Math 273 Homework #3 Due on Monday, March 11

[1] Show that $(0, -1)^T$ is a local minimizer for the problem Minimize $f(x) = 2x_1^2 + x_2$ subject to $x_2 \ge x_1^2 - 1$ $x_1 \ge x_2$.

[2] Verify that the KKT conditions (1st order optimality conditions) for the boundconstrained problem

$$\min_{x \in \mathbb{R}^n} \phi(x), \text{ subject to } l \le x \le u,$$

are equivalent to the compactly stated condition $P_{[l,u]}\nabla\phi(x) = 0$, where the projection operator $P_{[l,u]}$ of a vector $g \in \mathbb{R}^n$ onto the rectangular box [l, u] is defined by

$$(P_{[l,u]}g)_i = \begin{cases} \min(0,g_i), & \text{if } x_i = l_i, \\ g_i, & \text{if } x_i \in (l_i,u_i), \text{ for all } i = 1, 2, ..., n \\ \max(0,g_i), & \text{if } x_i = u_i. \end{cases}$$

[3] Repeat problem [1] from Hw #2 using now Newton's method, and compare the two methods. Give details about your implementation (computation of gradient, of Hessian, of its inverse, selection of α , stopping criterion), and include your code.

[4] Consider the minimization problem in two dimensions $(x, y) \in \Omega$,

$$\inf_{u} \Big\{ F(u) = \int_{\Omega} L(x, y, u, u_x, u_y) dx dy, \quad u = g \text{ on } \partial\Omega \Big\},\$$

where g is a given function on the boundary $\partial \Omega$, with Ω an open and bounded region in the plane. Assume that the integrand L is differentiable.

(i) Show that a sufficiently smooth minimizer u formally satisfies the Euler-Lagrange equation

$$\frac{\partial}{\partial x} \left(L_{u_x}(P) \right) + \frac{\partial}{\partial y} \left(L_{u_y}(P) \right) - L_u(P) = 0$$

on Ω , where $P = (x, y, u(x, y), u_x(x, y), u_y(x, y))$.

(iii) Let u(x, y, t) be a smooth solution of the time-dependent PDE

$$\frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \Big(L_{u_x}(P) \Big) + \frac{\partial}{\partial y} \Big(L_{u_y}(P) \Big) - L_u(P),$$

with $u(x, y, 0) = u_0(x, y)$ in Ω and u(x, y, t) = g(x, y) for $(x, y) \in \partial \Omega$ and $t \ge 0$.

Show that the function $E(t) = F(u(\cdot, \cdot, t))$ is decreasing in time.

Hint for (i): consider another test function v, such that v = 0 on $\partial \Omega$. Since u is a minimizer, we must have $F(u) \leq F(u + \varepsilon v)$ for all such sufficiently smooth functions v and all real ϵ . Apply integration by parts to obtain the desired result in (i).

Here,
$$(u_x, u_y) = \nabla u = \left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right).$$

[5] Consider the minimization problem

$$\inf_{u} F(u) = \int_{x_0}^{x_1} L(x, u(x), u'(x), u''(x)) dx,$$

with $u(x_0) = u_0$, $u(x_1) = u_1$, $u'(x_0) = U_0$, $u'(x_1) = U_1$ given, and L a sufficiently smooth function. As in the previous problem, derive the equation satisfied by a smooth optimal u. Choose test functions v in $C^{\infty}[x_0, x_1]$ that satisfy $v(x_0) = v(x_1) = v'(x_0) = v'(x_1) = 0$. (you should obtain a fourth-order differential equation).

Notes

Let Ω be an open and bounded subset of \mathbb{R}^d , with Lipschitz-continuous (or sufficiently smooth) boundary $\partial\Omega$. Let $\vec{n} = (n_1, n_2, ..., n_d)$ be the exterior unit normal to $\partial\Omega$. Recall the following fundamental Green's formula, or integration by parts formula: given two functions u, v (with u, v, and all their 1st order partial derivatives belonging to $L^2(\Omega)$, or $u, v \in H^1(\Omega)$), then

$$\int_{\Omega} uv_{x_i} dx = -\int_{\Omega} u_{x_i} v dx + \int_{\partial \Omega} uv n_i dS.$$