Connections with the finite dimensional case and with the KKT conditions

Example: Nonlinear inequality constrained optimization

Let $V = V^* = \mathbb{R}^n$, $Y = Y^* = \mathbb{R}^m$. Assume $f : \mathbb{R}^n \to \mathbb{R}$ convex and l.s.c. Let functions $c_1, ..., c_m : \mathbb{R}^n \to \mathbb{R}$ be convex and l.s.c. Assume that there is a $u_0 \in \mathbb{R}^n$ such that $c_i(u_0) \leq 0$ for all i = 1, ..., m. Denote by $c(u) = (c_1(u), ..., c_m(u))$.

The primal problem is

$$\inf_{u \in \mathbb{R}^n, c_i(u) \le 0, i=1,\dots,m} f(u).$$

The perturbation is defined by

$$\Phi(u, p) = \begin{cases} f(u) \text{ if } c(u) \le p \\ +\infty \text{ otherwise} \end{cases}$$

or

$$\Phi(u, p) = \begin{cases} f(u) \text{ if } c_i(u) \le p_i, \ i = 1, ..., m \\ +\infty \text{ otherwise} \end{cases}$$

Then $\Phi(u, p)$ can also be expressed as $\Phi(u, p) = f(u) + \chi_{E_p}(u)$, where χ_{E_p} is the indicator function of the set

$$E_p = \{ u \in \mathbb{R}^n : c(u) \le p \}.$$

It is possible to show that the dual problem is

$$\sup_{p^* \le 0} \inf_{u \in \mathbb{R}^n} \Big\{ - < p^*, c(u) > + f(u) \Big\}.$$

Also, it is possible to show that the Lagrangian defined by

$$-L(u, p^*) := \sup_{p \in \mathbb{R}^m} \{ < p^*, p > -\Phi(u, p) \}$$

becomes

$$L(u, p^*) = f(u) - \sum_{i=1}^{m} p_i^* c_i(u) \text{ if } p_i^* \le 0.$$

Then we have the KKT theorem:

Theorem: \bar{u} is a solution of the primal problem if and only if there is a $\bar{p}^* \in \mathbb{R}^m$, $\bar{p}^* \leq 0$ such that

$$L(\bar{u}, p) \le L(\bar{u}, \bar{p}^*) \le L(u, \bar{p}^*)$$
 for all $u \in \mathbb{R}^n, \ p \in R^m, p \le 0$,

and the extremality relation holds $\langle \bar{p}^*, c(\bar{u}) \rangle = 0$, which implies that for all i, $1 \leq i \leq m$,

either
$$\{c_i(\bar{u}) < 0 \text{ and } p_i^* = 0\}$$
 or $\{c_i(\bar{u}) = 0 \text{ and } \bar{p}_i^* < 0\}$.

Remark: The usual notations in the finite dimensional case where f(u) = f(x), for $u = x \in \mathbb{R}^n$, $p = \lambda \in \mathbb{R}^m$, and we substituted $C_i(x) \ge 0$ by $-C_i(x) = c_i(x) \le 0$. Thus the Lagrange multiplier $\bar{p}^* = \lambda^*$ here is negative, while with $C_i(x) \ge 0$ we have $\bar{p}^* = \lambda^* \ge 0$.