Notes on Stable and Normal Problems

Assume that $\Phi: V \times Y \to \overline{\mathbb{R}}$ is convex and l.s.c. such that Φ does not take the value $-\infty$ and is not identically $+\infty$.

We define $h: Y \to \mathbb{R}$ by $h(p) = \inf(\mathcal{P}_p) = \inf_{v \in V} \Phi(u, p)$.

Def. 1. Problem \mathcal{P} is said to be *normal* if h(0) is finite and h is l.s.c.

Def. 2. Problem \mathcal{P} is said to be *stable* if h(0) is finite and h is subdifferentiable at 0.

Proposition 1. The following three conditions are equivalent:

- (i) \mathcal{P} is normal
- (ii) \mathcal{P}^* is normal
- (iii) inf $\mathcal{P} = \sup \mathcal{P}^*$ and this number is finite

Proposition 2. The following two conditions are equivalent:

- (i) \mathcal{P} is stable
- (ii) \mathcal{P} is normal and \mathcal{P}^* has at least one solution.

Corollary 1. The following three conditions are equivalent:

- (i) \mathcal{P} and \mathcal{P}^* are normal and have some solutions
- (ii) \mathcal{P} and \mathcal{P}^* are stable
- (iii) \mathcal{P} is stable and has some solutions.

Proposition 3. A stability criterion.

Assume that Φ is convex, that $\inf \mathcal{P}$ is finite and that

(1) There is $u_0 \in V$ s.t. $p \mapsto \Phi(u_0, p)$ is finite and continuous at $0 \in Y$. Then problem \mathcal{P} is stable.

Theorem Assume that V is a reflexive Banach space, (1) satisfied, Φ as above, and $\lim \Phi(u,0) = +\infty$ if $||u||_V \to \infty$. Then \mathcal{P} and \mathcal{P}^* each have at least one solution.

$$\inf \mathcal{P} = \sup \mathcal{P}^*$$

and the extremality relation is satisfied:

$$\Phi(\bar{u},0) + \Phi^*(0,\bar{p}) = 0 \Leftrightarrow (0,\bar{p}^*) \in \partial \Phi(\bar{u},0).$$

Proof. By the assumptions, from the general existence theorem, we have existence of a solution of problem \mathcal{P} . Proposition 3 implies that \mathcal{P} is stable. By the above results, this implies that \mathcal{P}^* also has solutions, and that inf=sup=finite. The extremality relation follows from the Thm. done in class.