Math 273: Homework #1, due on Wednesday, January 30

- [1] Suppose that f is a convex function. Show that the set of global minimizers of f is a convex set.
- [2] Consider the 1D length functional minimization problem

$$\operatorname{Min}_{u}F(u) = \int_{0}^{1} L(u'(x))dx$$
, or $\operatorname{Min}_{u} \int_{0}^{1} \sqrt{1 + (u'(x))^{2}} dx$,

over functions $u:[0,1]\to \mathbb{R}$ with boundary conditions u(0)=0, u(1)=1.

- (a) Find the exact solution of the problem. Justify your answer.
- (b) Show that the functional $u \mapsto F(u)$ is convex.
- (c) Consider a discrete version of the problem: let

$$x_0 = 0 < x_1 < \dots < x_n < x_{n+1} = 1$$

be equidistant points, with $x_{i+1} - x_i = h$. For $\vec{u} = (u_1, ..., u_n)$, consider $f(\vec{u}) = \sum_{i=0}^n \sqrt{1 + \left(\frac{u_{i+1} - u_i}{h}\right)^2}$, with the additional condition that $u_0 = 0$ and $u_{n+1} = 1$.

Choose an appropriate discretization integer n. Then numerically and experimentally analyze the behavior of the gradient descent method with backtracking line search. Choose the initial starting point u^0 as a curve joining the points (0,0) and (1,1). Record the number of iterations and plot the error $u^k - u^*$, where u^* is the exact minimizer. You could also plot the curve given by \vec{u}^k at some iterations.

- (d) Repeat question (c), using now Newton's method.
- (e) Discuss the results obtained in (c) and (d).
- [3] Let $A: \mathbb{R}^n \to \mathbb{R}^n$ be a (linear) self-adjoint operator, $b \in \mathbb{R}^n$, and consider the quadratic function for $x \in \mathbb{R}^n$

$$x \mapsto q(x) := \langle Ax, x \rangle - 2\langle b, x \rangle.$$

Show that the three statements

- (i) $\inf\{q(x): x \in \mathbb{R}^n\} > -\infty$
- (ii) $A \ge O$ and $b \in \text{Im} A$.
- (iii) the problem $\inf\{q(x): x \in \mathbb{R}^n\} > -\infty$ has a solution are equivalent. When they hold, characterize the set of minimum points of q, in terms of the pseudo-inverse of A.