Math 269C. Vese. HW #4

[1] Let K be a tetrahedron with vertices a^i , i = 1, ..., 4, and let a^{ij} denote the midpoint on the straight line $a^i a^j$, i < j. Show that a function $v \in P_2(K)$ is uniquely determined by the degrees of freedom: $v(a^i)$, $v(a^{ij})$, i, j = 1, ..., 4, i < j. Show that the corresponding finite element space V_h satisfies $V_h \subset C^0(\Omega)$, assuming continuity at all degrees of freedom.

[2] Let K be a triangle with vertices a^i , i = 1, 2, 3. Suppose that $v \in P_r(K)$ and that v vanishes on the side a^2a^3 . Prove that v has the form

$$v(x) = \lambda_1(x)w_{r-1}(x), \quad x \in K,$$

where $w_{r-1} \in P_{r-1}(K)$, and $\lambda_1(x)$ is the affine local basis function corresponding to the node a^1 .

(for simplicity, you can assume that K is the reference triangle with vertices (0,0), (0,1) and (1,0), and that the side a^2a^3 is on one of the axes).

[3] Let K be a triangle with vertices a^i , i = 1, 2, 3, and let a^{ij} , i < j, denote the midpoints of the sides of K. Let a^{123} denote the center of gravity of K. Prove that $v \in P_4(K)$ is uniquely determined by the following degrees of freedom

$$\begin{split} &v(a^{i}), \\ &\frac{\partial v}{\partial x_{j}}(a^{i}), \ i = 1, 2, 3, \ j = 1, 2, \\ &v(a^{ij}), \ i, j = 1, 2, 3, \ i < j, \\ &v(a^{123}), \ \frac{\partial v}{\partial x_{j}}(a^{123}), j = 1, 2, \end{split}$$

(typo in Exercise 3.8 in the textbook).

Also show that the functions in the corresponding finite element space V_h are continuous, assuming continuity for all degrees of freedom.