HW #4, 269C Due on Wednesday, May 29

- [1] Let K be a tetrahedron with vertices a^i , i = 1, ..., 4, and let a^{ij} denote the midpoint on the straight line $a^i a^j$, i < j. Show that a function $v \in P_2(K)$ is uniquely determined by the degrees of freedom: $v(a^i)$, $v(a^{ij})$, i, j = 1, ..., 4, i < j. Show that the corresponding finite element space V_h satisfies $V_h \subset C^0(\Omega)$, assuming continuity at all degrees of freedom.
- [2] Let K be a triangle with vertices a^i , i = 1, 2, 3. Suppose that $v \in P_r(K)$ and that v vanishes on the side a^2a^3 . Prove that v has the form

$$v(x) = \lambda_1(x)w_{r-1}(x), \quad x \in K,$$

where $w_{r-1} \in P_{r-1}(K)$, and $\lambda_1(x)$ is the affine local basis function corresponding to the node a^1 .

(for simplicity, you can assume that K is the reference triangle with vertices (0,0), (0,1) and (1,0), and that the side a^2a^3 is on one of the axes).

[3] Let K be a triangle with vertices a^i , i = 1, 2, 3, and let a^{ij} , i < j, denote the midpoints of the sides of K. Let a^{123} denote the center of gravity of K. Prove that $v \in P_4(K)$ is uniquely determined by the following degrees of freedom

$$v(a^{i}),$$

$$\frac{\partial v}{\partial x_{j}}(a^{i}), i = 1, 2, 3, j = 1, 2,$$

$$v(a^{ij}), i, j = 1, 2, 3, i < j,$$

$$v(a^{123}), \frac{\partial v}{\partial x_{j}}(a^{123}), j = 1, 2,$$

(typo in Exercise 3.8 in the textbook).

Also show that the functions in the corresponding finite element space V_h are continuous, assuming continuity for all degrees of freedom.

[4] Consider the PDE (in the distributional sense)

$$-\triangle u + k^2 u = f \quad \text{in } R^n,$$

where k is a constant. Let $s \in R$. Show that, for all $f \in H^s(\mathbb{R}^n)$, there exists a unique $u \in H^{s+2}(\mathbb{R}^n)$, solution of the PDE, with $k \in R$, $k \neq 0$.

Hint: use the Fourier transform (see handout for notations of Sobolev spaces with arbitrary exponent s).

[5] Let I = [0, h] and let $\pi v \in P_1(I)$ be the linear interpolant that agrees with $v \in C^2(I)$ at the end points of I. Using the technique of the proof of Thm. 4.1, prove estimates for $||v - \pi v||_{L^{\infty}(I)}$ and $||v' - (\pi v)'||_{L^{\infty}(I)}$, cf. (1.12) and (1.13).