Math 270C: Assignment #5

Due on Wednesday, May 21.

- [1] Assume that the $n \times n$, symmetric, positive definite matrix A has the eigenvalues λ_i , i = 1, ..., n, with corresponding linearly independent eigenvectors v_i , i = 1, ..., n.
- (a) Find the eigenvalues of $P_k(A)$, where $P_k(A) = \gamma_0 I + \gamma_1 A + ... + \gamma_k A^k$, with γ_i constants.
 - (b) Show that any eigenvector v_i of A is also an eigenvector of $P_k(A)$.
- (c) Assume that $x \in \mathbb{R}^n$ is given by $x = \sum_{i=1}^n \xi_i v_i$, for some constants ξ_i . Assume now that the eigenvectos v_i are orthonormal. Show that

$$||x||_A^2 = \sum_{i=1}^n \lambda_i \xi_i^2,$$

where $||x||_A = \sqrt{\langle Ax, x \rangle}$.

[2] Let $\{\lambda_i, v_i\}$, i = 1, ..., n be the eigenpairs of A. Show that the eigenvalues and eigenvectors of

$$[I + P_k(A)A]^T A [I + P_k(A)A]$$

are $\lambda_i[1+\lambda_i P_k(\lambda_i)]^2$ and v_i , respectively, where P_k is defined as before.

[3] Assume true the following theorem: Suppose $A \in \mathbb{R}^{n \times n}$ is symmetric, positive definite, and $b \in \mathbb{R}^n$. If x^k is the iteration given by the gradient descent method, and if $K = K_2(A) = \frac{\lambda_{max}}{\lambda_{min}}$ is the 2-condition number of A, then $\|x - x^k\|_A \leq 2\|x - x^0\|_A \left(\frac{\sqrt{K} - 1}{\sqrt{K} + 1}\right)^k$.
Using this theorem, show that

$$||x^k - A^{-1}b||_2 \le 2\sqrt{K} \left(\frac{\sqrt{K} - 1}{\sqrt{K} + 1}\right)^k ||x^0 - A^{-1}b||_2.$$

[4] Implement the conjugate gradient method for the model problem from [4], Assignment #3. Use again h = 1/32. Plot the error versus iterations. Comment your results.