
Math 273: Homework #2, due on Monday, October 25

[1] Consider the minimization problem

inf
u
F (u) =

∫ x1

x0

L(x, u(x), u′(x), u′′(x))dx,

with u(x0) = u0, u(x1) = u1, u′(x0) = U0, u′(x1) = U1 given, and L is
a sufficiently smooth function. Obtain the Euler-Lagrange equation of the
minimization problem that is satisfied by a smooth optimal u. Choose test
functions v in C∞[x0, x1] that satisfy v(x0) = v(x1) = v′(x0) = v′(x1) =
0, and proceed as in HW1, problem [5] (you should obtain a fourth-order
differential equation).

[2] Consider the 1D length functional minimization problem

MinuF (u) =
∫ 1

0
L(u′(x))dx, or Minu

∫ 1

0

√
1 + (u′(x))2dx,

over functions u : [0, 1]→ IR with boundary conditions u(0) = 0, u(1) = 1.
(a) Find the exact solution of the problem.
(b) Show that the functional u 7→ F (u) is convex.
(c) Consider a discrete version of the problem: let

x0 = 0 < x1 < ... < xn < xn+1 = 1

be equidistant points, with xi+1 − xi = h. For ~u = (u1, ..., un), consider

f(~u) =
∑n

i=0

√
1 +

(
ui+1−ui

h

)2
, with the additional condition that u0 = 0 and

un+1 = 1.
Choose an appropriate discretization integer n. Then numerically and

experimentally analyze the behavior of the gradient descent method with
backtracking line search. Choose the initial starting point u0 as a curve
joining the points (0, 0) and (1, 1). Record the number of iterations and plot
the error uk − u∗, where u∗ is the exact minimizer. You could also plot the
curve given by ~uk at some iterations.

(d) Repeat question (c), using now Newton’s method.
(e) Discuss the results obtained in (c) and (d).

[3] Let A : IRn → IRn be a (linear) self-adjoint operator, b ∈ IRn, and consider
the quadratic function for x ∈ IRn

x 7→ q(x) := 〈Ax, x〉 − 2〈b, x〉.

Show that the three statements
(i) inf{q(x) : x ∈ IRn} > −∞
(ii) A ≥ O and b ∈ ImA.
(iii) the problem inf{q(x) : x ∈ IRn} > −∞ has a solution

are equivalent. When they hold, characterize the set of minimum points of
q, in terms of the pseudo-inverse of A.
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[4] Recall the BFGS update formula for the Hessian approximation:

Bk+1 = Bk −
Bksks

t
kBk

st
kBksk

+
yky

t
k

yt
ksk

(where Bk is symmetric and positive definite), and the formula to directly
update the inverse of Hessian approximation:

Hk+1 = (I − ρksky
t
k)Hk(I − ρkyks

t
k) + ρksks

t
k

(where Hk is symmetric and positive definite, as inverse of Bk, and ρk = 1
yt

k
sk

).

Using the following Sherman-Morrison-Woodbury formula, show thatHk+1

is the inverse of Bk+1.
If A is an n×n nonsingular matrix, and a, b vectors in IRn, let A = A+abt.

Then the following (SMW) formula holds:

(SMW) A
−1

= A−1 − A−1abtA−1

1 + btA−1a
.

Notes:

• If A is a symmetric (or self-adjoint) linear operator on X, then ImA⊥ =
KerA. Let pImA

be the operator of orthogonal projection onto ImA. For
given y ∈ X, there is a unique x = x(y) in ImA such that Ax = pImA

y.
Forthermore, the mapping y 7→ x(y) is linear. This mapping is called the
pseudo-inverse, or generalized inverse of A.

• Let Ω be an open and bounded subset of Rd, with Lipschitz-continuous
(or sufficiently smooth) boundary ∂Ω. Let ~n = (n1, n2, ..., nd) be the exterior
unit normal to ∂Ω. Recall the following fundamental Green’s formula, or
integration by parts formula: given two functions u, v (with u, v, and all
their 1st order partial derivatives belonging to L2(Ω), or u, v ∈ H1(Ω)), then∫

Ω
uvxi

dx = −
∫

Ω
uxi
vdx+

∫
∂Ω
uvnidS.
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