
Math 273b: Calculus of Variations
Homework #3, due on Friday, June 3rd

[1] Consider the 1D length functional minimization problem

min
u
F (u) =

∫ 1

0
L(u′(x))dx, or min

u

∫ 1

0

√
1 + (u′(x))2dx,

for twice differentiable functions u : [0, 1] → IR with boundary conditions
u(0) = 0, u(1) = 1.

(a) Show that the functional u 7→ F (u) is convex.
(b) Formally compute the Gateaux-differential and then obtain the Euler-

Lagrange equation associated with the minimization.
(c) Find the exact solution of the problem.

[2] Let A : IRn → IRn be a linear self-adjoint operator, b ∈ IRn, and consider
the quadratic function for x ∈ IRn

x 7→ q(x) := 〈Ax, x〉 − 2〈b, x〉.

Show that the three statements
(i) inf{q(x) : x ∈ IRn} > −∞
(ii) A ≥ O and b ∈ ImA.
(iii) the problem inf{q(x) : x ∈ IRn} > −∞ has a solution

are equivalent. When they hold, characterize the set of minimum points of
q, in terms of the pseudo-inverse of A.

[3] Computation of the Euler-Lagrange equation.
(a) Consider the minimization problem

inf
u
F (u) =

∫ x1

x0

L(x, u(x), u′(x))dx,

with u(x0) = u0, u(x1) = u1 given constants, and L a sufficiently smooth
function. Obtain formally the Euler-Lagrange equation of the minimization
problem that is satisfied by a smooth optimal u.

Hint: Consider smooth test functions v, such that v(x0) = v(x1) = 0.
Since u is a minimizer, we must have F (u) ≤ F (u+εv) for all such sufficiently
smooth functions v and every real ε. Apply integration by parts to obtain
the desired result. You should obtain a second-order differential equation.
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(b) Let now u(x, t) be a smooth solution of the time-dependent partial
differential equation (PDE)

∂u

∂t
=

∂

∂x
Lu′(x, u, u′)− Lu(x, u, u′),

with u(x, 0) = u0(x) on (x0, x1) and u(x0, t) = U0, u(x1, t) = U1 for t ≥ 0.
Show that the function E(t) = F (u(·, t)) is decreasing in time, where F (u) =∫ x1
x0
L(x, u, u′)dx.

Optional problems

[1] Consider the minimization problem

inf
u
F (u) =

∫ x1

x0

L(x, u(x), u′(x), u′′(x))dx,

with u(x0) = u0, u(x1) = u1, u′(x0) = U0, u′(x1) = U1 given, and L a
sufficiently smooth function. As in the previous problem, derive the equation
satisfied by a smooth optimal u. Choose test functions v in C∞[x0, x1] that
satisfy v(x0) = v(x1) = v′(x0) = v′(x1) = 0. (you should obtain a fourth-
order differential equation).

[2] Consider the minimization problem in two dimensions (x, y),

inf
u
E(u) =

∫
Ω
L(x, y, u, ux, uy)dxdy, u = g on ∂Ω,

where g is a given function on the boundary ∂Ω, with Ω a bounded and open
region in the plane. Assume that the integrand L is differentiable.

(i) Show that a sufficiently smooth minimizer u formally satisfies the
Euler-Lagrange equation

∂

∂x
Lux(P ) +

∂

∂y
Luy(P )− Lu(P ) = 0

on Ω, where P = (x, y, u(x, y), ux(x, y), uy(x, y)).
(ii) Apply the above result to the case when L(x, y, ux, uy) = u2

x+u2
y−2fu.

Hint for (i): consider another test function v, such that v = 0 on ∂Ω. Since
u is a minimizer, we must have E(u) ≤ E(u + εv) for all such sufficiently
smooth functions v and all real ε. Apply integration by parts to obtain the
desired result. Here, (ux, uy) = ∇u.
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Notes:
• Pseudo-Inverse. If A is a symmetric (or self-adjoint) linear operator

onX, then ImA⊥ = KerA. Let pImA
be the operator of orthogonal projection

onto ImA. For given y ∈ X, there is a unique x = x(y) in ImA such that
Ax = pImA

y. Forthermore, the mapping y 7→ x(y) is linear. This mapping
is called the pseudo-inverse, or generalized inverse of A.

• Integration by Parts Formula. Let Ω be an open and bounded
subset of Rd, with Lipschitz-continuous (or sufficiently smooth) boundary
∂Ω. Let ~n = (n1, n2, ..., nd) be the exterior unit normal to ∂Ω. Let me recall
the following fundamental Green’s formula, or integration by parts formula:
given two functions u, v (with u, v, and all their 1st order partial derivatives
belonging to L2(Ω), or u, v ∈ H1(Ω)), then∫

Ω
uvxi

dx = −
∫

Ω
uxi
vdx+

∫
∂Ω
uvnidS.
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