Examples of dual problems What we know:

V, Y are two normed spaces, with V^* and Y^* their duals $\mathcal{F}: V \mapsto \overline{\mathbb{R}}, F: V \mapsto \overline{\mathbb{R}}, G: Y \mapsto \overline{\mathbb{R}}$

We use the duality pairing notations:

- if $u^* \in V^*$ and $u \in V$, we write $\langle u^*, u \rangle = u^*(u)$.
- if $p^* \in Y^*$ and $p \in Y$, we write $\langle p^*, p \rangle = p^*(p)$.

Conjugate or polar of $F: V \mapsto \overline{\mathbb{R}}$ is $F^*: V^* \mapsto \overline{\mathbb{R}}$ defined by

$$F^*(u^*) = \sup_{u \in V} \Big\{ \langle u^*, u \rangle - F(u) \Big\}.$$

 $\Lambda: V \mapsto Y$ is a linear and continuous operator with adjoint $\Lambda^*: Y^* \mapsto V^*$.

primal problem: $(\mathcal{P}) \inf_{U} \mathcal{F}(u)$

with $\mathcal{F}(u) = F(u) + G(\Lambda u)$

dual problem:
$$(\mathcal{P})^* \sup_{p^* \in Y^*} -F^*(\Lambda^* p^*) - G^*(-p^*)$$

Extremality relation: if \bar{u} solution of (\mathcal{P}) and \bar{p}^* solution of (\mathcal{P}^*) , then these must satisfy:

$$F(\bar{u}) + F^*(\Lambda^* \bar{p}^*) - \langle \Lambda^* \bar{p}^*, \bar{u} \rangle = 0$$
$$G(\Lambda \bar{u}) + G^*(-\bar{p}^*) - \langle -\bar{p}^*, \Lambda \bar{u} \rangle = 0$$

Now we want to see examples of minimizations (\mathcal{P}) defined on Sobolev spaces and how to compute their duals.

Example: The Dirichlet Problem

Let $\Omega \subset \mathbb{R}^n$ be open, bounded and connected, $f \in L^2(\Omega)$.

$$-\triangle u = f \text{ in } \Omega,$$
$$u = 0 \text{ on } \partial\Omega.$$

Recall $H_0^1(\Omega) = \{ v \in L^2(\Omega), D_i v \in L^2(\Omega), v = 0 \text{ on } \partial\Omega \}$

We know (exercise) that if we multiply the PDE by $v \in H_0^1(\Omega)$ and integrate by parts, we obtain the problem

$$\left\{ \text{ Find } u \in H_0^1(\Omega) \text{ s.t. } a(u,v) = (f,v) \text{ for all } v \in H_0^1(\Omega) \right\}$$

where $a(u, v) = \sum_{i=1}^{n} (D_i u, D_i v)$. $\}$ and (\cdot, \cdot) denotes the inner product in $L^2(\Omega)$. We know (exercise) that this problem is equivalent with the minimization:

$$(\mathcal{P}) \quad \inf_{u \in H^1_0(\Omega)} \mathcal{F}(u),$$

with $\mathcal{F}: H_0^1(\Omega) \to \mathbb{R}$ defined by $\mathcal{F}(u) = \frac{1}{2}a(u, u) - (f, u)$.

From the Thm. from the course we can deduce that (\mathcal{P}) has a unique solution \bar{u} .

We want to compute its dual, which must also have a solution (Thm. from previous handout) and write down the extremality relations.

 $V = H_0^1(\Omega), Y = L^2(\Omega)^n, \Lambda : V \mapsto Y$ is the gradient operator, $\Lambda u = Du$, for all $u \in V$. $V^* = H_0^1(\Omega)^*$ (coincides with $H^{-1}(\Omega)$) $Y^* = Y = L^2(\Omega)^n$

$$F(u) = -(f, u) = -\int_{\Omega} f(x)u(x)dx$$
$$G(p) = \frac{1}{2}\int_{\Omega} |p(x)|^2 dx$$

so problem (\mathcal{P}) is of the form $F(u) + G(\Lambda u)$ We need to compute F^* and G^* : (we can view $f \in V \in V^*$ and $(f, u) = \langle f, \rangle u$)

$$F^*(u^*) = \sup_{u \in V} \left\{ \langle u^*, u \rangle - F(u) \right\} = \sup_{u \in V} \left\{ \langle u^*, u \rangle + (f, u) \right\}$$
$$= \sup_{u \in V} \langle u^* + f, u \rangle = \left\{ \begin{array}{c} 0 \text{ if } u^* + f = 0\\ +\infty \text{ otherwise} \end{array} \right.$$

In the current homework it is shown that if $G = \frac{1}{2} \| \cdot \|^2$, then $G^* = G$, thus we have

$$G^*(p^*) = \frac{1}{2} \int_{\Omega} |p^*(x)|^2 dx$$

Therefore, using the dual formula from above:

dual problem:
$$(\mathcal{P})^* \sup_{p^* \in L^2(\Omega)^n} \left[-F^*(\Lambda^* p^*) - G^*(-p^*) \right]$$

or

dual problem:
$$(\mathcal{P})^* \sup_{p^* \in L^2(\Omega)^n, -\Lambda^* p^* = f} \left\{ -\frac{1}{2} \int_{\Omega} |p^*(x)|^2 dx \right\}$$

We want to express the constraint $-\Lambda^2 p^* = f$, $\Lambda = \nabla$ for $u \in H_0^1(\Omega)$, $p^* \in L^2(\Omega)^n$:

$$\int_{\Omega} (\Lambda u \cdot p^*) dx = \int_{\Omega} \nabla u \cdot (p_1^*, ..., p_n^*) dx = \int_{\Omega} (u_{x_1} p_1^* + ... + u_{x_n} p_n^*) dx$$
$$= -\int_{\Omega} u \Big(\frac{\partial}{\partial x_1} p_1^* + ... + \frac{\partial}{\partial x_n} p_n^* \Big) + \int_{\Omega} u p^* \cdot \vec{n} = -\int_{\Omega} u \Big(\frac{\partial}{\partial x_1} p_1^* + ... + \frac{\partial}{\partial x_n} p_n^* \Big)$$
$$= -\int_{\Omega} u \operatorname{div} p^* dx = \int_{\Omega} u (-\operatorname{div} p^* dx) = \int_{\Omega} u \Lambda^* p^*,$$

thus we deduce that $\Lambda^* = - \operatorname{div}$. Then the constraint $-\Lambda^2 p^* = f \Leftrightarrow -(-\operatorname{div} p^*) = f$ or $\operatorname{div} p^* = f$. In conclusion, the dual problem becomes

$$(\mathcal{P})^* \sup_{p^* \in L^2(\Omega)^n, \text{ div} p^* = f} \Big\{ -\frac{1}{2} \int_{\Omega} |p^*(x)|^2 dx \Big\}.$$

Extremality relations: if \bar{u} is the unique solution of (\mathcal{P}) and \bar{p}^* a solution of $(\mathcal{P})^*$, we must have:

$$F(\bar{u}) + F^*(\Lambda^* \bar{p}^*) = \langle \Lambda^* \bar{p}^*, \bar{u} \rangle$$

$$G(\Lambda \bar{u}) + G^*(-\bar{p}^*) = -\langle \bar{p}^*, \Lambda \bar{u} \rangle$$

The second relation gives

$$\int_{\Omega} |\nabla \bar{u}|^2 dx + \int_{\Omega} |\bar{p}^*(x)|^2 dx = -2 \int_{\Omega} \nabla \bar{u}(x) \cdot \bar{p}^*(x) dx,$$

or

$$\sum_{i=1}^{n} \int_{\Omega} \left(\bar{u}_{x_i} - \bar{p}_i^* \right)^2 dx = 0$$

possible iff $\bar{p}^*(x) = -\nabla \bar{u}(x)$ a.e. $x \in \Omega$

Conclusion: the hypotheses of theorems from the course and handout hold; we know the existence and uniqueness of a solution \bar{u} of (\mathcal{P}) ; we have the existence of a solution \bar{p}^* of $(\mathcal{P})^*$ (this is also unique since the functional $p^* \mapsto \frac{1}{2} \int_{\Omega} |p^*(x)|^2 dx$ is strictly convex); we also must have $\inf(\mathcal{P}) = \sup(\mathcal{P})^*$ and the extremality conditions above must hold, giving us that $\bar{p}^*(x) =$ $-\operatorname{grad}\bar{u}(x)$, a.e. in Ω .

Example: computation of the dual for a problem with constraint

(problem of elasto-plastic torsion)

Let $W = \{ v \in H_0^1(\Omega) : | \text{grad}v(x) | \le 1 \text{ a.e.} \}, \text{ or }$ $W = \{ v \in H_0^1(\Omega) : |\nabla v(x)| \le 1, a.e. \} \text{ (using the notation grad} = \nabla \text{)}.$ It is easy to show that this is a closed, convex subset of $V = H_0^1(\Omega)$. The primal problem is

$$(\mathcal{P}) \quad \inf_{u \in W} \Big\{ \frac{1}{2} \int_{\Omega} \Big[|\nabla u|^2 - 2fu \Big] dx \Big\},$$

where we can assume that $f \in L^{\infty}(\Omega)$ is given.

Based on a Thm. of Brezis and Stampacchia (not covered in class), there is a unique solution $\bar{u} \in W^{2,\alpha}(\Omega)$ of the problem, for all $1 \leq \alpha < \infty$.

We leave out the discussion on the existence of the solution; here we only want to compute the dual problem.

We set $V = H_0^1(\Omega)$, $V^* = H^{-1}(\Omega)$, $Y = Y^* = L^2(\Omega)^n$, $\Lambda = \nabla = gradient$.

$$F(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx - \int_{\Omega} f(x)u(x)dx$$
$$G(p) = \begin{cases} 0 \text{ if } |p(x)| \le 1 \text{ a.e.} \\ +\infty \text{ otherwise} \end{cases}$$
$$(\mathcal{P}) \quad \inf F(u) + G(\Lambda u)$$

$$\mathcal{P}$$
) $\inf_{u} F(u) + G(\Lambda u)$

$$F^*(u^*) = \sup_{v \in V} \left(\langle u^*, v \rangle + (f, v) - \frac{1}{2} \int_{\Omega} |\nabla v|^2 dx \right).$$

The sup problem has a unique solution $v = v(u^*)$ that must satisfy

$$(\nabla v, \nabla w) = \langle f + u^*, w \rangle$$
 for all $w \in V$

from where we obtain that

$$F^*(u^*) = \frac{1}{2} \|f + u^*\|_*^2,$$

where $\|\cdot\|_*$ is the dual norm in V^* , dual to $\|u\| = \left(\int_{\Omega} |\nabla u|^2 dx\right)^{1/2}$. We also have:

We also have: $G: L^2(\Omega)^n \mapsto \overline{\mathbb{R}}, \ G(p) = \begin{cases} 0 \text{ if } |p(x)| \leq 1 \text{ a.e.} \\ +\infty \text{ otherwise} \end{cases}$. Then

$$\begin{aligned} G^*(p^*) &= \sup_{p \in L^2(\Omega)^n} \left(\langle p^*, p \rangle - G(p) \right) = \sup_{p \in L^2(\Omega)^n} \left(\int_{\Omega} p^*(x) \cdot p(x) dx - \begin{cases} 0 \text{ if } |p(x)| \le 1 \text{ a.e.} \\ +\infty \text{ otherwise} \end{cases} \right) \\ &= \sup_{|p(x)| \le 1 \text{ a.e.}} \int_{\Omega} p^*(x) \cdot p(x) dx = \int_{\Omega} |p^*(x)| dx. \end{aligned}$$

Thus we obtain the dual problem

$$(\mathcal{P})^* \quad \sup_{p^* \in L^2(\Omega)^n} \left(-\frac{1}{2} \| \operatorname{div} p^* - f \|_*^2 - \int_{\Omega} |p^*(x)| dx \right)$$

which is an unconstrained problem.