More definitions and properties of matrices

 $A \in \mathcal{M}(n \times n)$ is a real or complex matrix

Definitions and notations

 A^T = transpose of A

 $A^{H} = \bar{A}^{T} =$ complex conjugate and transpose, for complex matrices

If $A = A^T$ we say that A is symmetric. If $A = A^H$ we say that A is Hermitian.

Unitary or orthogonal matrix Q if $Q^T Q = I$ for real matrices $(Q^T = Q^{-1})$ or if $Q^H Q = I$ for complex matrices $(Q^H = Q^{-1})$.

Properties:

If A real, then $||A||_2 = \sqrt{\rho(A^T A)} = \sqrt{\rho(AA^T)}.$

If A complex, then $||A||_2 = \sqrt{\rho(A^H A)} = \sqrt{\rho(AA^H)}$.

Assume B is unitary or orthogonal. Then eigenvalues of A coincide with eigenvalues of $B^{-1}AB$ (or $\sigma(A) = \sigma(B^{-1}AB)$).

 $(AB)^{T} = B^{T}A^{T}$ $(AB)^{H} = B^{H}A^{H}.$ If $T = Q^{H}AQ$ with $Q^{H} = Q^{-1}$, then $||A||_{2} = ||T||_{2}$. For matrix norms: $||AB|| \le ||A|| \cdot ||B||.$

Let $\langle \cdot, \cdot \rangle$ be the Euclidean scalar product.

Definitions:

We say that A is positive definite (A > O) if $\langle Ax, x \rangle > 0$ for any vector $x \neq \vec{0}$.

We say that A is positive semi-definite $(A \ge O)$ if $\langle Ax, x \rangle \ge 0$ for any vector x.

We write A > B iff A - B > O and $A \ge B$ iff $A - B \ge O$.

Properties:

A is positive definite iff all its eigenvalues are strictly positive.

 $A > B \Leftrightarrow CAC^H > CBC^H$, for all C regular $(det(C) \neq 0)$ (complex case)

 $A > B \Leftrightarrow CAC^T > CBC^T$, for all C regular $(det(C) \neq 0)$ (real case). $A > O \Rightarrow D = diag(A) > O$. $A > O, B > O \Rightarrow A + B > O$. $\xi I < A < \eta I \Rightarrow \sigma(A) \subset (\xi, \eta)$ (if A Hermitian or symmetric). Assume $D = diag(d_{ii}) =$ dialgonal matrix, with $d_{ii} > 0$. Then D > O, and $D^{1/2} = Diag(\sqrt{d_{ii}}), D^{-1/2} = (D^{1/2})^{-1}$.

Let A > O be positive definite. Then its diagonal matrix $D = Diag(a_{ii}) > O$.

If A positive definite (or positive semi-definite), then $A^{1/2}$ is positive definite (or positive semi-definite). $A^{1/2}$ is well defined by the unique (positive definite or positive semi-definite) solution of $X^2 = A$.

 $A^{-1/2}$ represents $\left(A^{1/2}\right)^{-1}$.