HW #3, 269C Due on Friday, May 20

- [1] Let V be a Hilbert space and the (nonlinear) operator $A:V\to V$, satisfying
 - (i) there is $M \ge 0$ s.t. $\forall u, v \in V$, $||Au Av|| \le M||u v||$
 - (ii) there is $\alpha > 0$ s.t. $\forall u, v \in V, \langle Au Av, u v \rangle \ge \alpha ||u v||^2$

Show that the nonlinear equation Au = f has a unique solution (for $f \in V$), using the Banach fixed point theorem and the same technique for proving the Lax-Milgram theorem (introduce the function g_{λ}).

[2] Let V be a complex Hilbert space, $a: V \times V \to C$ a sesquilinear form, $\underline{L: V \to C}$ an anti-linear form. Assume that a is Hermitian, thus $a(v, u) = \overline{a(u, v)}$, $\forall u, v \in V$, and that $a(v, v) \geq 0$. Consider the problems

(V) Find
$$u \in V$$
 s.t. $a(u, v) = L(v), \forall v \in V$,

(M) Find
$$u \in V$$
 s.t. $J(u) = \inf_{v \in V} J(v)$,

with $J: V \to R$ defined by $J(v) = \frac{1}{2}a(v, v) - \text{Re}L(v)$. Show that $u \in V$ is solution of (V) iff $u \in V$ is solution of (M).

[3] Consider the problem with an inhomogeneous boundary condition,

$$\begin{cases} -\triangle u = f \text{ in } \Omega, \\ u = u_0 \text{ on } \Gamma = \partial \Omega, \end{cases}$$

where f and u_0 are given. Show that this problem can be given the following equivalent formulations:

- (V) Find $u \in V(u_0)$ such that $a(u, v) = (f, v), \forall v \in H_0^1(\Omega)$,
- (M) Find $u \in V(u_0)$ such that $F(u) \leq F(v), \forall v \in V(u_0),$

where $V(u_0) = \{v \in H^1(\Omega) : v = u_0 \text{ on } \Gamma\}$ and F is defined in the usual way, $F(v) = \frac{1}{2}a(v,v) - (f,v)$.

Then formulate a finite element method and prove an error estimate (as in Thm. 1.1, page 24).

Recall: $H_0^1(\Omega) = \{v \in L^2(\Omega), \ \nabla v \in L^2(\Omega)^n, \ v = 0 \text{ on } \partial\Omega\}$, where n is the spatial dimension.

Useful notes

ullet Over the complex space C, with the above notations, we say that $a:V\times V\to C$ is a sesquilinear form if a linear in the first argument (under the usual addition and scalar multiplication), a antilinear in the second argument (usual addition but $a(u,\lambda v)=\bar{\lambda}a(u,v)$). Note that if $\mathrm{Re}a(v,v)\geq\alpha\|v\|^2$, together with a and L bounded, then the Lax-Milgarm Lemma holds in the complex case with the same proof.