285J, L. Vese

Assignment 3: Due on Friday, June 10.

- Let $g \in C^1(R)$ be a function, with $g' > 0$. Let $v = g(u)$. If u satisfies
 \[
 \frac{\partial u}{\partial t} = |\nabla u| G(\text{curv}(u)),
 \]
 so does v (contrast invariance or geometric).

- Let $u : R^2 \to R$. The upper level set of u at level $\lambda \in R$ is the set $\chi_\lambda(u) = \{x \in R^2 : u(x) \geq \lambda\}$. Show that u can be retrieved by the reconstruction formula
 \[
 u(x) = \sup\{\lambda : x \in \chi_\lambda(u)\}.
 \]

- Let $u, v : R^2 \to R$. Assume that u and v have the same level sets, that is for all $\lambda \in R$, there is $\mu \in R$ such that $\chi_\lambda(u) = \chi_\mu(v)$. Let us define g by
 \[
 g(\lambda) = \sup \{\mu : \chi_\lambda(u) = \chi_\mu(v)\}. \tag{1}
 \]
 Then g is nondecreasing and $v = g \circ u$.

- Let u be sufficiently smooth and satisfy
 \[
 \frac{\partial u}{\partial t} = |\nabla u| G(\text{curv}u),
 \]
 where $\text{curv}u = \text{div} \left(\frac{\nabla u}{|\nabla u|} \right)$ is the curvature operator, and G is a function such that $kG(k) \geq 0$. Show that this flow decreases the total variation of u in time.