
Examples of dual problems
What we know:
V , Y are two normed spaces, with V ∗ and Y ∗ their duals
F : V 7→ R, F : V 7→ R, G : Y 7→ R

We use the duality pairing notations:
• if u∗ ∈ V ∗ and u ∈ V , we write 〈u∗, u〉 = u∗(u).
• if p∗ ∈ Y ∗ and p ∈ Y , we write 〈p∗, p〉 = p∗(p).

Conjugate or polar of F : V 7→ R̄ is F ∗ : V ∗ 7→ R̄ defined by

F ∗(u∗) = sup
u∈V

{
〈u∗, u〉 − F (u)

}
.

Λ : V 7→ Y is a linear and continuous operator with adjoint Λ∗ : Y ∗ 7→ V ∗.

primal problem: (P) inf
V
F(u)

with F(u) = F (u) +G(Λu)

dual problem: (P)∗ sup
p∗∈Y ∗

−F ∗(Λ∗p∗)−G∗(−p∗)

Extremality relation: if ū solution of (P) and p̄∗ solution of (P∗), then these must satisfy:

F (ū) + F ∗(Λ∗p̄∗)− 〈Λ∗p̄∗, ū〉 = 0

G(Λū) +G∗(−p̄∗)− 〈−p̄∗,Λū〉 = 0

Now we want to see examples of minimizations (P) defined on Sobolev spaces and how to
compute their duals.

Example: The Dirichlet Problem
Let Ω ⊂ Rn be open, bounded and connected, f ∈ L2(Ω).

−4u = f in Ω,

u = 0 on ∂Ω.

Recall H1
0 (Ω) = {v ∈ L2(Ω), Div ∈ L2(Ω), v = 0 on ∂Ω}

We know (exercise) that if we multiply the PDE by v ∈ H1
0 (Ω) and integrate by parts, we

obtain the problem{
Find u ∈ H1

0 (Ω) s.t. a(u, v) = (f, v) for all v ∈ H1
0 (Ω)

}
where a(u, v) =

∑n
i=1(Diu,Div).

}
and (·, ·) denotes the inner product in L2(Ω).

We know (exercise) that this problem is equivalent with the minimization:

(P) inf
u∈H1

0 (Ω)
F(u),

with F : H1
0 (Ω)→ R defined by F(u) = 1

2a(u, u)− (f, u).
From the Thm. from the course we can deduce that (P) has a unique solution ū.
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We want to compute its dual, which must also have a solution (Thm. from previous handout)
and write down the extremality relations.

V = H1
0 (Ω), Y = L2(Ω)n, Λ : V 7→ Y is the gradient operator, Λu = Du, for all u ∈ V .

V ∗ = H1
0 (Ω)∗ (coincides with H−1(Ω))

Y ∗ = Y = L2(Ω)n

F (u) = −(f, u) = −
∫

Ω
f(x)u(x)dx

G(p) =
1

2

∫
Ω
|p(x)|2dx

so problem (P) is of the form F (u) +G(Λu)
We need to compute F ∗ and G∗:
(we can view f ∈ V ∈ V ∗ and (f, u) = 〈f, 〉u)

F ∗(u∗) = sup
u∈V

{
〈u∗, u〉 − F (u)

}
= sup

u∈V

{
〈u∗, u〉+ (f, u)

}
= sup

u∈V
〈u∗ + f, u〉 =

{
0 if u∗ + f = 0
+∞ otherwise

In the current homework it is shown that if G = 1
2‖ · ‖

2, then G∗ = G, thus we have

G∗(p∗) =
1

2

∫
Ω
|p∗(x)|2dx.

Therefore, using the dual formula from above:

dual problem: (P)∗ sup
p∗∈L2(Ω)n

[
− F ∗(Λ∗p∗)−G∗(−p∗)

]
or

dual problem: (P)∗ sup
p∗∈L2(Ω)n, −Λ∗p∗=f

{
− 1

2

∫
Ω
|p∗(x)|2dx

}
We want to express the constraint −Λ2p∗ = f , Λ = ∇ for u ∈ H1

0 (Ω), p∗ ∈ L2(Ω)n:∫
Ω

(Λu · p∗)dx =

∫
Ω
∇u · (p∗1, ..., p∗n)dx =

∫
Ω

(ux1p
∗
1 + ...+ uxnp

∗
n)dx

= −
∫

Ω
u
( ∂

∂x1
p∗1 + ...+

∂

∂xn
p∗n

)
+

∫
Ω
up∗ · ~n = −

∫
Ω
u
( ∂

∂x1
p∗1 + ...+

∂

∂xn
p∗n

)
= −

∫
Ω
udivp∗dx =

∫
Ω
u(− divp∗dx =

∫
Ω
uΛ∗p∗,

thus we deduce that Λ∗ = − div .
Then the constraint −Λ2p∗ = f ⇔ −(−divp∗) = f or div p∗ = f .
In conclusion, the dual problem becomes

(P)∗ sup
p∗∈L2(Ω)n, divp∗=f

{
− 1

2

∫
Ω
|p∗(x)|2dx

}
.

2



Extremality relations: if ū is the unique solution of (P) and p̄∗ a solution of (P)∗, we must have:

F (ū) + F ∗(Λ∗p̄∗) = 〈Λ∗p̄∗, ū〉

G(Λū) +G∗(−p̄∗) = −〈p̄∗,Λū〉

The second relation gives∫
Ω
|∇ū|2dx+

∫
Ω
|p̄∗(x)|2dx = −2

∫
Ω
∇ū(x) · p̄∗(x)dx,

or

n∑
i=1

∫
Ω

(
ūxi − p̄∗i )2dx = 0

possible iff p̄∗(x) = −∇ū(x) a.e. x ∈ Ω

Conclusion: the hypotheses of theorems from the course and handout hold; we know the
existence and uniqueness of a solution ū of (P); we have the existence of a solution p̄∗ of (P)∗

(this is also unique since the functional p∗ 7→ 1
2

∫
Ω |p

∗(x)|2dx is strictly convex); we also must
have inf(P) = sup(P)∗ and the extremality conditions above must hold, giving us that p̄∗(x) =
−gradū(x), a.e. in Ω.

Example: computation of the dual for a problem with constraint
(problem of elasto-plastic torsion)

Let W = {v ∈ H1
0 (Ω) : |gradv(x)| ≤ 1 a.e.}, or

W = {v ∈ H1
0 (Ω) : |∇v(x)| ≤ 1, a.e.} (using the notation grad = ∇).

It is easy to show that this is a closed, convex subset of V = H1
0 (Ω).

The primal problem is

(P) inf
u∈W

{1

2

∫
Ω

[
|∇u|2 − 2fu

]
dx
}
,

where we can assume that f ∈ L∞(Ω) is given.
Based on a Thm. of Brezis and Stampacchia (not covered in class), there is a unique solution

ū ∈W 2,α(Ω) of the problem, for all 1 ≤ α <∞.
We leave out the discussion on the existence of the solution; here we only want to compute the

dual problem.
We set V = H1

0 (Ω), V ∗ = H−1(Ω), Y = Y ∗ = L2(Ω)n, Λ = ∇ = gradient.

F (u) =
1

2

∫
Ω
|∇u|2dx−

∫
Ω
f(x)u(x)dx

G(p) =

{
0 if |p(x)| ≤ 1 a.e.
+∞ otherwise

(P) inf
u
F (u) +G(Λu)
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F ∗(u∗) = sup
v∈V

(
〈u∗, v〉+ (f, v)− 1

2

∫
Ω
|∇v|2dx

)
.

The sup problem has a unique solution v = v(u∗) that must satisfy

(∇v,∇w) = 〈f + u∗, w〉 for all w ∈ V

from where we obtain that

F ∗(u∗) =
1

2
‖f + u∗‖2∗,

where ‖ · ‖∗ is the dual norm in V ∗, dual to ‖u‖ =
( ∫

Ω |∇u|
2dx
)1/2

.

We also have:

G : L2(Ω)n 7→ R, G(p) =

{
0 if |p(x)| ≤ 1 a.e.
+∞ otherwise

.

Then

G∗(p∗) = sup
p∈L2(Ω)n

(
〈p∗, p〉 −G(p)

)
= sup

p∈L2(Ω)n

(∫
Ω
p∗(x) · p(x)dx−

{
0 if |p(x)| ≤ 1 a.e.
+∞ otherwise

)

= sup
|p(x)|≤1 a.e.

∫
Ω
p∗(x) · p(x)dx =

∫
Ω
|p∗(x)|dx.

Thus we obtain the dual problem

(P)∗ sup
p∗∈L2(Ω)n

(
− 1

2
‖divp∗ − f‖2∗ −

∫
Ω
|p∗(x)|dx

)
which is an unconstrained problem.
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