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Abstract. This paper presents an abstract analysis of bounded variation (BY) methods for ill- 
posed apentor equations Au = L. Let 

where the penalty, or 'regularization'. parameter (I > 0 and the functional J ( u )  is the BY norm 
or semi-norm of U ,  also known 3s the total variation of U. Under mild restrictions on the operator 
A and the functional J ( u ) ,  it is shown that the functional T ( u )  has a unique minimizer which 
is stable with respen to certain perturbations in the data i, the operator A, the panmeter a, 
and the functional J ( u ) .  In addition. convergence results are obtained which apply when these 
perturbations vanish and the regularization parameter is chosen appropriately. 

T ( u ) ~ I I A u - r I l * + a r J ( u )  

1. Introduction 

Consider the equation 

A u = z  (1.1) 

where A is a linear operator from L p ( S 2 )  into a Hilbert space 2 containing the data vector z. 
Of particular interest is the case where problem (1.1) is ill-posed, e.g. when A is compact. 
The data z and the operator A are assumed to be inexact, and approximate solutions to ( I .  I )  
are desired which minimize the undesirable effects of perturbations in z and A.  Of practical 
interest are Fredholm integral operators of the first kind 

For example. certain blurring effects in image processing may be described by convolution 
operators, in which case k(x, y) = k(x - y). See [9] .  

Problem (1.1) is ill-posed and discretizations of it are highly ill-conditioned. To 
deal with ill-posedness, one should apply methods which impose stability while retaining 
certain desired features of the solution. Historically, these have come to be known as 
'regularization' methods, since stability was typically obtained by imposing smoothness 
constraints on the approximate solutions. In many applications, particularly in image 
processing (see [9, 31) and parameter identification (see [5]), a serious shortcoming of 
standard regularization methods is that they do not allow discontinuous solutions. This 
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difficulty can be overcome by achieving stability with the requirement that the solution 
be of bounded variation rather than smooth. For problem (1.1), this requirement may be 
enforced in several ways. One approach is to solve a constrained minimization problem 
like 

R Acar and C R Vogel 

where U’ is an estimate of the size of the error in the data and J ( u )  is the bounded variation 
(BV) norm or semi-norm of U (see [4] for definitions and background). This is essentially 
the approach taken by Rudin et al [8, 91. A closely related approach is taken by Dobson 
and Santosa [3], where the constraint in (1.3) is replaced by the operator equation (1.1). In 
the application considered in 131, discretizations of (1.1) are severely underdetermined. An 
earlier reference on the use of BV functions in a parameter identification setting (where a 
constraint on J ( u )  is imposed instead) is the paper by Gutman ([W. 

Another closely related approach, which is taken by Santosa and Symes [IO] and Vogel 
[13], is to solve the unconstrained minimization problem 

?in I ~ A U  - z11’ + a ~ ( u ) .  (1.4) 

This can be viewed as a penalty method approach to solving the constrained minimization 
problem (1.3). Here the penalty parameter a > 0 controls the trade-off between goodness 
of fit to the data, as measured by IIAu - zll’, and the variability of the approximate 
solution, as measured by J(u) .  This penalty approach is widely known in the inverse 
problems community as Tikhonov regularization, although the term ‘regularization’ seems 
inappropriate here since discontinuous minimizers may be obtained. 

As in [13], a slightly more general penalty functional than the BV semi-norm will be 
considered. For sufficiently smooth U ,  define 

where ,3 > 0. When B = 0, this reduces to the usual BV semi-norm (the BV norm is given 
by llullsv = l l u l l ~ ~ ~ a ~  + .Mu)). J d u )  is also commonly referred to as the total variation of 
U. A variational definition of Ja is presented below which extends (1.5) to (non-smooth) 
functions U .  Taking B > 0 offers certain computational advantages, such as differentiability 
of the functional J ,  when Vu = 0. 

A number of important questions arise in the implementation of numerical methods to 
solve the minimization problem (1.4). For instance, 

Is problem (1.4) really well-posed? 
In what function space does the solution to (1.4) lie, and what norm is appropriate to 
measure convergence? These questions are of more than academic interest, since they 
should influence the choice of approximation schemes and the selection of stopping 
criteria. For instance, the analysis below shows that the choice of Lz to measure 
convergence in an iterative solution of (1.4) may be inappropriate if the solution is a 
function of two or more (spatial) variables. 
What is the effect of taking small ,6 z 0 in (1.5) rather than taking B = O? 
As perturbations in the data z and the operator A vanish (say, as discrete approximations 
become more accurate), what conditions on the regularization parameter a are necessary 
in order to obtain convergence to an underlying exact solution (to an unperturbed 
problem)? 
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The goal of this paper is to provide qualitative answen to these questions. The analysis 
here is substantially different from that of Lions et af presented in [7]. which deals with 
artificial time-evolution algorithms to solve the Euler-Lagrange equations (obtained from 
necessary first-order conditions) for a constrained problem similar to (1.3). This paper deals 
with properties of the minimization problems and not with the algorithms used to solve 
these problems. 

This paper is organized as follows: section 2 contains an overview of functions of 
bounded variation. Most of the results in this section are standard~extensions to Lp(S2) for 
p > 1 of results found in Giusti [4]. Included in this section is a variational definition of J p  
and a discussion of important properties such as convexity, semicontinuity, and compactness 
which are associated with it. In section 3, several abstract theorems are presented which 
guarantee the well-posedness of unconstrained minimization problems. Theorem 3.1 is a 
standard result yielding existence and uniqueness of solutions of problems of the form 
(1.4). Theorem 3.2 is an analogue of the standard result due to Tikhonov [I21 concerning 
continuity of the inverse map for an injective continuous function restricted to a compact 
subset of a topological space. This theorem yields continuous dependence with respect to 
the data, the operator, and the parameter a in problem (1.4) with J ( u )  = Ilullev. Section 4 
deals with minimization problems in which the BV norm is replace by Jpl as the penalty 
term. Section 5 deals with convergence of minimizers to an underlying exact solution as 
perturbations in the data and the operator vanish. Results in sections 3-5 (in particular, 
theorems 3.1 and 5.1) are similar to those obtained by Seidman and Vogel [ I  I] for ill-posed 
nonlinear operator equations in a reflexive Banach space setting. The stronger results (in 
particular, stability in theorem 3.2) obtained in this paper rely on the linearity of the operator 
A and the specific function spaces that are dealt with. 

2. Definitions and preliminary results 

Let Q be a bounded convex region in R d .  d = 1.2, or 3, whose boundary i3Q is Lipschitz 
continuous. Let 1x1 = denote the Euclidean norm on R d .  Denote the norm on 
the Banach spaces U(Q)  by I]. jlLli(n), 1 6 p < w. Let IQ1 denote the (Lebesgue) measure 
of S2, and unless otherwise specified, let xs denote the indicator function for a set S c Q. 

As in [4]. define the BV semi-norm, or total variation, 

Jo(u) = s u p  (-udivw) dx (2.1) 
def V E V  s n 

where the set of test functions 

v = {v E C;(S~; R ~ )  : Iw(x)[ 6 1 for all x E 0 ) .  (2.2) 

If U E C'(Q), one can show using integration by parts that 

By a standard denseness argument, this also applies for U in the Sobolev space Wl, l (Q) .  

The space of functions of bounded variation on S2 is defined by 

BV(Q) = [ U  E L1(Q) : Jo(u)  < 00). (2.4) 
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BV(C2) is complete, and hence a Banach space, with respect to this nom. The Sobolev 
space W'.' (Q) is a proper subset of BV(Q), as is shown by the example in [4, p 41. Note 
that for Q bounded, LP(i2) c L'(Q) for p > 1. From the definition, B V ( ~ )  c L'(Q). It 
is shown below that B V ( ~ )  c Lp(S2) for 1 < p < d/(d - 1). 

Next, define an extension of (1.5) which is analogous to (2.1). Identifying the convex 
functional f(x) = with its second conjugate, or Fenchel transform (see [Z, 

(2.6) 
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P 2891), 

JiZG = SUP{& ;Y + JKC'kZT : y i R~ iyi G I}, 
the supremum being attained for y = - x / m .  Motivated by this and @.I), define 

Note that for ,9 > 0, Jp is not a semi-norm. 
Theorem 2.1. If U E W ' . ' ( Q ) ,  then (1.5) holds. 
ProoJ Since C'(Q) is dense in W'.'(Q),  it suffices to show (1.5) for U E C'(S2). In this 
case, for any v E V ,  Green's theorem (integration by parts) gives 

. ,  

(2.8) 

The inequality above follows from (2.6). Consequently, Ja(u)  < s, q ' m d x .  To 
show the reverse inequality, take E . = - V u / q ' m ,  and observe that 

(vu. G + ,I'M) dx = s, J M d x  s, 
and 7j E C(Q; R d )  with lZ(x)l < I for all x E Q. By multiplying 7j by a suitable 
characteristic function compactly supported in 52 and then mollifying, one can obtain U E 
V nCr(C2) for which the left-hand side of (2.8) is arbitrarily close to JR q ' m d x .  0 

The next theorem shows that both Jo and J8 have sv(Q) for their effective domain, 
and that JO is the pointwise limit of J p .  
Theorem 2.2. (i) For any p z 0 and U E L' (a), &(U) < CO if and only if Jp(u) < 00; (ii) 
For any U E BV(S-2). 

lim Jpl(u) = J o ( u ) .  (2.9) 
8-0 

ProoJ For any w E V and U E L' (G) ,  

(-udivu) dx <! ( - u d i v w + J m )  dx  s, R < /  (-rrdivu+,@) dx 
n ~~ 

Taking the sup over w E V ,  
Jo(u) < J&) < Jo(u)+,@I~I. 

The results follow from the boundedness of a. 
(2.  IO) 

cl 

Theorem 2.3. For any p > 0, J p  is weakly lower semicontinuous with respect to the L'' 
topology for 1 s p < w. 
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Proof Let U, - Si (weak convergence in Lp(Q)). For any w E V ,  divw E C(Q), and 
hence, 

l ( ( - i i d i v w ) + , / m ) d x =  n-w lim s * ((-undivu)fJB(1-12liZ))dx 

< liminf Jp(uA) 
n-m 

Taking the supremum over w E V gives J p o  < liminf,,, JP(u.) 

Theorem 2.4. For any B > 0, Jp  is convex 

Prooj Let 0 < y < 1 and U I .  u2 E Lp(Q). For any U E V ,  

0 

((-u,divw) + , / m ) d x  

+(1 - y )  ((-u?divw) + ,/m) dx L 
< ~ J p ( u i ) + ( l - ~ ) J p ( u z )  

Taking the supremum in the top line over U E V gives the convexity of Jp. U 

A set of functions S is defined to be Bv-bounded if there exists a constant E > 0 for 
which jlu[jBv < E for all U E S. The relative compactness of BV-bounded sets in LP(Q) 
follows from the next lemma (see [ l ]  and [4, p 141). 

Le"a2.1 .  If U E ~v(S2), then there exists a sequence [ U " ]  in C"(S2) such that 
lim [ju, - u I I L , , ( ~ )  = 0 and lim J&,) = J&). 

Theorem 2.5. Let S be  a Bv-bounded set of functions. Then S is relatively compact in 
L"(Q) for 1 6 p < d/(d - 1). S is bounded, and hence relatively weakly compact for 
dimensions d > 2, in L P ( Q )  for p = d/(d - 1). 

Prooj See 14, pp 17, 241. Note that d/ (d  - 1) is the Sobolev conjugate of 1 in dimension 
d, the Sobolev conjugate of p, where 1 < p e d ,  being defined by l / p *  = l / p  - l / d .  
For 1 < p < d / (d  - l), the Rellich-Kondrachov compact embedding theorem holds. A 
sequence U, in S may then be approximated by a sequence of functions in in C"(n), 
themselves uniformly bounded in Bv(Q) and in Lp(S2), so that their sequence must have 
a subsequence converging in Lp(S2) to some U. By semicontinuity of JO and lemma 2.1, 
U E Bv(Q) and is the limit (in U') of a subsequence extracted from un. 

For p = d / ( d  - I), one can  similarly use lemma 2.1 to extend to BV-functions the 
Poincark-Wirtinger inequality: if 

then there exists C such that 

IIu - I*lluca) 6 C JO(U - P )  = CJo(u). (2.11) 
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Hence, if, say, llullsv < M, then &(U - p)  is also bounded by M, and, by the Poincar.6- 
Wirtinger inequality, IIu - p]lLI.  < CM. Consequently, 

IlullL~,ca, < llPxnIILP(n) + llu - Pllrl,(n) 
< Ipl IQI ’ lP  + CM 
< II~IIU~~,IQI””-] + CM 
< (lQll’p-1 + C ) M  
= (IQl+d + C ) M .  

Relative weak compactness in dimensions d > 2 follows from the Banach-Alaoglu theorem 
€61. 0 

The following example shows that the above result is sharp. 

Example 2.1. Let Q = (z  E Rd : 121 < 2) and U, = nd-’xn, where 

1 
1 if 111 < - 

n 
0 otherwise. 

X “ @ )  = 

Let wd denote the volume of the unit ball in Rd.  Then 

Hence the sequence (u.) is unbounded in L”(Q) whenever p > d/d - 1. Similarly, if 
p = d /d  - 1, d > 1, and m > n, then 

llUn --u,llr~cn) >nd-lIIx. - X m l l L W  

On the other hand, if d = 1 and m > n, then IIu. - u m l l p ( n )  = I .  In either case, the 
sequence (U”] is bounded but not Cauchy in LP(Q) for p = d/(d - 1). 

Now let ud denote the area of the unit sphere &-I in Rd. From (2.12) and (2.5), 

1 
IIunllBV = ;wd + oj. (2.13) 

Hence, the sequence is Bv-bounded but has no convergent subsequence in L p ( S 2 )  whenever 
P > d/(d - 1). 

Recall that a functional J is strictly convex if 

J ( Y U l  + (1 - Y)UZ) < Y J ( U l )  + (1  - Y)J(UZ), (2.14) 

whenever U I  # uz and 0 < y < 1. The following example shows that J p  fails to be strictly 
convex on ~v(Q2). 

Example 2.2. Take S2 = (0, I ) ,  U I  = X[, , ,h] ,  U* = x ~ ~ . d l ,  where0 < a < b c < d < 1. For 
any fi 2 0, a direct computation shows that Js(u1) = Jp(u~) ’=  J p  ((U, + uz)/Z) = 2 + G .  
Since U, # uz, Ja cannot be strictly convex. 
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3. Well-posehess of minimization problems 

A problem is said to be well-posed in the sense of Hadamard if (i) it  has a solution, (ii) the 
solution is unique, and (iii) the solution is stable. Let T be a functional defined on L p ( S 2 )  
with values in the extended reals. Theorems 3.1 and 3.2 below, guarantee the well-posedness 
of the unconstrained minimization problem 

These theorems are followed by some illustrative examples pertaining to problem (1.4). 
In order to use the compactness results of section 2 while still dealing with unconstrained 

minimization problems, we introduce the following property: define T to be Bv-coercive if 

T ( u )  + +CO whenever llulj~v + +CO. (3.2) 
Note that ‘lower level sets’ (U E Lp(S2) : T ( u )  < a ] ,  where a 2 0, are Bv-bounded. 

Theorem 3.1 (Existence a d  uniqueness of minimizers). Suppose that T is sv-coercive. If 
1 < p < d(d - 1) and T is lower semicontinuous, then problem (3.1) has a solution. If in 
addition p = d/(d - l), dimension d 2’2, and T is weakly lower semicontinuous, then a 
solution also exists. In either case, the solution is unique if T is strictly convex. 
froox The following argument is standard (see [2]): Let U, be a minimizing sequence for 
T ;  in other words, 

(3.3) 
d d  T(uJ  + inf T ( u )  = T,,,in. 

“ € L W )  

By hypothesis (3.2), the U$ are sv-bounded. As a consequence of theorem 2.5, there 
exists a subsequence uni which converges to some 11 E L’’(S2). Convergence is weak if 
p = d/(d - 1). By the (weak) lower semicontinuity of T ,  

T(U) < liminfT(u.,) = T,,,in. 
Uniqueness of minimizers follows immediately from strict convexity. 0 

Next consider a sequence of perturbed problems 

min T.(u). 
UGLi’(S2) 

(3.4) 

Theorem 3.2 (Stability of minimizers). Assume that 1 < p e d/(d - 1) and that T and each 
of the T,s are BV-coercive, lower semicontinuous, and have a unique minimizer. Assume 
in addition: 

(i) Uniform Bv-Coercivity: For any sequence U, E LP(S2). 

limTn(u,) = fca whenever limllu,ll~v = +ca. (3.5) 
(ii) Consistency: T, + T uniformly on Bv-bounded sets, i.e. given 5 > 0 and E > 0, 
there exists N such that 

IT,@) - T(u)l < E whenever n > N .  I I u I I B v  < 5. (3.6) 
Then problem (3.1) is stable with respect to the perturbations (3.4), i.e. if 17 minimizes T 
and un minimizes T,,, then 

1 1 ~ ” -  &“(n, + 0. (3.7) 
If p = d/ (d  - I ) ,  d 2 2, and one replaces the lower semicontinuity assumption on T and 
each T, by weak lower semicontinuity, then convergence is weak: 

U, - I? - 0. (3.8) 
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Prooj! 
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Note that T,(u,)  < T,(i) .  From this and (3.6), 

liminfT,(u,) < limsupT,(u,) < T ( i )  <:CO (3.9) 
and hence by (3.3, the u.s are Bv-hounded. Now suppose (3.7) (or (3.8) if p = d/(d - I ) )  
does not hold. By Theorem 2.5 there exists a subsequence U", which converges in L1'(!2) 
(weak U') to some ir # ii. By the (weak) lower semicontinuity of T ,  (3.9), and (3.6), 

T ( i )  < lim inf T ( u , )  
= Iim(T(u,) - T,,,(uo,)) + liminfT,,(u,,) 
< T(C) .  

But this contradicts the uniqueness of the minimizer U of T.  U 

Example 3.1 (Existence-uniqueness). Consider the problem of minimizing 

T ( u )  = llAu - Zll; + UIIUI/BV (3.10) 

for U E L"(S2). where the restrictions on p in theorem 3.1 apply. Here (Y > 0 and z E 2 
are fixed, and A : L"(S2) + 2 is hounded and linear. Then 

(3.11) 

and hence, the coercivity condition (3.2) holds. Weak lower semicontinuity of T follows 
from the houndedness of A, the weak lower semicontinuity of the norms on Banach spaces, 
and theorem 2.3. By theorem 2.4, the linearity of A, and convexity of norms, T is convex. 
By theorem 3.1 a minimizer exists. T is strictly convex if A is injective, in which case the 
minimizer is unique. 

The following examples deal with stability. In the next three examples, assume again 
that the reshtctions on p of theorem 3.1 apply. 
Example 3.2 (Perturbations in the data z). Let 

1 
IlUllBV < ;T(u) 

Tn(u) ~ l l A ~ - ~ ~ l I ~ + ~ I I ~ l l ~ v  (3.12) 

where zn = z + q,, and /Iqn 112 -+ 0 as n -+ CO. Then 

IT(u)-T(u)l= I l I ~ . I I ~ + 2 ~ A u - z , ~ . ) z l  
< 11~~llz(Il~~llz+211All IIuIIIJ'(~) +21l~Ilz) . 

Here (., .)E denotes the inner product on the Hilbert space 2, and the above inequality 
follows from Cauchy-Schwarz. Note that if U is Bv-hounded, then it is norm bounded in 
LP(S2) by theorem 2.5, and hence (3.6) holds. (3.5) holds because for each n, 

(3.13) 

Example 3.3 (Perturbations in the penalty functional). Take 

(3.14) def 
Tn(u) I I A u - ~ l l ~ + ~ ( l l u l l ~ ~ ~ n ~  +-'!"(U)) 

where j?" + 0. In this case, 
IT,@)-T(u)l =~lJa . (u) -Jo(u) l  <a&IIRI. (3.15) 

The above inequality follows from (2.10). This verifies (3.6). Similarly, (3.5) holds because 

(3.16) 
I 

-T"(u) 2 IIUllL'(n) + J&) > IIuilL'(n) +Jo(u)  = IIUIIBV. 
(Y 
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Example 3.4 (Perturbations in the penalty parameter a). Let 

Tn(U) = llAu-Zlli+Lu,\lull~v (3.17) 

where the ans are bounded below by umin > 0 and converge to a. Stability follows from 
the facts that 

and 

lTn(u) - T(u)j  < Ian - 011 IIUIIBV. 

Example 3.5 (Perturbations of the operator A). Assume 1 < p 4 df (d - I ) ,  and let 

(3.18) 

where the A,s converge strongly (i.e. pointwise) in Lp(s2) to A. Note that strong operator 
convergence is a reasonable assumption. It holds for consistent Galerkin approximations, 
e.g. finite element approximations as the mesh spacing h + 0. Then 

def 
Tn(U)  = I IAnu-z l&+dul lev  

ITn(u) - T@)l = I l IAnuIli - IlAuII; - 2((An - A ) u , ~ ) z l  
< (lIA"~llz + IlAullz +~11~11z) l l ( &  - A)ullz 

Note that pointwise convergence of bounded linear operators becomes uniform on compact 
sets. Since Bv-boundedness implies relative compactness in LP(n) ,  (3.6) holds. Uniform 
coercivity (3.5) again holds because of (3.13). 

4. Other penalty terms 

In this section, the B v  norm in the penalty term is replaced by the Bv semi-norm Jo,  or 
more generally, by 58. Consider the following functional defined on Lp(s2): 

T ( u )  = IlAu - zII; + E J ~ ( u )  (4.1) 

again taking on values in the extended reals. From a computational standpoint, for positive 
j3 the penalty functional J p ( u )  is Gateaux differentiable with respect to U ,  and hence much 
easier to deal with than I I u I I B v .  However, the analysis becomes much more complicated. 
Certain conditions on A are clearly needed to guarantee BV-coercivity. For example from 
(l.5), T cannot be BV-coercive if A annihilates constant functions. Conversely, 

Lemina4.1. Assume that 1 6 p < d / ( d  - I), and that A does not annihilate constant 
functions. Equivalently, since A is linear, assume 

A x n f O .  
Then T in (4.1) is BV-coercive 

(4.2) 

Pro05 
U E BV(C2) has a decomposition 

From the inequalities (2.10), it suffices to consider the case of j3 = 0. Any 

u = v + w  (4.3) 

where 

(4.4) 
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As a consequence of this and 

Jo(v) < ' T ( u )  
L-f 

one obtains from (4.6) 

But if (4.1 1) does not hold, then 

and hence from (4.6) and (4.13), 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

From (4.14) and (4.16), one obtains BV-Coercivity. U 

One now obtains the following from theorem 3.1 

Theorem 4.1. Suppose p satisfies the restrictions of theorem 3.1, p > 0, and A is bounded 
linear and satisfies (4.2). Then the functional T in (4.1) has a minimizer. 
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The following example illustrates that a condition stronger than (4.2) may be necessary 
to guarantee uniqueness of minimizers of T in (4.1). 
Example 4.1. Define A : L 1 ( - 2 ,  2) + RZ by 

-1 2 
[ A u ] ,  = Jz u(x) dx [ A U ] ~  = u(x)dx. 

Let z = [zl, zZIT = [-I, 1IT E R2.  Define 

(4.17) 

For any j? > 0, the unique minimizer of Tp over L'(C2) is 
if x < - 1  1: if x > l .  

u ( x )  = x if - l < x < l  (4.18) 

On the other hand, for ,9 = 0 one obtains a minimizer by defining U on the subinterval 
- I  < x < 1 to be any monotonic increasing function taking on values between -1 and 1. 

This next theorem addresses the stability of minimizers to functionals of the form (4.1). 
Consider perturbed functionals 

T,,(u) = I l A , ~ - ~ z , 1 1 ~ + a J p ( ~ ) .  (4.19) 
Theorem 4.2. Assume 1 < p < d / ( d  - l), 114 -zIIz + 0, the A,s are each bounded linear 
and converge pointwise to A,  and for each n, 

(4.20) 
Also assume each T,, has a unique minimizer U, and that T has a unique minimizer II. Then 

IIU. -ullL.(n) + 0. (4.21) 

Pro03 It suffices to show that conditions (i) and (ii) of theorem 3.2 hold. For condition 
(i) (uniform Ev-coercivity), put U,  = U. + w, as in (4.3) and (4.4), and repeat the proof of 
lemma 4.1. Since IIA,w,llz > yllw,[ILl(nj, letting M be an upper bound on IlAll and each 
IIA,II (such a bound exists by the BanachSteinhaus theorem, also known as the uniform 
boundedness principle), and m be an upper bound on llzllz and each llznllz, one obtains 

M u n )  Z ~ l l w ~ l l ~ w )  (Y I I~~ I ILW)  - ~ ( M C I  Jo(u,) + m ) )  + ~ J o ( u , ) .  (4.22) 
This yields uniform coercivity as in the proof of lemma 4.1. 

0 

IIAn X ~ I Z  > Y > 0.  

Condition (ii) (consistency) follows as in example 3.2 and 3.5. 

5. Convergence of minimizers 

Assume an exact problem 

A u = z  (5.1) 

A,u = zn (5.2) 

rn(U) = llAnU -Zol&+adU.I I~v .  (5.3) 

which has a unique solution ueXact E Bv(S2). Assume a sequence of perturbed problems 

having approximate solutions U- (not necessarily unique) obtained by minimizing the 
functionals 

The following theorem provides conditions which guarantee convergence of the u,s to u,,,,~. 
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Theorem 5.1. Let 1 < p < d/(d - 1). Suppose llr, - zllz + 0, A,, --f A pointwise 
in Lp(S2), and ol, + 0 at a rate for which IIAnu,,t - z,llz/ol, remains bounded. Then 
un + strongly in Lp(C2) if 1 < p < d / (d  - 1). Convergence is weak in LJ'(Q) if 
p = d/(d - 1).  

Proof: Note that 

R Acar and C R Vogel 

IIAnu, -z.II; 6 T,(ud 
< T"(uexact) 

= ~ ~ A n ~ e r x t - Z n ~ ~ ~  +%II~eractll~v. 

Thus from the assumption that IIAnueXau - ~,,11~/0r,, remains bounded and the fact that 
an + 0, 

IlAnun -z& + 0 .  (5.4) 
Similarly, 

and hence, the u,s are sv-bounded. Suppose they do not converge strongly (weakly, if 
p = d/(d - 1)) to uexpct. By theorem 2.5 there is a subsequence un, which converges 
strongly (weakly, respectively) in L p ( S 2 )  to some i? # uemct. For any U E 2, 

(5.5) 

The third and fourth terms on the right-hand side vanish as j + 00 because of (5.4) and 
the assumption z,, + z. The second term also vanishes, since 

I((A - A,,,)u,,,v)zl < IlunjIIwcn)II(A* - AZj)4 l~p(n)  -+ 0 

by the pointwise convergence of the A,s (and hence, their adjoints) and the norm 
boundedness of the U,S in LP(S2). The first term vanishes as well, taking adjoints and 
using the (weak) convergence of uni to i. Consequently, (Ai? - z. U ) Z  = 0 for any U E 2, 
and hence, Ai? = z. But this violates the uniqueness of the solution ueXact of (5.1). 0 

As in the previous section, one can consider instead the functional 

T,(u)=IIA,u-~,ll~+a.Js(u) (5.6) 
and obtain the same results as in the previous theorem. 

Theorem 5.2. In theorem 5.1, replace T ,  by (5.6), and make the same assumptions on A,, 
a,, z,, and p .  Furthermore, assume that IA,xnl 2 y > 0. Then the conclusions of theorem 
5.1 follow. 

Proof From the inequalities (2.10) one can assume ,6 = 0. As in the proof of Theorem 
5.1, one obtains that llAnun - z,ll' < lIA,,uexm - zn1l2 + a r , J ~ ( u , , ~ ) .  which implies (5.4). 
On the other hand, putting U, = U, + w. and referring again to the proofs of lemma 4.1 
and theorem 4.2, the present assumptions also imply that (4.22) holds. As in lemma 4.1, 
this implies that the U,  are uniformly BV-bounded. The last part of the proof is then the 
same as that of theorem 5.1. 
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