Math 273b: Calculus of Variations
Homework #3, due on Friday, June 3rd

[1] Consider the 1D length functional minimization problem

min F'(u) = /01 L(v'(x))dx, or min /01 1+ (v(z))%dx,

for twice differentiable functions u : [0,1] — IR with boundary conditions
u(0) =0, u(l) = 1.

(a) Show that the functional u — F'(u) is convex.

(b) Formally compute the Gateaux-differential and then obtain the Euler-
Lagrange equation associated with the minimization.

(c) Find the exact solution of the problem.

[2] Let A: IR" — IR" be a linear self-adjoint operator, b € IR", and consider
the quadratic function for z € IR"

r— q(z) = (Ax,x) — 2(b, ).

Show that the three statements

(i) inf{g(z) : € R"} > —0

(i) A> O and b € ImA.

(iii) the problem inf{g(z): x € IR"} > —oo has a solution
are equivalent. When they hold, characterize the set of minimum points of
¢, in terms of the pseudo-inverse of A.

[3] Computation of the Euler-Lagrange equation.
(a) Consider the minimization problem

xr1

inf F'(u) :/ L(x,u(x), v (z))dr,
zo
with u(zg) = ug, u(x1) = uy given constants, and L a sufficiently smooth
function. Obtain formally the Euler-Lagrange equation of the minimization
problem that is satisfied by a smooth optimal wu.

Hint: Consider smooth test functions v, such that v(z) = v(z;) = 0.
Since u is a minimizer, we must have F'(u) < F'(u+ev) for all such sufficiently
smooth functions v and every real e. Apply integration by parts to obtain
the desired result. You should obtain a second-order differential equation.



(b) Let now u(x,t) be a smooth solution of the time-dependent partial
differential equation (PDE)

ou_ o
ot Oz
with u(x,0) = ug(z) on (zg,z1) and u(xg,t) = Uy, u(xq,t) = Uy for t > 0.

Show that the function E(t) = F(u(-,t)) is decreasing in time, where F'(u) =
Jod L, u,u')d.

Ly(x,u,u’) — Ly(z,u,u),

Optional problems
[1] Consider the minimization problem

1

inf F'(u) :/ L(z,u(x),u (z),u"(z))dx,
Zo

with w(zog) = wg, u(zy) = uy, v(xg) = Uy, v(x1) = Uy given, and L a

sufficiently smooth function. As in the previous problem, derive the equation

satisfied by a smooth optimal u. Choose test functions v in C*[xzg, x;] that

satisfy v(zg) = v(x;) = v'(zg) = v'(21) = 0. (you should obtain a fourth-

order differential equation).

[2] Consider the minimization problem in two dimensions (z,y),
inf F(u) = / L(x,y,u, uy, uy)dxdy, wu= g on 0L,
u Q

where g is a given function on the boundary 0f2, with Q2 a bounded and open
region in the plane. Assume that the integrand L is differentiable.

(i) Show that a sufficiently smooth minimizer u formally satisfies the
Euler-Lagrange equation

0 0
Py =
oz a )+3y

on Q, where P = (z,y, u(x,y), us(z,y), uy(z,y)).
(ii) Apply the above result to the case when L(z,y, u,, u,) = u+u; —2 fu.
Hint for (i): consider another test function v, such that v = 0 on 9. Since
u is a minimizer, we must have E(u) < E(u + ev) for all such sufficiently
smooth functions v and all real e. Apply integration by parts to obtain the
desired result. Here, (u,,u,) = Vu.



Notes:

e Pseudo-Inverse. If A is a symmetric (or self-adjoint) linear operator
on X, then ImA+ = KerA. Let PTm 4 Pe the operator of orthogonal projection
onto ImA. For given y € X, there is a unique x = z(y) in ImA such that
Az = pryy4y- Forthermore, the mapping y — x(y) is linear. This mapping
is called the pseudo-inverse, or generalized inverse of A.

e Integration by Parts Formula. Let (2 be an open and bounded
subset of R? with Lipschitz-continuous (or sufficiently smooth) boundary
0. Let 7i = (nq,na, ...,nq) be the exterior unit normal to J€2. Let me recall
the following fundamental Green’s formula, or integration by parts formula:
given two functions w, v (with u, v, and all their 1st order partial derivatives
belonging to L*(Q), or u,v € H'(Q)), then

/ UV, dr = —/ Uy, vdT + uvn;dsS.
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