HW #3, 269C Due on Monday, May 18

[1] Let V be a Hilbert space, and $a: V \times V \to R$ be a bilinear form. Show that: a bounded is equivalent with a continuous.

[2] Let V be a Hilbert space and the (nonlinear) operator $A: V \to V$, satisfying

(i) there is $M \ge 0$ s.t. $\forall u, v \in V$, $||Au - Av|| \le M ||u - v||$

(ii) there is $\alpha > 0$ s.t. $\forall u, v \in V, \langle Au - Av, u - v \rangle \ge \alpha ||u - v||^2$

Show that the nonlinear equation Au = f has a unique solution (for $f \in V$), using the Banach fixed point theorem and the same technique for proving the Lax-Milgram theorem (introduce the function g_{λ}).

[3] Let V be a complex Hilbert space, $a: V \times V \to C$ a sesquilinear form, $\underline{L}: V \to C$ an anti-linear form. Assume that a is Hermitian, thus $a(v, u) = \overline{a(u, v)}, \forall u, v \in V$, and that $a(v, v) \ge 0$. Consider the problems

(V) Find
$$u \in V$$
 s.t. $a(u, v) = L(v), \forall v \in V$,

(M) Find
$$u \in V$$
 s.t. $J(u) = \inf_{v \in V} J(v)$,

with $J: V \to R$ defined by $J(v) = \frac{1}{2}a(v, v) - \operatorname{Re}L(v)$.

Show that $u \in V$ is solution of (V) iff $u \in V$ is solution of (M).

[4] Prove Poincaré inequality on $H_0^1(0, 1)$.

[5] Consider the problem with an inhomogeneous boundary condition,

$$\begin{cases} -\triangle u = f \text{ in } \Omega, \\ u = u_0 \text{ on } \Gamma = \partial \Omega, \end{cases}$$

where f and u_0 are given. Show that this problem can be given the following equivalent formulations:

(V) Find $u \in V(u_0)$ such that $a(u, v) = (f, v), \forall v \in H_0^1(\Omega)$,

(M) Find $u \in V(u_0)$ such that $F(u) \leq F(v), \forall v \in V(u_0)$,

where $V(u_0) = \{v \in H^1(\Omega) : v = u_0 \text{ on } \Gamma\}$ and F is defined in the usual way, $F(v) = \frac{1}{2}a(v,v) - (f,v)$.

Then formulate a finite element method and prove an error estimate (as in Thm. 1.1, page 24).

Recall: $H_0^1(\Omega) = \{ v \in L^2(\Omega), \nabla v \in L^2(\Omega)^n, v = 0 \text{ on } \partial\Omega \}$, where *n* is the spatial dimension.

Useful notes

• Over the complex space C, with the above notations, we say that $a : V \times V \to C$ is a sesquilinear form if a linear in the first argument (under the usual addition and scalar multiplication), a antilinear in the second argument

(usual addition but $a(u, \lambda v) = \overline{\lambda}a(u, v)$). Note that if $\operatorname{Re}a(v, v) \ge \alpha \|v\|^2$, together with a and L bounded, then the Lax-Milgarm Lemma holds in the complex case with the same proof.

• Thm. Let $v \in H^1(a, b)$ and denote by $v' \in L^2(a, b)$ its first order distributional derivative. Then for almost every $x, y \in (a, b)$, we have

$$v(y) - v(x) = \int_x^y v'(t)dt.$$