Math 273 Homework #4 Due on Friday, March 22nd

(you can leave your homework in my mailbox, under the door at my office MS 7620-D, or with Babette Dalton at MS 7619 before 3pm every day, or you can send it by email).

- [1] Let V be a real vector space and $F: V \to \mathbb{R}$ be a convex function, thus for every $u, v \in V$, we have $F(\lambda u + (1-\lambda)v) \leq \lambda F(u) + (1-\lambda)F(v)$, $\forall \lambda \in [0,1]$, whenever the RHS is defined (the RHS is not defined when $F(u) = -F(v) = +\infty$ or $F(u) = -F(v) = -\infty$.
- (a) If F is convex, show that for every $u_1, ..., u_n$ of points of V and for every family $\lambda_1, ..., \lambda_n$, $\lambda_i \geq 0, \sum_{i=1}^n \lambda_i = 1$, we have

$$F(\sum_{i=1}^{n} \lambda_i u_i) \le \sum_{i=1}^{n} \lambda_i F(u_i).$$

- (b) If $F: V \to \overline{\mathbb{R}}$ is convex, show that the sets $\{u: F(u) \leq a\}$ and $\{u: F(u) < a\}$ are convex sets. Show that the converse is not true.
- [2] The epigraph of a function $F: V \to \mathbb{R}$ is the set

$$\operatorname{epi} F = \{(u, a) \in V \times \mathbb{R} | f(u) \le a\},\$$

where V is a Banach space. Show that the function F is convex if and only if its epigraph is

[3] Assume that V and V^* are normed vector spaces in duality. Let $F:V\to\overline{\mathbb{R}}$ and let $F^*:V^*\to\overline{\mathbb{R}}$ be the polar or conjugate of F. We define F^* by

$$F^*(u^*) = \sup_{u \in V} \Big\{ \langle u^*, u \rangle - F(u) \Big\},\,$$

where $\langle u^*, u \rangle = u^*(u)$.

- (i) $F^*(0) = -inf_{u \in V}F(u)$. (ii) $(\lambda F)^*(u^*) = \lambda F^*(\frac{1}{\lambda}u^*)$ for every $\lambda > 0$.
- [4] Let $V = V^* = \mathbb{R}^n$. Let Q be a symmetric positive definite $n \times n$ matrix, $b \in \mathbb{R}^n$, and consider $f(x) := \frac{1}{2}\langle x, Qx \rangle + \langle b, x \rangle$, for all $x \in \mathbb{R}^n$. Find the polar (or the conjugate) f^* and deduce that, in particular, $\frac{1}{2} \| \cdot \|^2$ is its own polar (or conjugate).
- [5] Let $F: V \to \mathbb{R}$ and F^* its polar. Then $u^* \in \partial F(u)$ if and only if $F(u) + F^*(u^*) = \langle u^*, u \rangle$.
- [6] Show that the polar F^* is convex.
- [7] Let $f \in \mathbb{R}^{N^2}$ be given, and let $u \in \mathbb{R}^{N^2}$ be an unknown minimizer of the functional (already seen before)

$$E(w) = \sum_{i,j=0}^{N-1} |\nabla w_{i,j}|^2 + \lambda \sum_{i,j=0}^{N-1} (w_{i,j} - f_{i,j})^2,$$

for $w \in \mathbb{R}^{N^2}$, where

$$\nabla w_{i,j} = \left(\begin{array}{c} (D_x w)_{i,j} \\ (D_y w)_{i,j} \end{array} \right) = \left(\begin{array}{c} w_{i+1,j} - w_{i,j} \\ w_{i,j+1} - w_{i,j} \end{array} \right),$$

for $(i,j) \in \{0,...,N-1\}^2$ (we assume that all vectors f, u, w are periodic outside of their support).

(a) Find the adjoint operators D_x^* and D_y^* of D_x and D_y .

(b) Find a linear operator $B: \mathbb{R}^{N^2} \to \mathbb{R}^{N^2}$, a $c \in \mathbb{R}^{N^2}$, and C(f), independent of w, such that for all $w \in \mathbb{R}^{N^2}$,

$$E(w) = \langle Bw, w \rangle + \langle c, w \rangle + C(f).$$

- (c) Show that B is self-adjoint.
- (d) Find the Gateaux differential of E(w) in the direction v and thus give a necessary (and sufficient) condition for u to be a minimizer, by setting this differential to zero (as the zero functional).

Optional Problems

[1] Note that a function $F: V \mapsto \overline{\mathbb{R}}$, with V a normed vector space, is lower semi-continuous (l.s.c.) on V by the equivalent definition:

$$\forall a \in \mathbb{R} : \left\{ u \in V | F(u) \le a \right\} \text{ is closed.}$$

Using this, show that F is l.s.c. iff its epigraph is closed (hint: consider the function on $V \times \mathbb{R}$ defined by f(u, a) = F(u) - a).

[2] Infimal convolution. Let f_1, \ldots, f_m be convex functions on \mathbb{R}^n . Their infimal convolution, denoted $g = f_1 \circ \ldots \circ f_m$ (several other notations are also used), is defined as $g(x) = \inf f_1(x_1) + \ldots + f_m(x_m)|x_1 + \ldots + x_m = x$, with the natural domain (i.e., defined by $g(x) < \infty$).

(The name "convolution" presumably comes from the observation that if we replace the sum above with the product, and the infimum above with integration, then we obtain the normal convolution.)

- (a) Show that g is convex.
- (b) Show that $g^* = f_1^* + ... + f_m^*$.

[3] Approximate total variation denoising. Let $y \in \mathbb{R}^n$ be a given (corrupted, noisy) vector, $x \in \mathbb{R}^n$ is the denoised vector to be computed by minimizing the 1D-discrete TV function with data fidelity term:

$$f(x) = ||x - y||_2^2 + \lambda \sum_{i=1}^{n-1} |x_{i+1} - x_i|.$$

We can make the second term twice differentiable using regularization:

$$TV(x) = \sum_{i=1}^{n-1} |x_{i+1} - x_i| \approx \sum_{i=1}^{n-1} \left(\sqrt{\epsilon^2 + (x_{i+1} - x_i)^2} - \epsilon \right),$$

where $\epsilon > 0$ is a small parameter. Apply gradient descent method and Newton's method for the minimization using the approximate formula for TV (simlar problem with the previous length minimization). Define a noisy vector y as data.