h∇/υ)∇/υ

→
∫
Ω

Φ′(|∇u|)
|∇u| ∇u∇/υ = 〈A(u), /υ〉

ash goes to zero and this shows that for all/υ ∈ C∞
c (Ω),

〈T, /υ〉 ≤ 〈A(u), /υ〉 ,

which means thatT = A(u) and concludes the proof.ut
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Fig. 1. Original image with noise of std. dev. 65

Fig. 2. Reconstructed images withσ = 60 andσ = 67

Remark 1. If A is not injective, the solutions of problem (17) may form a closed
convex set (asΦε is not uniformly convex). Then,un may not converge to one
solution u of (17) but the proof shows that its limit points are solutions of the
problem. If A is injective, thenun has a unique limit point, therefore its limit.

Remark 2. In practice, in discrete images, the gradients are always bounded and
it is for instance unnecessary to consider, in equation (16), the case|x| ≥ 1/ε.
Also, it may turn simpler to minimize a functional likeΦε(|∂u/∂x|)+Φε(|∂u/∂y|)
rather thanΦε(|∇u|).

4. Some remarks about the model

We treated a few examples, using the algorithm described above. Results are
shown on Figs. 1–3. Here grey-level values range from 0 to 255, the dark squares
have value 73 (on the original image) and the light squares have value 183. This
model is excellent if the image to reconstruct is (almost) piecewise constant (cf
Fig. 2). For a piecewise smooth, or affine image, staircase-like structures will tend
to develop, and this is easy to explain. Actually, Figs. 4–6 show (in dimension
one) the worst case you could imagine: here the “original” signal ˜u that we want
to reconstruct is simply the functiony = x, and the “noise” has turned it into a
piecewise constant nondecreasing function. The standard deviation of this “noise”
is approximatelyσ ' 3.5 (so that Fig. 5 should be the “correct” reconstruction).
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Fig. 3. Original and reconstruction (σ ' 30)
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Fig. 4. σ ' 2

Then it is simple to imagine what happens: the total variation of the solution
u, which one expects to be nondecreasing and piecewise constant, is just the
differenceu(50)− u(0), and the easiest way to make it lower is to decrease
u(50) and increaseu(0). On the figures it is impossible to tell what the “best”
reconstruction is (you probably would sayu0 is better). The same kind of effect
appears on Fig. 7 (here the standard deviation of the noise is 5.5). Clearly, the
model is not suited to the reconstruction of images that are not nearly piecewise
constant. This defect has already been mentioned and analysed in [9]. Further in
the paper we present a variant of this model that handles correctly signals such
as the ones treated in Figs. 4–7. The results are very good, see Fig. 13. (The
signal on Figs. 13 is a concatenation of the noisy signals of Figs. 4–6 and of
Fig. 7.)

5. Inf-convolution of two convex potentials

The interest of denoising an image by minimizing a functional like
∫ |∇u| rather

that
∫ |∇u|p, p > 1, is clear. Actually, a functionu ∈ BV may present disconti-

nuities along (N − 1)-dimensional surfaces, whileW1,p functions may not: it is
therefore theoretically impossible to reconstruct “edges” with functions inW1,p.
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Fig. 5. σ ' 3.5
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Fig. 6. σ ' 5.8

Many authors [2, 6, 12] have proposed to minimize non-convex functionals of
the gradient of the image, and particularly functionals growing sublinearly at
infinity (for instance, choosingp < 1). Their idea is to enhance the edges. This
seems mathematically absurd in a continuous setting, however, these methods
often give visually good results just because the discretization of the image au-
tomatically makes the problem finite-dimensional, in which case the convexity
of the functional is no more necessary. Unstability is almost always the main
drawback of this kind of approaches.

Here we want to present variants of another kind, based on the minimization
of several convex functionals of the gradient. Suppose, for instance, that you
want to build a low-diffusive filter, and that you process images in which appear
mostly horizontal and vertical features. You might want to minimize theminimum
of two “horizontal” and “vertical” functionals, say, (we assumedN = 2,Ω ⊂ R

2)

J1(u) =
∫
Ω

∣∣∣∣∂u
∂x

∣∣∣∣p , J2(u) =
∫
Ω

∣∣∣∣∂u
∂y

∣∣∣∣p .(25)

(We will consider the casesp = 2 andp = 1.)
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Fig. 7. Another noisy signal, withσ ' 5.5

Fig. 8. A minimizer of (29) – withλ chosen in order to haveσ = 60

Now the problem is the following:u 7→ J1(u) ∧ J2(u) is not a convex l.s.c.
functional of u. We propose two different ways of dealing with this problem.
One is to consider theconvex envelopeof J1 ∧ J2, i.e.,

J (u) = sup{j (u) : j convex,j ≤ J1, j ≤ J2}
= inf{θJ1(u1) + (1− θ)J2(u2) : θu1 + (1− θ)u2 = u, θ ∈ [0, 1]},

(26)

or the lower semicontinuous convex envelope ofJ1 ∧ J2, i.e.,

J (u) = (J1 ∧ J2)∗∗ = (J∗1 ∨ J∗2 )∗.(27)

The second approach, that may turn to be simpler in some cases, is to consider
the inf-convolutionof J1 andJ2, i.e.,

J (u) = J14J2(u) = inf{J1(u1) + J2(u2) : u1 + u2 = u},(28)

or its semicontinuous envelope,J (u) = (J1(u)∗ + J2(u)∗)∗.
Notice that ifJ1, for instance, is 1-homogeneous, thenJ∗1 is the characteristic

function of some closed setV1, and if J∗2 is non-negative onV1 (for instance if
J2(0) = 0) thenJ1(u)∗ + J2(u)∗ = J∗1 ∨ J∗2 and both l.s.c. envelopes coincide.

Now considerJ1 andJ2 as defined by (25). The previous remark shows that
for p = 1, both notions (inf-convolution and convex envelope) are equivalent (it
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Fig. 9. A minimizer of (30)

Fig. 10. Functionsu1 andu2 found in the minimization of (30)

is straightforward to check also that in this case (26) and (28) give the same
result). On the other hand, ifp = 2, those formulas define distinct functionals
that it is easy to compute in the case whereΩ is a rectangle or the whole plane
R

2. Actually in both cases we may use the Fourier transform, and it is simple to
check that the convex envelope ofJ1 andJ2 is

J (u) = inf
θ∈[0,1]

∫
Ω̂

|ξ|2|η|2
θ|ξ|2 + (1− θ)|η|2 |û|

2,

whereas the inf-convolution is

J ′(u) = J14J2(u) =
∫
Ω̂

|ξ|2|η|2
|ξ|2 + |η|2 |û|

2

where û is the Fourier transform ofu and Ω̂ the Fourier domain (i.e.,Z2 or
R

2). Using this last formula and a FFT algorithm, it is quite simple to solve the
following problem.

Minimize J ′(u) +
λ

2
‖u − u0‖2

2.(29)

A result is shown on Fig. 8. The gradient descent flow ofJ ′ is associated to the
pseudo-differential operator (∆)−1∂2

xy.
For p = 1, we do not know how to compute the convex envelope ofJ1 and

J2. However, we can solve numerically the following problem (using a method
similar to the one described in Sect. 3).
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Fig. 11. A minimizer of (31), with ε = 10 (left), and “first” and “second order” total variation
minimization (right)
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Fig. 12. Total variation minimization

Minimize J1(u1) + J2(u2) +
λ

2
‖u1 + u2 − u0‖2

2.(30)

See Figs. 9–10 for an example.
The same method could be used with any other kind of convex functions.

For instance, one might want to minimize a combination of the total variation
and the integral of the squared norm of the gradient. In this case the convex
envelope is equal to the inf-convolution and we get, ifJ1(x) =

∫
Ω
|∇u| and

J2(x) = (1/2ε)
∫
Ω
|∇u|2,

J14J2(u) =
1
2ε

∫
|∇u|<ε

|∇u|2 +
∫
|∇u|≥ε

|∇u| − ε

2
,(31)

which is straightforward to minimize with the method shown in Sect. 3 – see
Fig. 11, left.
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Fig. 13. “First and second order variation” minimization

Or, one could try to minimize this way the inf-convolution of a first order
functional (like the total variation) and a second-order functional (like the total
variation of the gradient, or first derivative). Let us have a particular look at this
last idea. It may be written as the following minimization problem:

min
u1,u2

∫
Ω

|∇u1| + α|d2u2| + λ|u1 + u2 − u0|2

= min
u,v

∫
Ω

|∇u −∇v| + α|∇(∇v)| + λ|u − u0|2

if we let u = u1 + u2 and v = u2. Here u (andu1) ∈ BV(Ω) and v ∈ W1,1,
with ∇v ∈ BV(Ω,RN ). The interpretation is very simple. In some sense we
“first” approximate locally the gradient of the functionu0 by ∇v, that has itself
a (very) low total variation (we have to chooseα >> 1). Then, we findu as an
approximation ofu0 such thatu− v has a low total variation. As a consequence
we do not get any more an almost piecewise constant result. In dimension one,
the improvement is remarkable, see Fig. 13 (compare with Fig. 12). Notice that
in this case the problem may simply be rewritten

min
u,w

∫
Ω

|u′ − w| + α|w′| + λ|u − u0|2

if we let w = v′. This is related to standard signal reconstruction methods,
introduced in [4]. In dimension two, a result is shown on Fig. 11, right.

The interesting point here is that the functional we minimize

J (u) = (J∗1 + J∗2 )∗ = (J1 ∧ J2)∗∗,

with J1(u) =
∫
Ω
|∇u| and J2(u) = α · ∫

Ω
|d2u|, is a convex homogeneous func-

tional that is low when either∇u or d2u are low (and zero whenu is affine).
This idea could certainly be used in many other settings, when a signal or an
image presents various types of characteristic features that need to be preserved
and reconstructed.
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9. Dobson D., Santosa F. (1994): Recovery of blocky images from noisy and blurred data. Preprint

10. Dobson D.C., Vogel C.R. (1995): Convergence of an iterative method for total variation denois-
ing. submit. to SIAM J. Numer. Anal.

11. Ekeland I., Temam R. (1976): Convex analysis and variational problems, NorthHolland, Ams-
terdam

12. Geman D., Reynolds G. (1992): Constrained image restoration and the recovery of discontinu-
ities, PAMI, 14, 367–383

13. Giusti E. (1984): Minimal surfaces and functions of bounded variation, Birkhäuser, Boston
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