Connections with the finite dimensional case and with the KKT conditions

Example: Nonlinear inequality constrained optimization
Let $V=V^{*}=\mathbb{R}^{n}, Y=Y^{*}=\mathbb{R}^{m}$. Assume $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convex and l.s.c. Let functions $c_{1}, \ldots, c_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex and l.s.c. Assume that there is a $u_{0} \in \mathbb{R}^{n}$ such that $c_{i}\left(u_{0}\right) \leq 0$ for all $i=1, \ldots, m$. Denote by $c(u)=\left(c_{1}(u), \ldots, c_{m}(u)\right)$.

The primal problem is

$$
\inf _{u \in \mathbb{R}^{n}, c_{i}(u) \leq 0, i=1, \ldots, m} f(u) .
$$

The perturbation is defined by

$$
\Phi(u, p)=\left\{\begin{array}{c}
f(u) \text { if } c(u) \leq p \\
+\infty \text { otherwise }
\end{array}\right.
$$

or

$$
\Phi(u, p)=\left\{\begin{array}{l}
f(u) \text { if } c_{i}(u) \leq p_{i}, i=1, \ldots, m \\
+\infty \text { otherwise }
\end{array}\right.
$$

Then $\Phi(u, p)$ can also be expressed as $\Phi(u, p)=f(u)+\chi_{E_{p}}(u)$, where $\chi_{E_{p}}$ is the indicator function of the set

$$
E_{p}=\left\{u \in \mathbb{R}^{n}: c(u) \leq p\right\} .
$$

It is possible to show that the dual problem is

$$
\sup _{p^{*} \leq 0} \inf _{u \in \mathbb{R}^{n}}\left\{-<p^{*}, c(u)>+f(u)\right\} .
$$

Also, it is possible to show that the Lagrangian defined by

$$
-L\left(u, p^{*}\right):=\sup _{p \in \mathbb{R}^{m}}\left\{<p^{*}, p>-\Phi(u, p)\right\}
$$

becomes

$$
L\left(u, p^{*}\right)=f(u)-\sum_{i=1}^{m} p_{i}^{*} c_{i}(u) \text { if } p_{i}^{*} \leq 0
$$

Then we have the KKT theorem:
Theorem: \bar{u} is a solution of the primal problem if and only if there is a $\bar{p}^{*} \in \mathbb{R}^{m}$, $\bar{p}^{*} \leq 0$ such that

$$
L(\bar{u}, p) \leq L\left(\bar{u}, \bar{p}^{*}\right) \leq L\left(u, \bar{p}^{*}\right) \text { for all } u \in \mathbb{R}^{n}, p \in R^{m}, p \leq 0
$$

and the extremality relation holds $<\bar{p}^{*}, c(\bar{u})>=0$, which implies that for all i, $1 \leq i \leq m$,

$$
\text { either }\left\{c_{i}(\bar{u})<0 \text { and } p_{i}^{*}=0\right\} \text { or }\left\{c_{i}(\bar{u})=0 \text { and } \bar{p}_{i}^{*}<0\right\} .
$$

Remark: The usual notations in the finite dimensional case where $f(u)=f(x)$, for $u=x \in \mathbb{R}^{n}, p=\lambda \in \mathbb{R}^{m}$, and we substituted $C_{i}(x) \geq 0$ by $-C_{i}(x)=c_{i}(x) \leq 0$. Thus the Lagrange multiplier $\bar{p}^{*}=\lambda^{*}$ here is negative, while with $C_{i}(x) \geq 0$ we have $\bar{p}^{*}=\lambda^{*} \geq 0$.

