Numerical Implementation Assignments

I strongly recommend to all enrolled students to choose one numerical assignment, and to work on that problem with my help. You can also work in teams of 2-3 students on the same project. Students already working on related subjects, can choose a short project part of their current thesis research, instead of the following proposed projects.

Students who are more interested in reading a paper in details (not among those already discussed), and maybe giving a short presentation in class, instead of working on a numerical project, can do so.

The steps should be (using the paper devoted to the model of your choice):

- write down the model (variational model or PDE's)
- write down the numerical scheme to be used
- implement in the language of your choice that numerical scheme and perform a test, including the choice of parameters, on a particular image.

Projects:

- 1. Classical edge detection: comparison between gradient-edge detector, zero-crossings of the Laplacian and the Canny's edge detector.
- 2. Blurring images by convolution with different types of blurs (point-spread-functions).
 - 3. Osher-Rudin image enhancement filter.
- 4. Total variation minimization for image denoising (the unconstrained case).
- 5. Total variation minimization for image denoising (the constrained case and adaptive Lagrange multiplier, when the standard deviation of the noise is known).
 - 6. Perona-Malik equation for anisotropic diffusion.
 - 7. Multi-scale analysis by motion by mean curvature.
 - 8. Multi-scale analysis by affine motion with mean curvature.
 - 9. Ambrosio-Tortorelli approximations for Mumford-Shah segmentation.
- 10. Geodesic active contours by level sets for object detection (Caselles, Kimmel, Sapiro).
- 11. Active contours without edges by level sets for object detection (Chan-Vese).
 - 12. More projects can be proposed.