Consider in two dimensions \(f \in L^2(\Omega) \), and \(u(\cdot, \lambda) \) the unique minimizer of

\[
F(u) = \lambda \int_{\Omega} |Du|dx + \frac{1}{2} \int_{\Omega} |u - f|^2dx,
\]

with \(\lambda \geq 0 \).

We know that \(u(\cdot, \lambda) \) necessarily satisfies the Euler-Lagrange equation (formally)

\[
\text{(E-L)} \quad \begin{cases}
 u(x, \lambda) - f(x) = \lambda \text{div} \left(\frac{Du(x, \lambda)}{|Du(x, \lambda)|} \right) \text{ in } \Omega, \\
 \frac{Du(x, \lambda)}{|Du(x, \lambda)|} \cdot \vec{n}(x) = 0 \text{ on } \partial \Omega,
\end{cases}
\]

where \(\vec{n}(x) \) denotes the exterior unit normal to \(\partial \Omega \) at the point \(x \in \partial \Omega \).

In the above relations, assume for simplicity that all expressions are well defined, that \(u(\cdot, \lambda) \) is a Sobolev function (for instance in \(W^{1,1}(\Omega) \cap L^2(\Omega) \)), and that \(Du(x, \lambda) = \nabla u(x, \lambda) \) denotes the usual spatial gradient (in the distributional sense, and not as a measure).

Problems:

1. Show that the \(L^2 \)-norm of \(u(\cdot, \lambda) \), given by \(\sqrt{\int_{\Omega} (u(x, \lambda))^2dx} \) is bounded by a constant independent of \(\lambda \).

2. Show, using the above E-L equation and above B.C., that

\[
\int_{\Omega} u(x, \lambda)dx = \int_{\Omega} f(x)dx.
\]

3. Show that \(u(\cdot, \lambda) \) converges in the \(L^1(\Omega) \) – strong topology to the average of the initial data. In other words, show that

\[
\lim_{\lambda \to \infty} \int_{\Omega} \left| u(x, \lambda) - \frac{\int_{\Omega} f(x)dx}{|\Omega|} \right| dx = 0.
\]