Math 273b: Calculus of Variations Homework 2

[1] Assume that V and V^{*} are normed vector spaces in duality. Let $F: V \to$ $\overline{\mathbb{R}}$ and let $F^*: V^* \to \overline{\mathbb{R}}$ be the polar or conjugate of F. We define F^* by

$$F^*(u^*) = \sup_{u \in V} \left\{ \langle u^*, u \rangle - F(u) \right\}.$$

Show

(i) $F^*(0) = -inf_{u \in V}F(u)$. (ii) $(\lambda F)^*(u^*) = \lambda F^*(\frac{1}{\lambda}u^*)$ for every $\lambda > 0$.

[2] Let $V = V^* = \mathbb{R}^n$. Let Q be a symmetric positive definite $n \times n$ matrix, $b \in \mathbb{R}^n$, and consider $f(x) := \frac{1}{2} \langle x, Qx \rangle + \langle b, x \rangle$, for all $x \in \mathbb{R}^n$. Find the polar (or the conjugate) f^* and deduce that, in particular, $\frac{1}{2} \| \cdot \|^2$ is its own polar (or conjugate).

[3] Let $F: V \to I\!\!R$ and F^* its polar. Then $u^* \in \partial F(u)$ if and only if $F(u) + F^*(u^*) = \langle u^*, u \rangle.$

[4] Show that the polar F^* is convex.

[5] Let $f \in \mathbb{R}^{N^2}$ be given, and let $u \in \mathbb{R}^{N^2}$ be an unknown minimizer of the functional

$$E(w) = \sum_{i,j=0}^{N-1} |\nabla w_{i,j}|^2 + \lambda \sum_{i,j=0}^{N-1} (w_{i,j} - f_{i,j})^2,$$

for $w \in \mathbb{R}^{N^2}$, where

$$\nabla w_{i,j} = \left(\begin{array}{c} (D_x w)_{i,j} \\ (D_y w)_{i,j} \end{array} \right) = \left(\begin{array}{c} w_{i+1,j} - w_{i,j} \\ w_{i,j+1} - w_{i,j} \end{array} \right),$$

for $(i, j) \in \{0, ..., N-1\}^2$ (we assume that all vectors f, w are periodic outside of their support).

(a) Find the adjoint operators D_x^* and D_y^* of D_x and D_y . (b) Find a linear operator $B : \mathbb{R}^{N^2} \to \mathbb{R}^{N^2}$, a $c \in \mathbb{R}^{N^2}$, and C(f), independent of w, such that for all $w \in \mathbb{R}^{N^2}$,

$$E(w) = \langle Bw, w \rangle + \langle c, w \rangle + C(f).$$

(c) Show that B is self-adjoint.

(d) Find the Gateaux differential of E(w) in the direction v and thus give a necessary (and sufficient) condition for w to be a minimizer, by setting this differential to zero (as the zero functional).