Math 273: Homework #2
Assigned on: October 15, 2014.
Due to: Teaching Assistant Eric Radke in two weeks.

[1] Consider the minimization problem

1

inf F'(u) :/ L(z,u(x),u (z),u"(z))dx,
xo
with u(zog) = wo, u(zy) = uy, v(xg) = Uy, v'(x1) = Uy given, and L a
sufficiently smooth function. Obtain the Euler-Lagrange equation of the
minimization problem that is satisfied by a smooth optimal u. Choose test
functions v in C*[xg,x;] that satisfy v(zg) = v(z1) = V'(zg) = V(1) =
0, and proceed as in HW1 (you should obtain a fourth-order differential
equation).

[2] Consider the minimization problem in two dimensions (z,y),
inf E(u) = / L(z,y,u, uy, uy)dxdy, wu= g on 0,
u Q

where ¢ is a given function on the boundary 02, with 2 a bounded and open
region in the plane. Assume that the integrand L is differentiable.

(i) Show that a sufficiently smooth minimizer u formally satisfies the
Euler-Lagrange equation

0 0
%LMP) + ay

Ly,(P) = L,(P) =0
on Q, where P = (z,y, u(z,y), us(z,y), uy(z, y)).
(ii) Apply the above result to the case when L(x, y, uy, u,) = ui+u§—2fu.
Hint: consider another test function v, such that v = 0 on 9€). Since u is
a minimizer, we must have E(u) < E(u+ ¢ev) for all such sufficiently smooth
functions v and all real e. Apply integration by parts to obtain the desired
result. Here, (ug,u,) = Vu.

[3] Consider the 1D length functional minimization problem

Min, F(u) = /01 L(v'(x))dx, or Min, /01 V14 (v(x))%de,

over functions u : [0, 1] — IR with boundary conditions u(0) = 0, u(1) = 1.
(a) Find the exact solution of the problem.
(b) Show that the functional u +— F'(u) is convex.
(c) Consider a discrete version of the problem: let

To=0<21 < ... <Tp < Tpy1 =1



be equidistant points, with z;,1 — 2; = h. For @ = (uq,...,u,), consider

f@) =30 g\/1+ (%)2, with the additional condition that uy = 0 and

Upt+1 = 1.

Choose an appropriate discretization integer n. Then numerically and
experimentally analyze the behavior of the gradient descent method with
backtracking line search. Choose the initial starting point u’ as a curve
joining the points (0,0) and (1,1). Record the number of iterations and plot
the error u* — u*, where u* is the exact minimizer. You could also plot the
curve given by @* at some iterations.

(d) Repeat question (c), using now Newton’s method.

(e) Discuss the results obtained in (c) and (d).

[4] Let A : IR" — IR" be a (linear) self-adjoint operator, b € IR", and consider
the quadratic function for x € IR"

z— q(z) = (Ax,z) — 2(b, ).

Show that the three statements

(i) inf{g(z) : z € R"} > —c0

(i) A > O and b € ImA.

(iii) the problem inf{q(z): = € IR"} > —oc has a solution
are equivalent. When they hold, characterize the set of minimum points of
¢, in terms of the pseudo-inverse of A.

Notes:

e Pseudo-Inverse. If A is a symmetric (or self-adjoint) linear operator
on X, then ImA+ = KerA. Let PIm 4 Pe the operator of orthogonal projection
onto ImA. For given y € X, there is a unique z = z(y) in ImA such that
Az = ppy 4y- Forthermore, the mapping y ~— x(y) is linear. This mapping
is called the pseudo-inverse, or generalized inverse of A.

e Integration by Parts Formula. Let €2 be an open and bounded
subset of R with Lipschitz-continuous (or sufficiently smooth) boundary
0. Let 7i = (nq1,na, ...,nq) be the exterior unit normal to 9. Let me recall
the following fundamental Green’s formula, or integration by parts formula:
given two functions w, v (with u, v, and all their 1st order partial derivatives
belonging to L?(Q2), or u,v € H'(Q)), then

/ U, dr = —/ Uy, vdx + uon;dsS.
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