Math 270C: Assignment 5 Due Friday, February 18, 2005 Instructor: Luminita Vese [1] Assume that the $n \times n$, symmetric, positive definite matrix A has the eigenvalues λ_i , i = 1, ..., n, with corresponding l.i. eigenvectors v_i , i = 1, ..., n. - (a) Find the eigenvalues of $P_k(A)$, where $P_k(A) = \gamma_0 I + \gamma_1 A + ... + \gamma_k A^k$, with γ_i constants. - (b) Show that any eigenvector v_i of A is also an eigenvector of $P_k(A)$. - (c) Assume that $x \in \mathbb{R}^n$ is given by $x = \sum_{i=1}^n \xi_i v_i$, for some constants ξ_i . Assume now that the eigenvectos v_i are orthonormal. Show that $||x||_A^2 = \sum_{i=1}^n \lambda_i \xi_i^2$. - [2] Let $\{\lambda_i, v_i\}$, i = 1, ..., n be the eigenpairs of A. Show that the eigenvalues and eigenvectors of $$[I + P_k(A)A]^T A [I + P_k(A)A]$$ are $\lambda_i[1+\lambda_i P_k(\lambda_i)]^2$ and v_i , respectively, where P_k is defined as before. [3] Implement the conjugate gradient method for the model problem from [4], assignment 3. Use again h = 1/32. Plot the error versus iterations. Comment your results.