269C HW#2, due on Monday, April 24

[1] Find the linear basis functions for the triangle K with vertices at (0,0), (h,0) and (0,h). Show that the corresponding element stiffness matrix is given by

$$\left[\begin{array}{rrrr} 1 & -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} \end{array}\right]$$

Using this result, show that the linear system (1.25) of Example 1.1. has the stated form (pages 30-31) (there is a typo in the textbook regarding the matrix)

[2] Let V be a Hilbert space and $L: V \to R$ be a linear form. Show that L is bounded if and only if L is continuous. Then directly apply this result to a bilinear form $a: V \times V \to R$.

[3] Let V be a Hilbert space and the (nonlinear) operator $A: V \to V$, satisfying

(i) there is $M \ge 0$ s.t. $\forall u, v \in V$, $||Au - Av|| \le M ||u - v||$

(ii) there is $\alpha > 0$ s.t. $\forall u, v \in V, \langle Au - Av, u - v \rangle \ge \alpha ||u - v||^2$

Show that the nonlinear equation Au = f has a unique solution (for some $f \in V$), using the Banach fixed point theorem and the same technique for proving the Lax-Milgram theorem (introduce the function g_{λ}).

[4] Let V be a complex Hilbert space, $a: V \times V \to C$ a sesquilinear form, $L: V \to C$ an anti-linear form. Assume that a is Hermitian, thus $a(v, u) = \overline{a(u, v)}, \forall u, v \in V$, and that $a(v, v) \ge 0$. Consider the problems

(V) Find $u \in V$ s.t. $a(u, v) = L(v), \forall v \in V$,

(M) Find
$$u \in V$$
 s.t. $J(u) = \inf_{v \in V} J(v)$,

with $J: V \to R$ defined by $J(v) = \frac{1}{2}a(v, v) - \operatorname{Re}L(v)$. Show that $u \in V$ is solution of (V) iff $u \in V$ is solution of (M).

• Note: Over the complex space C, with the above notations, we say that $a: V \times V \to C$ is a sesquilinear form if a is linear in the first argument (under the usual addition and scalar multiplication) and antilinear in the second argument (usual addition but $a(u, \lambda v) = \overline{\lambda}a(u, v)$). Note that if $\operatorname{Rea}(v, v) \geq \alpha ||v||^2$, together with a and L bounded, then the Lax-Milgarm Lemma holds in the complex case with the same proof.