FALL 2001
MATH 285J SEMINAR Applied Mathematics

Variational Methods & PDE’s for Image Analysis and Curve Evolution

Instructor: Luminita A. Vese
Office: MS 7354
Office hours: MWF 2-3pm or by appointment.
E-mail: lvese@math.ucla.edu
Lecture Time and Location: MWF 1.00-1.50PM, in MS 5217.
Class Web Page: http://www.math.ucla.edu/~lvese/285j.1.01f
Enrollment Restriction: Graduate Students
Units: 4.0

Course Description:
The first part of the lecture will be devoted to restoration of images. We will present the Rudin-Osher-Fatemi model (they were the first to propose the minimization of the total variation); we may also discuss other related and more recent methods, by Chambolle-Lions, Aubert-Vese, Dibos-Koepfler, Chan-Wong. We will present the mathematical framework to solve these problems (the space of functions of bounded variation BV), as well as numerical discretizations. Then, we will describe other PDE models of anisotropic diffusion (Perona-Malik, Alvarez-Guichard-Lions-Morel).

The second part of the lecture will be devoted to segmentation. We will discuss the Mumford-Shah model and related minimizations of functionals depending on jumps and elliptic approximations (Dal Maso-Morel-Solimini, Chambolle, Ambrosio-Tortorelli), and the mathematical framework for these problems, in the space SBV of special functions of bounded variation, together with numerical techniques.

The last part of the lecture will be devoted to curve evolution problems for image processing: geometric PDE’s (e.g. motion by mean curvature), snakes, active contours, presented in the level set framework of Osher-Sethian and the theory of viscosity solutions.

Note: Problems, exercises and short numerical projects will be assigned from time to time. Papers can be read by the students and presented in class.

Plan & References: See the Class Web Page

Software:
MegaWave is a free software intended for image processing. It has been created by Jean-Michel Morel and his group (CMLA at E.N.S. Cachan, and CEREMADE, University of Paris IX-Dauphine, France).
MegaWave is installed in the Mathematics Department at UCLA! (thanks to François Malgouyres).

Matlab: images/images (Image Processing Toolbox), images/imdemos (demos and sample images).