Review of definitions and properties for functions of bounded variation

Let Ω be an open subset of \mathbb{R}^N .

Definition: A function $u \in L^1(\Omega)$ whose partial derivatives in the sense of distributions are measures with finite total variation in Ω is called a function of bounded variation. The vector space of functions of bounded variation in Ω is denoted by $BV(\Omega)$. Thus $u \in BV(\Omega)$ if and only if $u \in L^1(\Omega)$ and there are Radon measures $\mu_1, ..., \mu_N$ with finite total mass in Ω such that

$$\int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx = -\int_{\Omega} \varphi d\mu_i \quad \forall \varphi \in C_c^1(\Omega), \quad i = 1, ..., N.$$

If $u \in BV(\Omega)$, the total variation of the measure Du is

$$||Du|| = \sup \left\{ \int_{\Omega} u \operatorname{div} \phi dx : \phi \in C_c^1(\Omega, \mathbb{R}^n), |\phi(x)| \le 1 \text{ for } x \in \Omega. \right\} < \infty.$$

The space $BV(\Omega)$, endowed with the norm $||u||_{BV} = ||u||_{L^1} + ||Du||$, is a Banach space. We also use $\int_{\Omega} |Du|$ to denote the total variation $||Du||(\Omega)$.

Example: Assume $u \in W^{1,1}(\Omega)$. Then for any $\phi \in C_c^1(\Omega,\mathbb{R}^N)$, with $|\phi| < 1$, we have

$$\int_{\Omega} u \operatorname{div} \phi dx = -\int_{\Omega} \nabla u \cdot \phi dx \le \int_{\Omega} |\nabla u| dx < \infty.$$

Thus $u \in BV(\Omega)$ and $\int_{\Omega} |Du| = \int_{\Omega} |\nabla u| dx$.

Properties:

• (lower semi-continuity of the total variation) Suppose $u_n \in BV(\Omega)$, n=1,2,... and that $u_n\to u$ in $L^1_{loc}(\Omega)$. Then

$$\int_{\Omega} |Du| \le \liminf_{n \to \infty} \int_{\Omega} |Du_n|.$$

- (approximation by smooth functions) Assume that $u \in BV(\Omega)$. There is a sequence of functions $u_n \in BV(\Omega) \cap C^{\infty}(\Omega)$ such that
 - (i) $u_n \to u$ in $L^1(\Omega)$ and

(ii) $\int_{\Omega}^{n} |Du_n| \to \int_{\Omega}^{\infty} |Du|$ as $n \to \infty$. Moreover, if $u \in BV(\Omega) \cap L^q(\Omega)$, $q < \infty$, we can find $u_n \in L^q(\Omega)$, $u_n \to u$ in $L^q(\Omega)$.

Definition: Let $u_n, u \in BV(\Omega)$. We say that u_n weakly* converges to uin $BV(\Omega)$ if $u_n \to u$ in $L^1_{loc}(\Omega)$ and Du_n weakly* converges to Du as measures in Ω .

- Let $u_n, u \in BV(\Omega)$. Then $u_n \to u$ weakly* in $BV(\Omega)$ if and only if $\{u_n\}$ is bounded in $BV(\Omega)$ and converges to u in $L^1_{loc}(\Omega)$.
- (compactness) Let $\Omega \subset \mathbb{R}^N$ be open, bounded, with $\partial\Omega$ Lipschitz. Assume $u_n \in BV(\Omega)$ satisfying $||u_n||_{BV(\Omega)} \leq M < \infty$ for all $n \geq 1$. Then there is a subsequence u_{n_j} and a function $u \in BV(\Omega)$ such that $u_{n_j} \to u$ in $L^1(\Omega)$.

Isoperimetric inequalities

• (Sobolev inequality) There is a constant C > 0 such that

$$||u||_{L^{N/N-1}(\mathbb{R}^N)} \le C \int_{\mathbb{R}^N} |Du|$$

for all $u \in BV(\mathbb{R}^N)$.

Notation: If $u \in L^1(\Omega)$, the mean value of u in Ω is $u_{\Omega} = \frac{1}{|\Omega|} \int_{\Omega} u(x) dx$.

• (Poincaré inequality) Let Ω be open, bounded, connected, with $\partial\Omega$ Lipschitz. Then

$$\int_{\Omega} |u - u_{\Omega}| dx \le C \int_{\Omega} |Du| \quad \forall u \in BV(\Omega)$$

for some constant C depending only on Ω .

Moreover, there is a constant C depending only on Ω such that

$$||u - u_{\Omega}||_{L^p(\Omega)} \le C \int_{\Omega} |Du| \quad \forall u \in BV(\Omega), \ 1 \le p \le \frac{N}{N-1}.$$

If $u \in L^1_{loc}(\mathbb{R}^2)$, then its total variation $\int_{\Omega} |Du|$ can still be defined (finite or infinite).

• (another version of Poincaré inequality in \mathbb{R}^2) For any $u \in L^2(\mathbb{R}^2)$ (subset of $L^1_{loc}(\mathbb{R}^2)$), the following inequality holds:

$$||u||_{L^2(\mathbb{R}^2)} \le C \int_{\mathbb{R}^2} |Du|$$

for some constant C independet of u.

- Fatou's Lemma: If f_n is a sequence of non-negative measurable functions in Ω , then $\int_{\Omega} \liminf_{n\to\infty} f_n(x)dx \leq \liminf_{n\to\infty} \int_{\Omega} f_n(x)dx$.
- Lebesgue's dominated convergence theorem: Let f_n be a sequence of measurable functions in Ω . Assume that $|f_n(x)| \leq g(x)$, for some integrable function g, and that f_n converges pointwise to a limit f. Then $\int_{\Omega} f(x) dx = \lim_{n \to \infty} \int_{\Omega} f_n(x) dx$.